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Abstract

In this paper, we define and study the C-integral and strong C-integral of functions mapping a compact interval I0 of Rm

into a real Banach space X. We prove that the C-integral and strong C-integral are equivalent if and only if X is finite dimensional.
We also study the relations between the property S∗C and strong C-integral. c©2017 All rights reserved.
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1. Introduction and preliminaries

Bruckner et al. [5] considered the function

F(x) =

{
x sin 1

x2 if 0 < x 6 1,
0 if x = 0.

It is a primitive for the Henstock integral, but it is neither a Lebesgue primitive, a differentiable function,
nor a sum of a Lebesgue primitive and a differentiable function. The natural question is: “is there a
minimal integral including the Lebesgue integral and derivatives?”

To solve this question, Bongiorno [1] provided a minimal constructive integration process of Riemann
type, i.e., C-integral, which includes the Lebesgue integral and also integrates the derivatives of differen-
tiable functions. The theory of C-integration has developed rather intensively in the past few years; see,
for instance, the papers [2–4, 6–11, 14–18] and the references cited therein.
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In this paper, we define and study the C-integral and strong C-integral of functions mapping a compact
interval I0 of Rm into a real Banach space X. We prove that the C-integral and strong C-integral are
equivalent if and only if X is finite dimensional. Compared with the strong McShane integral, we know
that a function f : I0 → X has the property S∗M if and only if it is strongly McShane integrable on I0.
Then a question arises naturally: “is there a similar result for the strong C-integral?” The purpose of this
paper is to give a negative answer to this question: if a function f : I0 → X has the property S∗C, then it is
strongly C-integrable, but the converse is not true.

The following conventions and notation will be used, unless stated otherwise. R is the set of all real
numbers, Rm is the ambient space of this paper, I0 is a compact interval in Rm, and µ stands for the
Lebesgue measure, where m is a fixed positive integer. X denotes a real Banach space with norm ‖ · ‖
and dual X∗. A partition D is a finite collection of interval-point pairs {(Ii, ξi)}

n
i=1, where {Ii}

n
i=1 are

nonoverlapping subintervals of I0. δ is a positive function on I0, i.e., δ : I0 → R+ = (0,∞). We say that
D = {(Ii, ξi)}

n
i=1 is

(1) a partial partition of I0 if
⋃n
i=1 Ii ⊂ I0;

(2) a partition of I0 if
⋃n
i=1 Ii = I0;

(3) a δ-fine McShane partition of I0 if Ii ⊂ B(ξi, δ(ξi)) = {ti ∈ Rm; dist(ξi, ti) < δ(ξi)} and ξi ∈ I0 for
all i = 1, 2, . . . ,n, where dist is the metric in Rm;

(4) a δ-fine C-partition of I0 if it is a δ-fine McShane partition of I0 satisfying the condition

n∑
i=1

dist(ξi, Ii) <
1
ε

for the given arbitrary ε > 0, where dist(ξi, Ii) denotes the distance of ξi from Ii;

(5) a δ-fine Henstock partition of I0 if ξi ∈ Ii ⊂ B(ξi, δ(ξi)) for all i = 1, 2, . . . ,n.

Given a δ-fine C-partition D = {(Ii, ξi)}
n
i=1, we write

S(f,D) =

n∑
i=1

f(ξi)µ(Ii)

for integral sums over D, whenever f : I0 → X.

Definition 1.1. A function f : I0 → X is said to be C-integrable if there exists a vector A ∈ X such that for
each ε > 0 there is a positive function δ : I0 → R+ satisfying

‖S(f,D) −A‖ < ε

for each δ-fine C-partitionD = {(Ii, ξi)}
n
i=1 of I0. A is called the C-integral of f on I0 and we write A =

∫
I0
f

or A = (C)
∫
I0
f. The function f is C-integrable on the set E ⊂ I0 if the function fχE is C-integrable on I0,

we write
∫
E f =

∫
I0
fχE.

We can easily obtain the following theorems.

Theorem 1.2. A function f : I0 →X is C-integrable if and only if for each ε > 0 there is a positive function
δ : I0 → R+ such that

‖S(f,D1) − S(f,D2)‖ < ε

for arbitrary δ-fine C-partitions D1 and D2 of I0.

Theorem 1.3. Let f,g : I0 → X.
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(1) If f is C-integrable on I0, then f is C-integrable on every subinterval of I0.
(2) If f is C-integrable on each of the intervals I1 and I2, where Ii, i = 1, 2 are nonoverlapping and I1 ∪ I2 = I0,

then f is C-integrable on I0 and
∫
I1
f+
∫
I2
f =
∫
I0
f.

