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Abstract
In this paper, Toeplitz and Hankel inversion formulae are presented by the idea of skew cyclic displacement. A new Toeplitz

inversion formula can be denoted as a sum of products of skew circulant matrices and upper triangular Toeplitz matrices. A
new Hankel inversion formula can be denoted as a sum of products of skew left circulant matrices and upper triangular Toeplitz
matrices. The stability of their inverse formulae are discussed and their algorithms are given respectively. How the analogue of
our formulae lead to a more efficient way to solve the Toeplitz and Hankel linear system of equations are proposed. c©2017 All
rights reserved.
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1. Introduction

Toeplitz matrix has become a satisfactory tool in restoration of signals and images [6, 24, 25]. Toeplitz
inversion formulae involving circulant matrices have also been presented in [1, 20, 21]. The Gohberg-
Semencul type formula for fingding inverses of Toeplitz and Hankel matrix with skew circulant matrices
have not been exploited. Compared with a cyclic convolution algorithm, the skew cyclic convolution
algorithm [7, 23] is able to perform filtering in approximately half of computational cost for real signals.
In other words, it is able to perform skew-cyclic convolution procedure with about double speed of cyclic
one.

Finding inverse of Toeplitz matrix is a hot topic. Heinig and Rost [11] presented an inversion formula
for nonsingular Toeplitz matrix. The method gives the desired solution of fundamental equations, where
the right-hand side of one of them is a shifted column of the Toeplitz matrix T . The inversion of Toeplitz
matrix can be reconstructed by a low number of its columns and the entries of the original Toeplitz matrix.
The result was first observed by Trench [27] and reconstructed by Gohberg and Semencul [9] from its first
and last columns of T−1, given that the first component in the first column is nonzero. Through three
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columns of T−1 to reconstruct the inverse in [4] Labahn and Ng [18, 26] modified this result. The algorithm
of Trench for the inversion of Toeplitz matrices was shown with a detailed proof in [30]. Gohberg and
Krupnik [8] proposed that if the last component of the first column is nonzero, then T−1 can be recovered
from its first and second columns. Lv and Huang [21] presented a new Toeplitz matrix inversion formula
in which the inverse can be denoted as a sum of products of circulant matrices and upper triangular
Toeplitz matrices. The inverse of an invertible Toeplitz matrix was presented in the form of Toeplitz Be-
zoutian of two columns in [10]. Labahn and Shalom [19] proposed that formulae for the inverse of layered
or striped Toeplitz matrices in terms of solutions of standard equations are observed. Gohberg-Semencul
type formulae for inverse of conjugate-Toeplitz and conjugate-Hankel matrix are mentioned in [13, 15].
In [16], Jiang and Wang presented an innovative patterned matrix, RFPL-Toeplitz matrix, is neither the
extension of Toeplitz matrix nor its special case. The stability of the algorithms emerging from Toeplitz
matrix inversion formulae is considered in [28]. In [22], Naffouti and Baccari gave a characterization of a
class of copositive matrices.

In this paper the idea of skew cyclic displacement structure plays a critical role for finding the inverse
of Toeplitz matrix, a new Toeplitz inversion formula can be expressed as a sum of products of skew
circulant matrices and upper triangular Toeplitz matrices. It will be shown the number of real arithmetic
operations is less than known results for solving the Toeplitz and Hankel linear system of equations.

2. Toeplitz and Hankel inversion formula

Lemma 2.1. Let T = (ai−j)
n
i,j=1 be an n×n Toeplitz matrix, then it satisfies the formula

ΞT − TΞ = veTn − e1v
T J,

where

Ξ =


0 −1

1
. . .
. . . . . .

1 0

 , J =


1

1
. . .

1

 ,

e1 =


1
0
...
0

 , en =


0
...
0
1

 , v =


0

a1−n + a1
...

a−2 + an−2
a−1 + an−1

 .

Lemma 2.2. Let H = (bi+j)
n−1
i,j=0 be an n×n Hankel matrix, it satisfies

ΞH−HΞT = v̂eT1 − e1v̂
T ,

where Ξ and e1 are given in Lemma 2.1 and

v̂ =


0

b0 + bn
b1 + bn+1

...
bn−2 + b2n−2

 .
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Theorem 2.3. Let T = (ai−j)
n
i,j=1 be a Toeplitz matrix. If each of the systems of equations Tx = v, Ty = e1 are

solvable, x =
(
x1 x2 · · · xn

)T , y =
(
y1 y2 · · · yn

)T , then T is invertible and

T−1 = S1U1 + S2U2, (2.1)

where

S1 =


y1 −yn · · · −y2

y2 y1
. . .

