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Abstract
In this paper, the implicit midpoint rule of asymptotically nonexpansive mapping in CAT(0) spaces is introduced. By the

viscosity approximation method, we prove that the proposed implicit iteration converges strongly to a fixed point of asymptot-
ically nonexpansive mapping under certain assumptions imposed on the sequence of parameters. The results presented in the
paper improve and extend various results in the existing literature. c©2017 All rights reserved.
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1. Introduction

The concept of variational inequalities plays an important role in various kinds of problems in pure
and applied sciences. In particular, viscosity approximation methods have attracted the attention of many
authors, and many important results about viscosity approximation methods of nonexpansive mappings
are studied in CAT(0) spaces. In 1976, the concept of 4-convergence in general metric spaces was coined
by Lim [18]. Then, Kirk et al. [16] specialized this concept to CAT(0) spaces, and proved that it is very
similar to the weak convergence in the Banach space setting. Dhompongsa et al. [14] and Abbas et al.
[1] obtained 4-convergence theorems for the Mann and Ishikawa iterations in CAT(0) space. Moreover,
with the ideas of Attouch [4], viscosity approximation methods for nonexpansive mapping in Hilbert
space was introduced by Moudafi [20]. In 2013, Wangkeeree et al. [23, 24] and Liu et al. [19] proved
that viscosity approximation methods for nonexpansive mappings, hierarchical optimization problems
and nonexpansive semigroups in CAT(0) spaces. Refinements in Hilbert spaces and extensions to Banach
spaces of viscosity approximation methods were obtained by Xu [26].

The explicit viscosity method for nonexpansive mappings generates a sequence {xn} through the iter-
ation process:

xn+1 = αnf(xn) + (1 −αn)Txn, n > 1,
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where αn is a sequence in (0, 1). In 2004, Xu [26] proved that the sequence {xn} converges to a fixed point
of T under certain conditions.

The implicit midpoint rule, which is one of the powerful methods for solving ordinary differential
equations (see [5, 6, 21, 22] and the references therein), has been extended [3] to nonexpansive mappings,
which generates a sequence {xn} by the implicit procedure:

xn+1 = αnxn + (1 −αn)T(
xn + xn+1

2
), n > 1.

In 2015, Xu et al. [27] introduced the following process in a Hilbert space:

xn+1 = αnf(xn) + (1 −αn)T(
xn + xn+1

2
), n > 1,

where T is a nonexpansive mapping and f is a contraction, and proved that the sequence {xn} converges
strongly to a fixed point of T .

Motivated and inspired by the known results [29], the purpose of this paper is to introduce the viscos-
ity implicit midpoint rule for asymptotically nonexpansive mapping in complete CAT(0) spaces. More
precisely, we consider the following implicit iterative algorithm:

xn+1 = αnf(xn)⊕ (1 −αn)T
n(
xn ⊕ xn+1

2
), n > 1,

where T is a nonexpansive mapping and f is contractive. Under suitable conditions, some strong con-
vergence theorems to a fixed point of the asymptotically nonexpansive mapping are proved. The results
presented in the paper extend and improve some recent results announced in the current literatures.

2. Preliminaries

Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (more briefly, a geodesic from x to
y) is a map c, from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t ′)) = |t− t ′|
for all t, t ′ ∈ [0, l]. In particular, c is an isometry and d(x,y) = l. The image α of c is called a geodesic (or
metric) segment joining x to y. When it is unique, this geodesic segment is denoted by [x,y].

The space (X,d) is said to be a geodesic space, if every two points of X are joined by a geodesic, and
X is said to be uniquely geodesic, if there is exactly one geodesic joining x to y for each x,y ∈ X. A subset
Y ⊂ X is said to be convex, if Y includes every geodesic segment joining any two of its points. A geodesic
triangle4(x1, x2, x3) in a geodesic metric space (X,d) consists of three points4(x1, x2, x3) in X (the vertices
of 4) and a geodesic segment between each pair of vertices (the edges of 4). A comparison triangle for
the geodesic triangle 4(x1, x2, x3) in (X,d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the Euclidean plane
E2 such that dE2(xi, xj) = d(xi, xj) for all i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space, if all geodesic triangles satisfy the following comparison
axiom.

CAT(0): Let 4 be a geodesic triangle in X, and let 4 be a comparison triangle for 4. Then 4 is said
to satisfy the CAT(0) inequality, if for all x,y ∈ 4 and all comparison points x,y ∈ 4,

d(x,y) 6 dE2(x,y).

We write (1 − t)x⊕ ty for the unique point z in the geodesic segment joining from x to y such that

d(x, z) = td(x,y), d(y, z) = (1 − t)d(x,y). (2.1)

We also denote by [x,y] the geodesic segment joining from x to y, that is,

[x,y] = {(1 − t)x⊕ ty : t ∈ [0, 1]}.

