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Abstract
The split equality problem has wide applicability in many fields of applied mathematics. In this paper, by using the inertial

extrapolation, we introduce an inertial projection algorithm for solving the split equality problem. The weak convergence of
the proposed algorithm is shown. Finally, we present a numerical example to illustrate the efficiency of the inertial projection
algorithm. c©2017 All rights reserved.
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1. Introduction

In this article, we shall consider the split equality problem (SEP) which was firstly introduced by
Moudafi and Oliny [18].

Problem 1.1. Find x,y with the property

x ∈ C, y ∈ Q, such that Ax = By,

where C ⊂ H1, Q ⊂ H2 are two nonempty closed convex sets, A : H1 → H3, B : H2 → H3 are two bounded
linear operators, and H1, H2 and H3 are real Hilbert spaces.

It is obvious that the SEP allows asymmetric and partial relations between the variables x and y.
Many problems in mathematics and other sciences can be regarded as a split equality problem, such as
the variational form of a PDE’s in domain decomposition for PDE’s [3], the agents who interplay only via
some components of their decision variables in decision [2] and the weak coupling between the vector of
doses absorbed in all voxels and that of the radiation intensity in the (IMRT) [7].

Many methods for computing the solution of Problem 1.1 are projection methods, which have been
extensively studied in the literature [10, 15, 16, 19]. Byrne and Moudafi [6] introduced the classical

∗Corresponding author
Email addresses: dongql@lsec.cc.ac.cn (Qiao-Li Dong), danjiangmath@163.com (Dan Jiang)

doi:10.22436/jnsa.010.03.33

Received 2016-12-19

http://dx.doi.org/10.22436/jnsa.010.03.33


Q.-L. Dong, D. Jiang, J. Nonlinear Sci. Appl., 10 (2017), 1244–1251 1245

projection gradient algorithm, which is also called as the simultaneous iterative methods [17]:{
xk+1 = PC(xk − γkA

∗(Axk −Byk)),
yk+1 = PQ(yk + γkB

∗(Axk −Byk)),
(1.1)

where γk ∈ (ε, 2/(λA + λB) − ε), λA and λB are the operator (matrix) norms ‖A‖ and ‖B‖ (or the largest
eigenvalues ofA∗A and B∗B), respectively. To determine stepsize γk, one needs first calculate (or estimate)
the operator norms ‖A‖ and ‖B‖. In general, it is difficult or even impossible.

In order to overcome this, the authors [11] proposed a choice of the stepsize γk for the projection
algorithm (1.1) as follows:

Algorithm 1.2.

γk = σkmin
{
‖Ax̄k −Bȳk‖2

‖A∗(Ax̄k −Bȳk)‖2 ,
‖Ax̄k −Bȳk‖2

‖B∗(Ax̄k −Bȳk)‖2

}
, (1.2)

where 0 < σk < 1. Note that the choice of the stepsize γk in (1.2) is independent of the norms ‖A‖ and
‖B‖.

As an acceleration process, the inertial extrapolation algorithms were widely studied. The researchers
constructed many iterative algorithms by using inertial extrapolation, such as inertial forward-backward
algorithm [14], inertial extragradient method [9, 12, 13] and fast iterative shrinkage thresholding algorithm
(FISTA) ([5, 8]). The main feature of the inertial extrapolation algorithms is that the next iterate is defined
by making use of the previous two iterates.

In this paper, by using the inertial extrapolation, we introduce an inertial projection algorithm (1.1) as
follows:

Algorithm 1.3. 
(x̄k, ȳk) = (xk,yk) +αk(xk − xk−1,yk − yk−1),
xk+1 = PC(x̄k − γkA

∗(Ax̄k −Bȳk)),
yk+1 = PQ(ȳk + γkB

∗(Ax̄k −Bȳk)),
(1.3)

where αk ∈ (0, 1) and the stepsize γk is chosen in the same way as (1.2).

The structure of the paper is as follows. In the next section, we present some lemmas which will be
used in the main results. In Section 3, the weak convergence theorem of the inertial projection algorithm
is given. In the final section, Section 4, some numerical results are provided, which show the advantages
of the proposed algorithm.

2. Preliminaries

In this section, we present some lemmas which will be used in the proof of the main results.

Definition 2.1. Let K be a closed convex subset of a real Hilbert space H. PK is called the projection from
H on K, if for each x ∈ H, PKx is the only point in K such that ‖x− Pkx‖ = inf{‖x− z‖ : z ∈ K}.