(3) If f and g are C-integrable on I0 and α and β are real numbers, then αf + βg is C-integrable on I0 and∫
I0
(αf+βg) = α

∫
I0
f+β

∫
I0
g.

Lemma 1.4 (Saks–Henstock). Let f : I0 → X be C-integrable on I0 and let ε > 0. If there is a positive function
δ : I0 → R+ such that ∥∥∥∥S(f,D) −

∫
I0

f

∥∥∥∥ < ε
for each δ-fine C-partition D = {(I, ξ)} of I0, then∥∥∥∥∥S(f,D ′) −

m∑
i=1

∫
Ii

f

∥∥∥∥∥ 6 ε

for each δ-fine partial C-partition D
′
= {(Ii, ξi)}

m
i=1 of I0.

Proof. The proof is similar to the case for Banach-valued Henstock integrable functions; see [12, Lemma
3.4.1] for details.

Theorem 1.5. Let f : I0 → X be C-integrable on I0 and assume that Y is a real Banach space.
(1) For each x∗ ∈ X∗, the function x∗f is C-integrable on I0 and

∫
I0
x∗f = x∗(

∫
I0
f).

(2) If T : X→ Y is a continuous linear operator, then Tf is C-integrable on I0 and
∫
I0
Tf = T(

∫
I0
f).

Proof. (1) Since f : I0 → X is C-integrable on I0, for each ε > 0 and for each x∗ ∈ X∗ there is a positive
function δ : I0 → R+ such that ∥∥∥∥S(f,D) −

∫
I0

f

∥∥∥∥ < ε

‖x∗‖
for each δ-fine C-partition D = {(I, ξ)} of I0. Hence, for x∗ ∈ X∗, we have∥∥∥∥S(x∗f,D) − x∗

(∫
I0

f

)∥∥∥∥ 6 ‖x∗‖
∥∥∥∥S(f,D) −

∫
I0

f

∥∥∥∥ < ε.
(2) If T : X → Y is a continuous linear operator, then there exists a number M > 0 such that ‖Tx‖ 6

M‖x‖ for each x ∈ X. Since f : I0 → X is C-integrable on I0, for each ε > 0 there is a positive function
δ : I0 → R+ such that ∥∥∥∥S(f,D) −

∫
I0

f

∥∥∥∥ < ε

M

for each δ-fine C-partition D = {(I, ξ)} of I0. Hence, we obtain∥∥∥∥S(Tf,D) − T

(∫
I0

f

)∥∥∥∥ 6M

∥∥∥∥S(f,D) −

∫
I0

f

∥∥∥∥ < ε.
The proof is complete.

2. Strong C-integral

Definition 2.1. A function f : I0 → X is said to be strongly C-integrable if there exists an additive function
F : I0 → X such that for each ε > 0 there is a positive function δ : I0 → R+ satisfying

n∑
i=1

‖f(ξi)µ(Ii) − F(Ii)‖ < ε

for each δ-fine C-partition D = {(Ii, ξi)}
n
i=1 of I0. F(I0) is termed the strong C-integral of f on I0 and we

write F(I0) =
∫
I0
f.
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Theorem 2.2. If f : I0 → X is strongly C-integrable on I0, then f is C-integrable on I0.

Proof. It follows from the definitions of strong C-integral and C-integral that if f is strongly C-integrable
on I0, then f is C-integrable on I0.

Definition 2.3. A function f : I0 → X is strongly Henstock (McShane) integrable if there exists an additive
function F : I0 → X such that for each ε > 0 there is a positive function δ : I0 → R+ satisfying

n∑
i=1

‖f(ξi)µ(Ii) − F(Ii)‖ < ε

for each δ-fine Henstock (McShane) partition D = {(Ii, ξi)}
n
i=1 of I0. F(I0) is called the strong Henstock

(McShane) integral of f on I0 and we write F(I0) =
∫
I0
f.

Applying the definitions of strong Henstock integral, strong C-integral, and strong McShane inte-
gral and using the fact that each δ-fine Henstock partition is also δ-fine C-partition and δ-fine McShane
partition, we get the following theorem immediately.

Theorem 2.4. Let f : I0 → X.

(1) If f is strongly McShane integrable, then f is strongly C-integrable.
(2) If f is strongly C-integrable, then f is strongly Henstock integrable.

Theorem 2.5. If the Banach space X is finite dimensional, then a function f : I0 → X is C-integrable on I0 if and
only if f is strongly C-integrable on I0.