A subset C of a CAT(0) space is convex if [x,y] ⊂ C for all x,y ∈ C.
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Lemma 2.1. Let X be a CAT(0) space. Then for any x,y, z,w ∈ X and t, s ∈ [0, 1],

(i) (see [14] ) d((1 − t)x⊕ ty, z) 6 (1 − t)d(x, z) + td(y, z);
(ii) (see [12] ) d((1 − t)x⊕ ty, (1 − s)x⊕ sy) 6 |t− s|d(x,y);
(iii) (see [9] ) d((1 − t)x⊕ ty, (1 − t)z⊕ tw) 6 (1 − t)d(x, z) + td(y,w);
(iv) (see [16]) d((1 − t)z⊕ tx, (1 − t)z⊕ ty) 6 td(x,y);
(v) (see [14] ) d2((1 − t)x⊕ ty, z) 6 (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x,y).

If x,y1,y2 are points in a CAT(0) space and y0 is the midpoint of the segment [y1,y2], then the CAT(0)
inequality implies

d2(y0, x) 6
1
2
d2(y1, x) +

1
2
d2(y2, x) −

1
4
d2(y1,y2).

This is the (CN)-inequality of Bruhat and Tits [11]. In fact, a geodesic space is a CAT(0) space, if and only
if it satisfies the (CN)-inequality ([9, p.163]).

It is well-known that any complete, simply connected Riemannian manifold having nonpositive sec-
tional curvature is a CAT(0) space. Other examples include pre-Hilbert spaces, R-trees (see [9]), Euclidean
buildings (see [10]), the complex Hilbert ball with a hyperbolic metric (see [15]), and many others. Com-
plete CAT(0) spaces are often called Hadamard spaces.

In order to study our results in the general setup of CAT(0) spaces, we first collect some basic concepts.
Let {xn} be a bounded sequence in CAT(0) space X. For p ∈ X, define a continuous functional r(., {xn}) :
X→ [0,+∞) by

r(p, {xn}) = lim sup
n→∞ d(p, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(p, {xn}) : p ∈ X}.

The asymptotic radius rC({xn}) of {xn} with respect to C ⊂ X is given by

rC({xn}) = inf{r(p, {xn}) : p ∈ C}.

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {p ∈ E : r(p, {xn}) = r({xn})}.

The asymptotic center AC({xn}) of {xn} with respect to C ⊂ X is the set

AC({xn}) = {p ∈ C : r(p, {xn}) = rC({xn})}.

A sequence {xn} in CAT(0) space X is said to 4-converge to p ∈ X, if p is the unique asymptotic center of
{un} for every subsequence {un} of {xn}. In this case, we call p the 4-limit of {xn}.

Remark 2.2. The uniqueness of an asymptotic center implies that the CAT(0) space X satisfies Opial’s
property, i.e., for given {xn} ⊂ X such that {xn} 4-converges to x and given y ∈ X with y 6= x,

lim sup
n→∞ d(xn, x) < lim sup

n→∞ d(xn,y).

Lemma 2.3 ([14]). If C is a closed convex subset of a complete CAT(0) space and if {xn} is a bounded sequence in
C, then the asymptotic center of {xn} is in C.

Lemma 2.4 ([14, 17]). Every bounded sequence in a complete CAT(0) space has a 4-convergent subsequence.

In 2008, Berg and Nikolaev [7] introduced the concept of quasilinearization as follows.
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Let us formally denote a pair (a,b) ∈ X× X by
−→
ab and call it a vector. Then quasilinearization is

defined as a map 〈., .〉 : (X×X,X×X)→ R defined by

〈
−→
ab,
−→
cd〉 = 1

2
(d2(a,d) + d2(b, c) − d2(a, c) − d2(b,d)), a,b, c,d ∈ X. (2.2)

It is easily seen that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉, and 〈−→ax,

−→
cd〉+ 〈

−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 for all

a,b, c,d, x ∈ X.
We say that X satisfies the Cauchy-Schwarz inequality, if

〈
−→
ab,
−→
cd〉 6 d(a,b)d(c,d), a,b, c,d ∈ X. (2.3)

It is known [7] that a geodesically connected metric space is a CAT(0) space, if and only if it satisfies
the Cauchy-Schwarz inequality.

In 2012, Dehghan and Rooin [13] introduced the duality mapping in CAT(0) spaces and studied its
relation with subdifferential, by using the concept of quasilinearization. Then they presented a character-
ization of metric projection in CAT(0) spaces as follows.

Lemma 2.5 ([13, Theorem 2.4]). Let C be a nonempty convex subset of a complete CAT(0) space X, x ∈ X and
u ∈ C. Then u = PCx, if and only if 〈−→yu,−→ux〉 > 0 for all y ∈ C.