...
...

. . . . . . −yn
yn · · · y2 y1

 , U1 =


1 −xn · · · x2

1
. . .

...
. . . −xn

1

 ,

S2 =


x1 −xn · · · −x2

x2 x1
. . .

...
...

. . . . . . −xn
xn · · · x2 x1

 , U2 =


0 yn · · · y2

0
. . .

...
. . . yn

0

 ,

and S1, S2 are both skew circulant matrices [14, 17, 29].

Proof. From Lemma 2.1 and Tx = v, Ty = e1, we have

ΞT = TΞ+ veTn − e1v
T J = T(Ξ+ xeTn − yvT J).

Then

ΞiT =Ξi−1T(Ξ+ xeTn − yvT J)

=T(Ξ+ xeTn − yvT J)i.

Therefore,

Ξie1 = ΞiTy = T(Ξ+ xeTn − yvT J)iy.

Let

ti = (Ξ+ xeTn − yvT J)i−1y, and T̂ =
(
t1 t2 · · · tn

)
.

Then

Tti =T(Ξ+ xe
T
n − yvT J)i−1y = Ξi−1e1 = ei,

T T̂ =T
(
t1 t2 · · · tn

)
=
(
e1 e2 · · · en

)
= In.

So matrix T is invertible and T−1 is T̂ .
It is easy to get

t1 = y, ti = (Ξ+ xeTn − yvT J)ti−1, (i = 1, 2, · · · ,n),

ti = T
−1ei, Jei = en−i+1, JTJ = TT , JJ = I, JT = J.

Then, for i > 1,

ti =Ξti−1 + xe
T
nti−1 − yv

T Jti−1

=Ξti−1 + xe
T
nT

−1ei−1 − yv
T JT−1ei−1

=Ξti−1 + xe
T
nJJT

−1Jen−i+2 − yv
TT−T Jei−1
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=Ξti−1 + xe
T
1 T

−Ten−i+2 − yv
TT−Ten−i+2

=Ξti−1 + xy
Ten−i+2 − yx

Ten−i+2

=Ξti−1 + yn−i+2x− xn−i+2y. (2.2)

According to t1 = y and equation (2.2), we have

T−1 =
(
t1 t2 · · · tn

)

=


y1 −yn · · · −y2

y2 y1
. . .

...
...

. . . . . . −yn
yn · · · y1 y1




1 −xn · · · x2

1
. . .

...
. . . −xn

1



+


x1 −xn · · · −x2

x2 x1
. . .

...
...

. . . . . . −xn
xn · · · x1 x1




0 yn · · · y2

0
. . .

...
. . . yn

0

 .

Theorem 2.4. Let H = (bi+j)
n−1
i,j=0 be a Hankel matrix. If each of the systems of equations Hu = v̂, Hz = e1 are

solvable, u =
(
u1 u2 · · · un

)T , z =
(
z1 z2 · · · zn

)T , then H is invertible and

H−1 = L1Π1 + L2Π2, (2.3)

where

L1 =


z1 z2 z3 · · · zn
z2 z3 . . . zn −z1
z3 . . . . . . −z1 −z2
... . . . . . . . . .

...
zn −z1 −z2 · · · −zn−1

 , Π1 =


1 −u1 · · · un−1

1
. . .

...
. . . −u1

1

 ,

L2 =


u1 u2 u3 · · · un
u2 u3 . . . un −u1
u3 . . . . . . −u1 −u2
... . . . . . . . . .

...
un −u1 −u2 · · · −un−1

 , Π2 =


0 z1 · · · zn−1

0
. . .

...
. . . z1

0

 ,

and L1, L2 are both skew left circulant matrices [14, 17, 29].

Proof. The proof is similar to that of Theorem 2.3.

