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Abstract
The main object of this paper is to investigate some majorization problems involving the subclass S (α,A,B) of starlike

functions in the open unit disk U. Relevant connections of the results presented here with those given by earlier workers on the
subject are also indicated. c©2017 All rights reserved.
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1. Introduction

Let A denote the class of functions of the form

f(z) = z+

∞∑
n=2

anz
n,

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} .

Definition 1.1. For two functions f and g, which are analytic in U, the function f is said to be subordinate
to g, written as

f ≺ g or f (z) ≺ g (z)
if there exists a Schwarz function w analytic in U, with

ω (0) = 0 and |ω (z)| < 1 (z ∈ U)

and such that
f (z) = g (ω (z)) (z ∈ U) .

In particular, if the function g is univalent in U, the above subordination is equivalent to

f (0) = g (0) and f (U) ⊂ g (U) . (1.1)
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Definition 1.2. For two functions f and g, which are analytic in U, the function f is said to be majorized
to g, written as

f << g or f (z) << g (z)

if there exists a function ϕ analytic in U, with

|ϕ (z)| < 1 (z ∈ U)
and such that

f (z) = ϕ (z)g (z) (z ∈ U) ,

(see MacGregor [6]).

The majorization is closely related to the concept of quasi-subordination between analytic functions,
which was considered recently by (for example) Altıntaş and Owa [3]. Some majorization problems were
studied by Altıntaş et al. in [4, 5]. Therefore, various subclasses of univalent functions in U were studied
by Akgul in [1, 2].

We purpose to investigate the majorization problems associated with the class S (α,A,B) of starlike
functions.

Definition 1.3. We denote by S (α,A,B) the class of functions satisfying the condition

zf′ (z)

f (z)
+αz

(
zf′ (z)

f (z)

)′
≺ 1 +Az

1 +Bz
, (1.2)

(z ∈ U, f ∈ A, 0 6 α 6 1, −1 6 B < A 6 1) .

Clearly, we have the following relationships:

• S(0, 1,−1) = S∗ is the class of starlike functions;

• S(0, 0,−1) = C is the class of convex functions;

• S(0, 1 − 2α,−1) = S∗(α) is the class of starlike functions of order α, (0 6 α < 1);

• S(0, 1 −α,−1) = C(α) is the class of convex functions of order α, (0 6 α < 1).

2. Majorization problems for the class S (α,A,B)

We first state and prove the following Lemma 2.1.

Lemma 2.1 ([9]). If the function h(z) = 1 +
∑∞
n=1 cnz

n is analytic in U and satisfies the condition

h (z) ≺ 1 +Az

1 +Bz
(z ∈ U, −1 6 B < A 6 1) , (2.1)

then
Re h (z) >

1 −A

1 −B
= β. (2.2)

Proof. Using (1.1) and (2.1) we have

h (z) =
1 +Aω (z)

1 +Bω (z)
(ω (0) = 0, |ω (z)| < 1)

and

|ω (z)| =

∣∣∣∣ h (z) − 1
A−Bh (z)

∣∣∣∣ ,
for h (z) = u+ iv.
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Since |h (z)|2 > [Re h (z)]2, we have(
1 −B2)u2 − 2 (1 −AB)u+ 1 −A2 < 0,

which implies that

1 −A

1 −B
< u = Re h (z) <

1 +A

1 +B
.

Lemma 2.2 ([8]). If the function p(z) = 1 +
∑∞
n=1 pnz

n is analytic in U and satisfies the condition

Re
(
p(z) +αzp′(z)

)
> β, (2.3)

then
Re p(z) >

α+ 2β
α+ 2

(0 6 α 6 1, 0 6 β < 1) . (2.4)

Theorem 2.3. Let the function f(z) be in the class A and suppose that g ∈ S (α,A,B). If f(z) is majorized by g(z)
in U, then ∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r1) ,

where

r1 = r1 (α,A,B) =
3 + |1 − 2γ|−

√
|1 − 2γ|2 + 2 |1 − 2γ|+ 9

2 |1 − 2γ|
(2.5)

and
γ =

α (1 −B) + 2 (1 −A)

(α+ 2) (1 −B)
(0 6 α 6 1, −1 6 B < A < 1) . (2.6)

Proof. Since g ∈ S (α,A,B), if we let

zg′ (z)

g (z)
= p (z) and

(
p(z) +αzp′(z)

)
= h (z)

and β = 1−A
1−B , then using (1.2), (2.2), (2.3), and (2.4) we find

Re
zg′ (z)

g (z)
>
α+ 2β
α+ 2

.

Letting γ = α+2β
α+2 , we obtain

zg′ (z)

g (z)
=

1 − (1 − 2γ)ω (z)

1 +ω (z)
,

where ω (0) = 0 and |ω (z)| < 1.
Hence we find the inequality

|g(z)| 6

(
(1 + |z|) |z|

1 − |1 − 2γ| |z|

) ∣∣g′(z)∣∣ (z ∈ U). (2.7)

Since f(z) is majorized by g(z) in U, from (1.1) we have

f′(z) = ϕ(z)g′(z) +ϕ′(z)g(z). (2.8)

We know that ϕ(z) satisfies the inequality (Nehari, [7, p.168])

∣∣ϕ′(z)∣∣ 6 1 − |ϕ(z)|2

1 − |z|2
(z ∈ U), (2.9)
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and using (2.7) and (2.9) in (2.8), we get