Lemma 2.6 ([2, Theorem 2.6]). Let X be a complete CAT(0) space, {xn} be a sequence in X, and x ∈ X. Then {xn}

4-converges to x, if and only if lim supn→∞〈−−→xnx,−→xy〉 6 0 for all y ∈ X.

Lemma 2.7 ([24]). Let X be a complete CAT(0) space. Then for all u, x,y ∈ X, the following inequality holds:

d2(x,u) 6 d2(y,u) + 2〈−→xy,−→xu〉.

Now, we present a lemma, which is very important to the proof of theorem later.

Lemma 2.8. Let X be a complete CAT(0) space. For all u, x,y ∈ X, let z1 = αx⊕ (1 −α)u, z2 = αy⊕ (1 −α)u,
the following inequality holds:

〈−−→z1z2,−→xz2〉 6 α〈−→xy,−→xz2〉.

Proof. By Lemma 2.1, (2.1) and (2.2), we have that

〈−−→z1z2,−→xz2〉−α〈−→xy,−→xz2〉 = d2(z1, z2) + d
2(x, z2) − d

2(z1, x) −α(d2(x, z2) + d
2(x,y) − d2(z2,y))

6 αd2(x, z2) + (1 −α)d2(u, z2) −α(1 −α)d2(x,u) +αd2(x,y) + (1 −α)d2(u, x)

−α(1 −α)d2(y,u) − d2(x, z1) −α(d
2(x, z2) + d

2(x,y) − d2(z2,y))

= (1 −α)d2(u, z2) −α(1 −α)d2(x,u) + (1 −α)d2(u, x)

−α(1 −α)d2(y,u) − d2(x, z1) +αd
2(z2,y)

= (1 −α)α2d2(u,y) −α(1 −α)d2(x,u) + (1 −α)d2(u, x)

−α(1 −α)d2(y,u) − (1 −α)2d2(x,u) +α(1 −α)2d2(u,y)
= 0.

This completes the proof.

Definition 2.9. Let C be a nonempty subset of a complete CAT(0) space X. A mapping T : C→ C is called
nonexpansive, if d(Tx, Ty) 6 d(x,y) for all x,y ∈ C.

Definition 2.10. Let C be a nonempty subset of a complete CAT(0) space X. A mapping T : C → C is
called asymptotically nonexpansive, iff d(Tnx, Tny) 6 knd(x,y) for all x,y ∈ C, where kn ∈ [1,+∞) and
limn→∞ kn = 1.



Y. Li, H. Liu, J. Nonlinear Sci. Appl., 10 (2017), 1270–1280 1274

A point x ∈ C is called a fixed point of T , if x ∈ Tx. We denote by F(T) the set of all fixed points of T .

Remark 2.11. The existence of fixed points for asymptotically nonexpansive mappings in a CAT(0) space
was proved by Kirk et al. [16].

Definition 2.12. A mapping f of C into itself is called contraction with coefficient α ∈ (0, 1) if

d(f(x), f(y)) 6 αd(x,y),

for all x,y ∈ C.

Remark 2.13. Banach’s contraction principle guarantees that f has a unique fixed point when C is a
nonempty closed convex subset of a complete metric space.

Lemma 2.14 ([28]). If C is a closed convex subset of X and T : C→ C is a asymptotically nonexpansive mapping,
then the conditions {xn} 4-converges to x and d(xn, Txn)→ 0 imply x ∈ C and Tx = x.

Lemma 2.15 ([25, Lemma 2.1]). Let {an} be a sequence of nonnegative numbers such that

an+1 6 (1 − γn)an + δn, ∀n > 1,

where sequences {γn} and {δn} satisfy the following property

(1) {γn} ⊂ (0, 1) and {δn} ⊂ R;
(2)

∑+∞
n=1 γn = +∞;

(3) lim supn→∞ δn
γn

6 0, or
∑+∞
n=1 |δn| < +∞.

Then limn→∞ an = 0.

3. Main results

Theorem 3.1. Let C be a closed convex subset of a complete CAT(0) space X. Let T : C→ C be an asymptotically
nonexpansive mapping with a sequence {kn} ⊂ [1,+∞), limn→∞ kn = 1. Let f be a contraction on C with
coefficient 0 < α < 1. For an arbitrary initial point x0 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn)⊕ (1 −αn)T
n(
xn ⊕ xn+1

2
), n > 0,

where {αn} satisfies the following conditions:

(i) {αn} ⊂ (0, 1) and limn→∞ αn = 0;
(ii)

∑+∞
n=1 αn = +∞;

(iii) limn→∞ k2
n−1
αn

= 0.

If limn→∞ d(Tnxn, xn) = 0 and F(T) 6= ∅, then {xn} converges strongly as n → ∞ to q = PF(T)f(q), which
solves the following variational inequality:

〈
−−−→
f(q)q,−→qx〉 > 0, ∀x ∈ F(T).