3. Stability analysis

An algorithm is called forward stable, if all well conditioned problems, the computed solution x̃ is
closed to the true solution x that means the related error ‖x−x̃‖2

‖x‖2
is minimal. Round-off errors occur

in the matrix computation. Let A,B ∈ Cn×n and λ ∈ C. If we neglect the O(ε2) terms, then for any
floating-point arithmetic with machine precision ε we have (cf. [31])

fl(λA) = λA+ E, ‖E‖F 6 ε|λ|‖A‖F 6 ε
√
n|λ|‖A‖2,
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fl(A+B) = A+B+ E, ‖E‖F 6 ε‖A+B‖F 6 ε
√
n‖A+B‖2,

fl(AB) = AB+ E, ‖E‖F 6 εn‖A‖F‖B‖F.

According to the floating-point arithmetic, we have the following theorem.

Theorem 3.1. Let T be a nonsingular Toeplitz matrix and well conditioned, then the formula provided in Theorem
2.3 is forward stable.

Proof. Assume the solutions x̃, ỹ are obtained from Theorem 2.3, which are perturbed by the normwise
relative errors bounded by ε̃,

‖x̃‖2 6 ‖x‖2(1 + ε̃), ‖ỹ‖2 6 ‖y‖2(1 + ε̃).

Therefore,

‖S1‖F 6
√
n‖y‖2, ‖S2‖F 6

√
n‖x‖2,

‖U1‖F 6
√
n+

√
1 + ‖x‖2

2, ‖U2‖F 6
√
n‖y‖2.

Using the perturbed solutions x̃, ỹ, the inversion formula in Theorem 2.3 is

T̃−1 = fl(S̃1Ũ1 + S̃2Ũ2)

= fl[(S1 +∆S1)(U1 +∆U1) + (S2 +∆S2)(U2 +∆U2)]

= T−1 +∆S1U1 + S1∆U1 +∆S2U2 + S2∆U2 + E+ F,

here, E contains the error from computing the matrix products and F is the matrix containing the error
which results from subtracting the matrices. For the error matrices ∆S1, ∆U1, ∆S2 and ∆U2, we have

‖∆S1‖F 6 ε̃‖S1‖F 6 ε̃
√
n‖y‖2,

‖∆S2‖F 6 ε̃‖S2‖F 6 ε̃
√
n‖x‖2,

‖∆U1‖F 6 ε̃‖U1‖F 6 ε̃(
√
n+

√
1 + ‖x‖2

2),

‖∆U2‖F 6 ε̃‖U2‖F 6 ε̃
√
n‖y‖2.

It follows that
‖E‖2 6 ‖E‖F

6 εn(‖S1‖F‖U1‖F + ‖S2‖F‖U2‖F)

6 εn2‖y‖2(
√

1 + ‖x‖2 + ‖x‖2)

6 εn2‖y‖2(1 + 2‖x‖2),

‖v‖2 6 ε
√
n‖T−1‖2.

From above,

‖T̃−1 − T−1‖2 6 n(2ε̃+nε)‖y‖2(1 + 2‖x‖2) + ε
√
n‖T−1‖2.

As Tx = v, Ty = e1, then

‖x‖2 6 ‖T−1‖2‖v‖2, ‖y‖2 6 ‖T−1‖2.

Thus, the related error is

‖T̃−1 − T−1‖2

‖T−1‖2
6 n(2ε̃+nε)(1 + 2‖T−1‖2‖v‖2) + ε

√
n.

As T is well conditioned, thus, ‖T−1‖2 is finite. Obviously, ‖v‖2 is finite. Therefore, the formula presented
in Theorem 2.3 is forward stable.
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Through the same method, the following theorem can be obtained.

Theorem 3.2. Let H be an n× n Hankel matrix and well conditioned, then the formula presented in Theorem 2.4
is forward stable.

4. Two algorithms on finding T−1 and H−1

In this section, two algorithms on finding T−1 and H−1 are given.

Algorithm 4.1. By use Theorem 2.3, we proceed with

Step 1. Compute v = (0 a1−n + a1 a2−n + a2 · · · a−1 + an−1)
T .

Step 2. Compute x = (x1 x2 . . . xn)T and y = (y1 y2 . . . yn)T by solving the systems of equations

Tx = v, and Ty = e1.

Step 3. Compute T−1 via formula (2.1).

Algorithm 4.2. By use Theorem 2.4, we proceed with

Step 1. Compute v̂ = (0 b0 + bn b1 + bn+1 · · · bn−2 + b2n−2)
T .