The following lemma is a useful characterization of projections.

Lemma 2.2. Let K be a closed convex subset of a real Hilbert space H. Given x ∈ H and z ∈ K. Then z = PKx, if
and only if there holds the relation:

〈x− z,y− z〉 6 0, ∀y ∈ K.

Lemma 2.3. For any x,y ∈ H and z ∈ Ω, it holds

‖PΩ(x) − z‖2 6 ‖x− z‖2 − ‖PΩ(x) − x‖2.
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Lemma 2.4 ([1, Lemma 3]). Let (ψn), (δn) and (αn) be sequences in [0,+∞) such that

ψn+1 6 ψn +αn(ψn −ψn−1) + δn,

for all n > 1,
∑∞
n=1 δn < +∞ and there exists a real number α with 0 6 αn 6 α < 1, for all n ∈ N. Then the

following hold:

(i)
∑
n>1[ψn −ψn−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists ψ∗ ∈ [0,+∞) such that limn→+∞ψn = ψ∗.

Finally, we recall a well-known result on weak convergence in Hilbert spaces.

Lemma 2.5 ([4]). Let H be a Hilbert space and ‖ · ‖ be a norm on H, then,

‖tx+ (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x− y‖2, ∀t ∈ R, ∀x,y ∈ H.

3. The main results

In this section, we present the weak convergence theorem and its proof for the inertial projection
algorithm (1.3).

We make the following assumptions to {αk}:

(C1) 0 6 αk 6 α, where α ∈ [0, 1);

(C2)
∑+∞
k=1 αk(‖xk − xk−1‖2 + ‖yk − yk−1‖2) < +∞;

(C3) limk→∞ αk(‖xk − xk−1‖+ ‖yk − yk−1‖) = 0.

Remark 3.1.

(1) Comparing other works [8, 16], we need the additional assumptions (C3) to present the convergence
theorem.

(2) According to Moudafi’s comments in [16], assumptions (C2) and (C3) involve the iterates that are
a priori unknown. In practice, it is easy to enforce it by applying an appropriate on-line rule. For
example, choosing

αk = min(
1

(k+ 1)4ηk
,

1
(k+ 1)ζk

, 0.94),

where
ηk = ‖xk − xk−1 ‖2 + ‖ yk − yk−1 ‖2, ζk = ‖xk − xk−1 ‖ + ‖ yk − yk−1 ‖ .

Theorem 3.2. Let the sequence (xk,yk) be generated by Algorithm 1.3. Suppose the assumptions (C1) and (C2)
hold. Then (‖xk − x∗‖2 + ‖yk − y∗‖2) is convergent with (x∗,y∗) ∈ Γ .

Proof. Take (x∗,y∗) ∈ Γ , i.e., x∗ ∈ C, y∗ ∈ Q, Ax∗ = By∗. From Lemma 2.3, the second equality of (1.3)
successively gives

‖xk+1 − x
∗‖2 = ‖PC(x̄k − γkA∗(Ax̄k −Bȳk) − x∗)‖2

6 ‖x̄k − γkA∗(Ax̄k −Bȳk) − x∗‖2

6 ‖x̄k − x∗‖2 + γ2
k‖A∗(Ax̄k −Bȳk)‖2 − 2γk〈Ax̄k −Ax∗,Ax̄k −Bȳk〉.

Using the equality

−2〈Ax̄k −Ax∗,Ax̄k −Bȳk〉 = −‖Ax̄k −Bȳk‖2 − ‖Ax̄k −Ax∗‖2 + ‖Bȳk −Ax∗‖2,
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we obtain
‖xk+1 − x

∗‖2 6 ‖x̄k − x∗‖2 + γ2
k‖A∗(Ax̄k −Bȳk)‖2 − γk‖Ax̄k −Bȳk‖2

− γk‖Ax̄k −Ax∗‖2 + γk‖Bȳk −Ax∗‖2.

Similarly, the third equality of (1.3) leads to

‖yk+1 − y
∗‖2 6 ‖ȳk − y∗‖2 + γ2

k‖B∗(Ax̄k −Bȳk)‖2 − γk‖Ax̄k −Bȳk‖2

− γk‖Bȳk −By∗‖2 + γk‖Ax̄k −By∗‖2.