Proof. We only prove that if X is finite dimensional and f : I0 → X is C-integrable on I0, then f is strongly
C-integrable on I0. It follows from the definition of C-integral that for each ε > 0 there is a positive
function δ : I0 → R+ such that ∥∥∥∑[f(ξ)µ(I) − F(I)]

∥∥∥ < ε
for each δ-fine C-partition D = {(I, ξ)} of I0. Let {e1, e2, . . . , en} be a base of X and gi : I0 → R (i =
1, 2, . . . ,n) satisfying f =

∑n
i=1 giei. By the Hahn–Banach theorem, for each ei there is an x∗i ∈ X∗ such

that

x∗i (ej) =

{
1 if i = j,
0 if i 6= j

for i, j = 1, 2, . . . ,n, and so x∗i (f) =
∑n
j=1 gjx

∗
i (ej) = gi. Therefore, by Theorem 1.5, we conclude that

gi : I0 → R are C-integrable on I0. Then for each ε > 0 there are positive functions δi : I0 → R+ such that∣∣∣∣S(gi,Di) −∑∫
I

gi

∣∣∣∣ < ε

2

for each δi-fine C-partition Di of I0. An easy adaptation of Lemma 1.4 yields∑ ∣∣∣∣gi(ξ)µ(I) − ∫
I

gi

∣∣∣∣ < ε.
On the other hand,

F(I) =

∫
I

f =

∫
I

n∑
i=1

giei =

n∑
i=1

∫
I

giei =

n∑
i=1

eiGi(I),

where Gi(I) =
∫
I gi. Let δ(ξ) < δi(ξ) for i = 1, 2, . . . ,n. Consequently,

∑
‖f(ξ)µ(I) − F(I)‖ =

∑∥∥∥∥∥
n∑
i=1

gi(ξ)eiµ(I) −

n∑
i=1

eiGi(I)

∥∥∥∥∥
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6
n∑
i=1

‖ei‖
∑

|gi(ξ)µ(I) −Gi(I)|

< ε

n∑
i=1

‖ei‖

for each δ-fine C-partition D = {(I, ξ)} of I0. Hence, f is strongly C-integrable on I0. The proof is complete
when using Theorem 2.2.

Theorem 2.6. The C-integral is equivalent to strong C-integral on I0 if and only if X is finite dimensional.

Proof. The proof of necessity is similar to the case for Henstock (McShane) integral; see, for example, [13,
Theorem 3]. In [13], if X is infinite dimensional, then there exist xr1 , xr2 , . . . , xr2r ∈ X such that

‖xri‖ =
1
2r

for each r, 1 6 i 6 2r, and we also have ∥∥∥∥∥
2r∑
i=1

θrix
r
i

∥∥∥∥∥
2

6
3
2r

for every θri with |θri | 6 1, 1 6 i 6 2r. Skvortsov and Solodov [13] defined a function f : [0, 1]→ X by

f(t) =


0 if t ∈ C, or t = dri , r > 0, 1 6 i 6 2r,
2 · 3rxri if t ∈ (ari ,d

r
i), r > 0, 1 6 i 6 2r,

−2 · 3rxri if t ∈ (dri ,b
r
i), r > 0, 1 6 i 6 2r.

Here, C is the Cantor ternary set, (ari ,b
r
i), r > 0, 1 6 i 6 2r are the intervals of rank r contiguous to C

with middle points dri and satisfy bri − a
r
i = 3−(r+1). The function f is McShane integrable but it is not

strongly Henstock integrable, and then we deduce that f is C-integrable but it is not strongly C-integrable.
In other words, if C-integral is equivalent to strong C-integral, then X is finite dimensional.

Definition 2.7. A function f : I0 → X has the property S∗C if for each ε > 0 there is a positive function
δ : I0 → R+ such that

m∑
i=1

n∑
j=1

‖f(ξi) − f(ζj)‖µ(Ii ∩ Lj) < ε

for arbitrary δ-fine C-partitions D1 = {(Ii, ξi)}
m
i=1 and D2 = {(Lj, ζj)}

n
j=1 of I0.

Theorem 2.8. If a function f : I0 → X has the property S∗C, then f is strongly C-integrable on I0.

Proof. We will prove this theorem in two steps.
Step 1. Assume that D1 = {(Ii, ξi)}

m
i=1 and D2 = {(Lj, ζj)}

n
j=1 are arbitrary δ-fine C-partitions of I0.