Step 2. Compute u =
(
u1 u2 · · · un

)T and z =
(
z1 z2 · · · zn

)T by solving the systems of equations

Hu = v̂ and Hz = e1.

Step 3. Compute H−1 via formula (2.3).

5. Numerical example

In this section we give two examples to demonstrate our main result.

Example 5.1. T is a 4× 4 Toeplitz matrix

T =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 .

It is obvious that T is invertible. By Algorithm 4.1, we have
Step 1. Compute v by Lemma 2.1:

v =


0
1
0
1

 .

Step 2. Compute x,y by the systems of equations Tx = v, Ty = e1 :

x =


0
0
1
0

 , y =


0
1
0
−1

 .
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Step 3. Compute T−1 by using the equation (2.1):

T−1 =


0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0




1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1

+


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




0 −1 0 1
0 0 −1 0
0 0 0 −1
0 0 0 0



=


0 1 0 −1
1 0 0 0
0 0 0 1
−1 0 1 0

 .

Example 5.2. H is a 5× 5 Hankel matrix

H =


1 1 0 1 1
1 0 1 1 0
0 1 1 0 0
1 1 0 0 1
1 0 0 1 0

 .

It is obvious that H is invertible. By Algorithm 4.2, we have
Step 1. Compute v̂ by Lemma 2.2:

v̂ =
(

0 1 1 1 1
)T .

Step 2. Compute u, z by the systems of equations Hu = v̂, Hz = e1 :

u =


2
1
0
−1
−2

 , z =


−1
0
0
1
1

 .

Step 3. Compute H−1 by using the equation (2.3):

H−1 =


−1 0 0 1 1
0 0 1 1 1
0 1 1 1 0
1 1 1 0 0
1 1 0 0 −1




1 −2 −1 0 1
0 1 −2 −1 0
0 0 1 −2 −1
0 0 0 1 −2
0 0 0 0 1



+


2 1 0 −1 −2
1 0 −1 −2 −2
0 −1 −2 −2 −1
−1 −2 −2 −1 0
−2 −2 −1 0 1




0 −1 0 0 1
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
0 0 0 0 0



=


−1 0 0 1 1
0 −1 1 0 1
0 1 0 0 −1
1 0 0 −1 0
1 1 −1 0 −2

 .
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6. The value of formulae

Let T = [tj−k]
n−1
j,k=0 be a real symmetric positive-definite Toeplitz matrix of order n. There are several

well-known O(n2) algorithms for solving the linear system of equations Tx = b and more recently, several
O(nlog2n) algorithms have been developed. See, for example, [1–3, 12, 31] and the references contained
therein.

We now propose how the analogue of formulae (2.1) and (2.3) lead to a more efficient way to calculate
T−1b and H−1b.

It is really worth mentioning that, for real signals filtering, the computational cost of a skew-cyclic
convolution is about half of cyclic convolution [5]. That is a strong argument for our algorithm.

According to computational implications of Ammar and Gader [1], we know that the computation
of x = T−1b, by using our formula (2.1) requires at most 8τ(n) +O(n) computations, as well as the
computation of x = H−1b using our formula (2.3) requires at most 8τ(n) +O(n) computations, too.

We list the number of real arithmetic operations (additions and multiplications) required by the
Levinson-Durbin, the split Levinson, the generalized Schur, the Gohberg-Semencul and the circulant
Gohberg-Semencul algorithms in [1] algorithms for T−1b in Table 1, as well as operation counts for the
implementations of formulae (2.1) and (2.3) described above.

The value of our formulae (2.1) and (2.3) increase dramatically in situations in which T−1bk and
H−1bk are to be obtained for several different vectors bk. Instances of this situation are in the iterative
improvement of solutions.

Table 1: Operation counts.
Algorithm Number of real arithmetic operations

1. The Levinson-Durbin algorithm for T 2n2 [1]
2. The split Levinson algorithm for T 3

2n
2 [1]

3. The generalized Schur algorithm for T 8nlog2
2n− 2nlog2n [1]

4. The Gohberg-Semencul formula for T 28nlog2n [1]
5. The circulant Gohberg-Semencul formula for T 18nlog2n [1]
6. The skew circulant GS formula (2.1) for T 16nlog2n

7. The skew left circulant GS formula (2.3) for H 16nlog2n
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