By adding the two last inequalities and taking into account the fact that Ax∗ = By∗, we finally get

‖xk+1 − x
∗‖2 + ‖yk+1 − y

∗‖2 6 ‖x̄k − x∗‖2 + ‖ȳk − y∗‖2 − γk(‖Ax̄k −Bȳk‖2 − γk‖A∗(Ax̄k −Bȳk)‖2)

− γk(‖Ax̄k −Bȳk‖2 − γk‖B∗(Ax̄k −Bȳk)‖2).
(3.1)

The first equality of (1.3) and Lemma 2.5 imply

‖x̄k − x∗‖2 = ‖(1 +αk)(xk − x
∗) −αk(xk−1 − x

∗)‖2

= (1 +αk)‖xk − x∗‖2 −αk ‖ xk−1 − x
∗‖2 +αk(1 +αk)‖xk − xk−1‖2.

(3.2)

Similarly, we obtain

‖ȳk − y∗‖2 = (1 +αk)‖yk − y∗‖2 −αk‖yk−1 − y
∗‖2 +αk(1 +αk)‖yk − yk−1‖2. (3.3)

Set ϕk := ‖xk − x∗‖2 + ‖yk − y∗‖2. Combining (3.1), (3.2), (3.3), we obtain

ϕk+1 −ϕk 6 αk(ϕk −ϕk−1) − γk(‖Ax̄k −Bȳk‖2 − γk‖A∗(Ax̄k −Bȳk)‖2)

− γk(‖Ax̄k −Bȳk‖2 − γk‖B∗(Ax̄k −Bȳk)‖2)

+αk(1 +αk)[‖xk − xk−1‖2 + ‖yk − yk−1‖2]

6 αk(ϕk −ϕk−1) + δk,

(3.4)

where δk := αk(1 + αk)[‖xk − xk−1‖2 + ‖yk − yk−1‖2]. By using (C2) and Lemma 2.4, we obtain that ϕk
consequently converges to some finite limit, say ϕ(x∗,y∗) .

Theorem 3.3. Let the sequence (xk,yk) be generated by Algorithm 1.3. Assume σk ∈ [ε, 1 − ε], ε ∈ (0, 1/2] and
suppose the assumptions (C1)-(C3) hold. Then

lim
k→∞ ‖Axk −Byk‖ = lim

k→∞ ‖Ax̄k −Bȳk‖ = 0.

Proof. Now, we divide the proof of the first conclusion into two parts.

Case 1. Suppose that there exists k0 such that ‖A∗(Ax̄k−Bȳk)‖ > ‖B∗(Ax̄k−Bȳk)‖, for all k > k0. In this
situation, γk = σk

‖Ax̄k−Bȳk‖2

‖A∗(Ax̄k−Bȳk)‖2 . Using (3.4) and Theorem 3.2, we obtain

lim
k→∞γk(‖Ax̄k −Bȳk‖2 − γk‖A∗(Ax̄k −Bȳk)‖2) = lim

k→∞σk(1 − σk)
‖Ax̄k −Bȳk‖4

‖A∗(Ax̄k −Bȳk)‖2 = 0,

which together with σk ∈ [ε, 1 − ε] implies

lim
k→∞ ‖Ax̄k −Bȳk‖2

‖A∗(Ax̄k −Bȳk)‖
= 0.

Using γk‖A∗(Ax̄k −Bȳk)‖ = σk ‖Ax̄k−Bȳk‖2

‖A∗(Ax̄k−Bȳk)‖ , we get

lim
k→∞γk‖A∗(Ax̄k −Bȳk)‖ = 0.
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From the assumption ‖A∗(Ax̄k −Bȳk)‖ > ‖B∗(Ax̄k −Bȳk)‖, it follows

lim
k→∞γk‖B∗(Ax̄k −Bȳk)‖ = 0.

It is easy to show that

‖Ax̄k −Bȳk‖ 6 ‖A‖
‖Ax̄k −Bȳk‖2

‖A∗(Ax̄k −Bȳk)‖
.

Consequently, we get
lim
k→∞ ‖Ax̄k −Bȳk‖ = 0.

Conversely, suppose that there exists k1 such that ‖A∗(Ax̄k − Bȳk)‖ 6 ‖B∗(Ax̄k − Bȳk)‖, for all k > k1,
following the above process, we obtain the results.