Then ∥∥∥∥∥∥
m∑
i=1

f(ξi)µ(Ii) −

n∑
j=1

f(ζi)µ(Lj)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑
j=1

m∑
i=1

f(ξi)µ(Ii ∩ Lj) −
m∑
i=1

n∑
j=1

f(ζj)µ(Ii ∩ Lj)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
m∑
i=1

n∑
j=1

(f(ξi) − f(ζi))µ(Ii ∩ Lj)

∥∥∥∥∥∥
6

m∑
i=1

n∑
j=1

‖f(ξi) − f(ζi)‖µ(Ii ∩ Lj) < ε.

By virtue of Theorem 1.2, we conclude that f is C-integrable on I0.
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Step 2. By Definition 2.7, for each ε > 0 there is a positive function δ : I0 → R+ such that

m∑
i=1

n∑
j=1

‖f(ξi) − f(ζj)‖µ(Ii ∩ Lj) <
ε

2

for arbitrary δ-fine C-partitionsD1 = {(Ii, ξi)}
m
i=1 andD2 = {(Lj, ζj)}

n
j=1 of I0. The function f is C-integrable

on I0 and therefore it is C-integrable on Ii for i = 1, 2, . . . ,m. Hence, for given ε > 0 there are positive

functions δi : I0 → R+ such that δi(ξ) 6 δ(ξ) and for any δi-fine C-partition Di = {(Lij, ζ
i
j)}
ni

j=1
of Ii,

i = 1, 2, . . . ,m, ∥∥∥∥∥∥
ni∑
j=1

f(ζij)µ(L
i
j) −

∫
Ii

f

∥∥∥∥∥∥ =

∥∥∥∥∥∥
ni∑
j=1

[
f(ζij)µ(L

i
j) −

∫
Lij

f

]∥∥∥∥∥∥ < ε

2m
.

Defining D =
⋃m
i=1Di, it is a δ-fine C-partition of I0. Hence, we have

m∑
i=1

‖f(ξi)µ(Ii) − F(Ii)‖ =
m∑
i=1

∥∥∥∥∥∥
ni∑
j=1

f(ξi)µ(Ii ∩ Lij) −
ni∑
j=1

F(Ii ∩ Lij)

∥∥∥∥∥∥
=

m∑
i=1

∥∥∥∥∥∥
ni∑
j=1

(f(ξi) − f(ζ
i
j))µ(Ii ∩ Lij) +

ni∑
j=1

[f(ζij)µ(Ii ∩ Lij) − F(Ii ∩ Lij)]

∥∥∥∥∥∥
6

m∑
i=1

ni∑
j=1

‖f(ξi) − f(ζij)‖µ(Ii ∩ Lij) +
m∑
i=1

∥∥∥∥∥∥
ni∑
j=1

[f(ζij)µ(Ii ∩ Lij) − F(Ii ∩ Lij)]

∥∥∥∥∥∥
<
ε

2
+m

ε

2m
= ε.

By virtue of Definition 2.1, f is strongly C-integrable on I0.

Remark 2.9. The converse of Theorem 2.8 is not true. In other words, if f is strongly C-integrable on I0,
then it does not necessarily with the property S∗C.

Proof. Let f be given by

f(x) =

{
2x sin 1

x2 −
2
x cos 1

x2 if 0 < x 6 1,
0 if x = 0.

It is known that the primitive of f is

F(x) =

{
x2 sin 1

x2 if 0 < x 6 1,
0 if x = 0,

and F is differentiable and F ′(x) = f(x) on [0, 1]. Hence, f is strongly C-integrable on [0, 1]; see [6, p. 146]
for details.

Assume that f has the property S∗C. Then for each ε > 0 there is a positive function δ : [0, 1] → R+

such that
m∑
i=1

n∑
j=1

|f(ξi) − f(ζj)|µ(Ii ∩ Lj) < ε

for arbitrary δ-fine C-partitions D1 = {(Ii, ξi)}
m
i=1 and D2 = {(Lj, ζj)}

n
j=1 of [0, 1]. Consequently,

m∑
i=1

n∑
j=1

∥∥|f(ξi)|− |f(ζj)|
∥∥µ(Ii ∩ Lj) 6 m∑

i=1

n∑
j=1

|f(ξi) − f(ζj)|µ(Ii ∩ Lj) < ε.
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Hence, |f| has the property S∗C and so |f| is C-integrable on [0, 1] when using Theorems 2.2 and 2.8. It
follows easily that f is Lebesgue (McShane) integrable. But F is not absolutely continuous on [0, 1] and
thus f is not Lebesgue (McShane) integrable on [0, 1]. Therefore, f does not have the property S∗C.
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