∣∣f′(z)∣∣ 6 (|ϕ(z)|+ 1 − |ϕ(z)|2

1 − |z|2
(1 + |z|) |z|

1 − |1 − 2γ| |z|

)∣∣g′(z)∣∣ ,
which upon setting

|z| = r and |ϕ(z)| = µ (0 6 µ 6 1)

we have the inequality ∣∣f′(z)∣∣ 6 Θ (µ)

(1 − r) (1 − |1 − 2γ| r)

∣∣g′(z)∣∣ (z ∈ U), (2.10)

where the function Θ (µ) defined by

Θ (µ) = −rµ2 + (1 − r) (1 − |1 − 2γ| r)µ+ r (0 6 µ 6 1)

takes the maximum value at µ = 1 with r = r1(γ) given by (2.5).
Furthermore, if 0 6 q 6 r1(γ) is given by (2.5), then we have

Λ (µ) 6 Λ (1) = (1 − r) (1 − |1 − 2γ| r) (0 6 µ 6 1, 0 6 q 6 r1(γ)) .

Hence, upon setting µ = 1 in (2.10), we conclude that the inequality in (2.5) holds true for |z| 6 r1(γ) and
is given by (2.6). The proof of Theorem 2.4 is based on Lemma 1 in [4],

f ∈ C (γ) =⇒ f ∈ S
(

1
2
γ

)
.

Theorem 2.4. Let the function f(z) be analytic in U and suppose that g ∈ C (γ). If f(z) is majorized by g(z) in U,
then ∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r2) ,

where

r2 = r2 (α,A,B) =
3 + |1 − γ|−

√
|1 − γ|2 + 2 |1 − γ|+ 9

2 |1 − γ|

and
γ =

α (1 −B) + 2 (1 −A)

(α+ 2) (1 −B)
(0 6 α 6 1, −1 6 B < A 6 1) .

Proof. Upon replacing γ in Theorem 2.3 by 1
2γ, the conclusion follows.

Letting special values for α,A,B we have the following corollaries.

Corollary 2.5. If g ∈ S (α, 1,−1) and f(z) is majorized by g(z) in U, then∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r) ,

where

|z| 6 r =
8 + 2α−

√
8α2 + 32α+ 48

2 (2 −α)
(0 6 α 6 1) .

Proof. We let A = 1,B = −1 in (2.6) and γ = α
α+2 in Theorem 2.3.

Corollary 2.6. If g ∈ S (0, 1,−1) and f(z) is majorized by g(z) in U, then∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r) ,

where
|z| 6 r = 2 −

√
3.
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Proof. We let α = 0,A = 1,B = −1 in (2.6) and γ = 0 in Theorem 2.3.

Corollary 2.7. If g ∈ S (α, 0,−1) and f(z) is majorized by g(z) in U, then∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r) ,

where

|z| 6 r =
2α+ 3 −

√
3α2 + 10α+ 9
α

(0 6 α 6 1) .

Proof. We let A = 0, B = −1 in (2.6) and γ = α+1
α+2 in Theorem 2.3.

Corollary 2.8. If g ∈ S (1, 1,−1) and f(z) is majorized by g(z) in U, then∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r) ,

where
|z| 6 r = 5 −

√
22.

Proof. We let α = 1,A = 1,B = −1 in (2.6) and γ = 1
3 in Theorem 2.3.

Corollary 2.9. If g ∈ C (α, 1,−1) and f(z) is majorized by g(z) in U, then∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r) ,

where

|z| 6 r =
8 + 3α−

√
9α2 + 40α+ 48

4
(0 6 α 6 1) .

Proof. We let A = 1,B = −1 in (2.6) and γ = α
α+2 in Theorem 2.4.

Corollary 2.10. If g ∈ C (0, 1,−1) and f(z) is majorized by g(z) in U, then∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r) ,

where
|z| 6 r = 2 −

√
3.

Proof. We let α = 0,A = 1,B = −1 in (2.6) and γ = 0 in Theorem 2.4.

Corollary 2.11. If g ∈ C (α, 0,−1) and f(z) is majorized by g(z) in U, then∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r) ,

where

|z| 6 r =
7 + 3α−

√
9α2 + 38α+ 41

2
(0 6 α 6 1) .

Proof. We let A = 0,B = −1 in (2.6) and γ = α+1
α+2 in Theorem 2.4.

Corollary 2.12. If g ∈ C (1, 1,−1) and f(z) is majorized by g(z) in U, then∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r) ,

where

|z| 6 r =
11 −

√
97

4
.

Proof. We let α = 1,A = 1,B = −1 in (2.6) and γ = 1
3 in Theorem 2.4.
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Corollary 2.13. If g ∈ S (0, 0,−1) and f(z) is majorized by g(z) in U, then∣∣f′(z)∣∣ 6 ∣∣g′(z)∣∣ (|z| 6 r) ,

where
|z| 6 r =

1
3

.

Remark 2.14. S (0, 0,−1) = S∗
(1

2

)
and C ⊂ S∗

(1
2

)
.
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[5] O. Altıntaş, H. M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of
complex order, East Asian Math. J., 17 (2001), 175–183. 1

[6] T. H. MacGregor, Majorization by univalent functions, Duke Math. J., 34 (1967), 95–102. 1.2
[7] Z. Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, (1952). 2
[8] S. Owa, C. Y. Shen, Certain subclass of analytic functions, Math. Japan., 34 (1989), 409–412. 2.2
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