Case 2. Suppose that there does not exist k0 such that ‖A∗(Ax̄k−Bȳk)‖ > ‖B∗(Ax̄k−Bȳk)‖ or ‖A∗(Ax̄k−
Bȳk)‖ 6 ‖B∗(Ax̄k − Bȳk)‖, for all k > k0. We divide the sequence ‖A∗(Ax̄k −Bȳk)‖ into two subse-
quences: one subsequence satisfies ‖A∗(Ax̄k − Bȳk)‖ > ‖B∗(Axk − Byk)‖ denoted by A∗(Axkm −Bykm)
and the other subsequence satisfies ‖A∗(Ax̄k − Bȳk)‖ < ‖B∗(Ax̄k − Bȳk)‖, denoted by A∗(Ax̄kn −Bȳkn).
Following the process of Case 1, we show that the results hold for the subsequences with km and kn.
Hence we obtain limk→∞ ‖Ax̄k −Bȳk‖ = 0.

Next we show limk→∞ ‖Axk − Byk‖ = 0. From the linearity of the operators A and B, and the first
equality of (1.3), we obtain

‖Axk −Byk‖ = ‖[Ax̄k −αkA(xk − xk−1)] − [Bȳk −αkB(yk − yk−1)]‖
6 ‖Ax̄k −Bȳk‖+αk(‖A(xk − xk−1)‖+αk‖B(yk − yk−1)‖)
6 ‖Ax̄k −Bȳk‖+ (‖A‖+ ‖B‖)αk(‖xk − xk−1‖+ ‖yk − yk−1‖),

which with limk→∞ ‖Ax̄k −Bȳk‖ = 0 and (C3) implies

lim
k→∞ ‖Axk −Byk‖ = 0.

Theorem 3.4. Assume σk ∈ [ε, 1− ε], ε ∈ (0, 1/2] and suppose the assumptions (C1)-(C3) hold. Then the sequence
(xk,yk) generated by Algorithm 1.3 weakly converges to a solution of the SEP. Furthermore, both (xk) and (yk)
are asymptotically regular.

Proof. We first prove that (xk) and (yk) are asymptotically regular. Indeed, the first and the second
equalities of (1.3) give

‖xk+1 − xk‖ = ‖PC(x̄k − γkA∗(Ax̄k −Bȳk)) − xk‖
6 ‖x̄k − γkA∗(Ax̄k −Bȳk) − xk‖
6 ‖αk(xk − xk−1) − γkA

∗(Ax̄k −Bȳk)‖
6 αk‖xk − xk−1‖+ γk‖A∗(Ax̄k −Bȳk)‖
6 αk‖xk − xk−1‖+ γk‖A‖‖Ax̄k −Bȳk‖.

Using (C3) and Theorem 3.3, we have

lim
k→∞ ‖xk+1 − xk‖ = 0. (3.5)

Similarly, we get
lim
k→∞ ‖yk+1 − yk‖ = 0.
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So, (xk) and (yk) are asymptotically regular.
The first equality of (1.3) gives

‖x̄k − xk+1‖ = ‖xk − xk+1 +αk(xk − xk−1)‖
6 ‖xk − xk+1‖+αk‖xk − xk−1‖,

which with (C3) and (3.5) yields
lim
k→∞ ‖x̄k − xk+1‖ = 0.

Similarly, we have
lim
k→∞ ‖ȳk − yk+1‖ = 0.

From (1.2), we get

γk > εmin
{

1
‖A‖2 ,

1
‖B‖2

}
.

So, it follows
lim
k→∞ x̄k − xk+1

γk
= 0, and lim

k→∞ ȳk − yk+1

γk
= 0.

Let (x̂, ŷ) ∈ ωw(xk,yk), then there exists a subsequence of (xk) (resp. (yk)) (again labeled (xk) (resp.
(yk))) which converges weakly to x̂ (resp. ŷ). The two equalities in (1.3) can be rewritten as:

x̄k − xk+1

γk
−A∗(Ax̄k −Bȳk) ∈ NC(xk+1),

ȳk − yk+1

γk
−B∗(Ax̄k −Bȳk) ∈ NQ(yk+1).

Since the graphs of the maximal monotone operators NC,NQ are weakly-strongly closed, by passing to
the limit in the last inclusions and using Theorem 3.3, we obtain 0 ∈ NC(x̂) and 0 ∈ NQ(ŷ) which are
equivalent to

x̂ ∈ C and ŷ ∈ Q.

Furthermore, the weak convergence of (Axk − Byk) to Ax̂− Bŷ and lower semicontinuity of the norm
imply

‖Ax̂−Bŷ‖ 6 lim inf
k→∞ ‖Axk −Byk‖ = 0,

where the equality comes from Theorem 3.3. Hence, (x̂, ŷ) ∈ Γ .
To show the uniqueness of the weak cluster points, we will use the same trick as in the celebrated

Opial Lemma. Indeed, let(x̄, ȳ) be other weak cluster point of (xk,yk). By passing to the limit in the
relation

ϕk(x̂, ŷ) = ϕk(x̄, ȳ) + ‖x̂− x̄‖2 + ‖ŷ− ȳ‖2 + 2〈xk − x̄, x̄− x̂〉+ 2〈yk − ȳ, ȳ− ŷ〉,

we obtain
ϕ(x̂, ŷ) = ϕ(x̄, ȳ) + ‖x̂− x̄‖2 + ‖ŷ− ȳ‖2.

Reversing the role of (x̂, ŷ) and (x̄, ȳ), we also have

ϕ(x̄, ȳ) = ϕ(x̂, ŷ) + ‖x̂− x̄‖2 + ‖ŷ− ȳ‖2.

By adding the two last equalities, we obtain

‖x̂− x̄‖2 + ‖ŷ− ȳ‖2 = 0.

Hence, (x̂, ŷ) = (x̄, ȳ). This implies that the whole sequence (xk,yk) weakly converges to a solution of the
SEP, which completes the proof.
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4. Preliminary numerical results

In this section, we consider a numerical example in [11] to demonstrate the effectiveness of Algorithm
1.3. We apply Algorithm 1.3 to solve a numerical example, and compare the numerical results with those
of Algorithm 1.2.

We denote the vector with all elements 0 by e0, and the vector with all elements 1 by e1 in what follows.
In the numerical results listed in the following table, ’Iter.’ and ’Sec.’ denote the number of iterations and
the cpu time in seconds, respectively.

Example 4.1. The SEP with A = (aij)J×N, B = (bij)J×M, C = {x ∈ RN|‖x‖ 6 0.25}, Q = {y ∈ RM|e0 6
y 6 u}, where aij ∈ [0, 1], bij ∈ [0, 1] and u ∈ [e1, 2e1] are all generated randomly. In the implementations,
we take ‖Ax− By‖ < ε = 10−4 as the stopping criterion. Take the initial value x0 = 10e1, y0 = −10e1 for
two algorithms.

We make comparison of Algorithm 1.3 with Algorithm 1.2 with different J,N,M, and report the
results in Table 1. We take σk = 0.69, γk = 0.69 ×min{ ‖Ax̄k−Bȳk‖2

‖A∗(Ax̄k−Bȳk)‖2 , ‖Ax̄k−Bȳk‖2

‖B∗(Ax̄k−Bȳk)‖2 }, and αk =

min
(

1
(k+1)3/2ηk

, 1
(k+1)ζk

, 0.94
)

, where ηk = ‖xk − xk−1 ‖2 + ‖ yk − yk−1 ‖2,
ζk = ‖xk − xk−1 ‖ + ‖ yk − yk−1 ‖. For comparison, the same random values are taken in each test for
two algorithms.

Table 1: Computational results for Example 4.1 with different dimensions.

J 20 40 60 80 100
(N,M) = (50, 50) Algorithm 1.2 Iter. 720 4870 24162 14806 131045

Sec. 0.172 2.293 6.318 5.990 36.504
(N,M) = (50, 50) Algorithm 1.3 Iter. 247 2509 7539 8055 78855

Sec. 0.078 1.264 2.231 3.526 24.633
(N,M) = (80, 100) Algorithm 1.2 Iter. 182 1668 3482 11198 22431

Sec. 0.062 0.484 1.295 4.602 11.528
(N,M) = (80, 100) Algorithm 1.3 Iter. 168 337 719 2529 4575

Sec. 0.078 0.125 0.296 1.154 2.730
(N,M) = (200, 150) Algorithm 1.2 Iter. 150 1011 2360 3669 5288

Sec. 0.047 0.437 1.357 2.605 5.288
(N,M) = (200, 150) Algorithm 1.3 Iter. 139 244 329 707 876

Sec. 0.047 0.125 0.218 0.562 0.920

From Table 1, we could observe that the inertial projection Algorithm 1.3 behaves far better than
Algorithm 1.2 from the number of iterations and the cpu time. It really speeds up Algorithm 1.2.
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