Proof. (I) We prove that {xn} is bounded.
In fact, by Lemma 2.1, for any p ∈ F(T), we have that

d(xn+1,p) = d(αnf(xn)⊕ (1 −αn)T
n(
xn ⊕ xn+1

2
),p)

6 αnd(f(xn),p) + (1 −αn)d(T
n(
xn ⊕ xn+1

2
),p)
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6 αn(d(f(xn), f(p)) + d(f(p),p)) + (1 −αn)knd(
xn ⊕ xn+1

2
,p)

6 αn(αd(xn,p) + d(f(p),p)) +
(1 −αn)kn

2
(d(xn+1,p) + d(xn,p)),

that is
(1 −

1 −αn
2

kn)d(xn+1,p) 6 (
1 −αn

2
kn +ααn)d(xn,p) +αnd(f(p),p). (3.1)

By condition (iii), for any given positive number ε(0 < ε < 1 − α), there exists a sufficient large positive
integer N, such that for any n > N,

kn − 1 6
1
2
(k2
n − 1) 6 εαn, (3.2)

and
1 −

1 −αn
2

kn =
1
2
(1 − (kn − 1) + knαn) >

1
2
(1 − εαn + knαn) >

1
2
(1 + (1 − ε)αn. (3.3)

Substituting (3.3) into (3.1), after simplifying, for any n > N, we have

(1 −
1 −αn

2
kn)d(xn+1,p) =

1 − (kn − 1) + knαn
2

d(xn+1,p)

6
1 + (kn − 1) − knαn + 2ααn

2
d(xn,p) +αnd(f(p),p)

6
1 + εαn − knαn + 2ααn

2
d(xn,p) +αnd(f(p),p)

=
1 − (kn − 2α− ε)αn

2
d(xn,p) +αnd(f(p),p)

6
1 − (1 − 2α− ε)αn

2
d(xn,p) +αnd(f(p),p). (3.4)

From (3.3) and (3.4), we have

d(xn+1,p) 6
1 − (1 − 2α− ε)αn

1 + (1 − ε)αn
d(xn,p) +

2αn
1 + (1 − ε)αn

d(f(p),p)

6 (1 −
2(1 −α− ε)αn
1 + (1 − ε)αn

d(xn,p) +
2(1 −α− ε)αn
1 + (1 − ε)αn

.
d(f(p),p)
1 −α− ε

6 max{d(xn,p),
d(f(p),p)
1 −α− ε

}

6 max{d(xN+1,p),
d(f(p),p)
1 −α− ε

}.

Hence {xn} is bounded, and so are {f(xn)}, {Tnxn)} and {Tn(xn⊕xn+1
2 )}.

(II) We show that limn→∞ d(xn+1, xn) = 0.

In fact,

d(xn+1, xn) 6 d(xn+1, Tnxn) + d(Tnxn, xn)

= d(αnf(xn)⊕ (1 −αn)T
n(
xn ⊕ xn+1

2
), Tnxn) + d(Tnxn, xn)

6 αnd(f(xn), Tnxn) + (1 −αn)d(T
n(
xn ⊕ xn+1

2
), Tnxn) + d(Tnxn, xn)

6 αnd(f(xn), Tnxn) + d(Tnxn, xn) + (1 −αn)knd(
xn ⊕ xn+1

2
, xn)
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6 αnd(f(xn), Tnxn) + d(Tnxn, xn) +
1
2
(1 −αn)knd(xn+1, xn).

Since {f(xn)} and {Tnxn)} are bounded, hence there exists M > 0, such that M > supn>1 d(f(xn), T
nxn).

We get

d(xn+1, xn) 6 αnM+ d(Tnxn, xn) +
1
2
(1 −αn)knd(xn+1, xn). (3.5)

From (3.3) and (3.5), we have

d(xn+1, xn) 6
2αn

1 + (1 − ε)αn
M+

1
1 + (1 − ε)αn

d(Tnxn, xn), n > N.

By virtue of the conditions (i) and limn→∞ d(Tnxn, xn) = 0, we have

lim
n→∞d(xn+1, xn) = 0. (3.6)

(III) We show that limn→∞ d(Txn, xn) = 0.

Indeed,

d(xn+1, Tnxn+1) = d(αnf(xn)⊕ (1 −αn)T
n(
xn ⊕ xn+1

2
), Tnxn+1)

6 αnd(f(xn), Tnxn+1) + (1 −αn)knd(
xn ⊕ xn+1

2
, xn+1)

6 αnd(f(xn), Tnxn+1) +
1
2
(1 −αn)knd(xn, xn+1)

6 αnM+
1
2
(1 −αn)knd(xn, xn+1).

It follows from condition (i) and (3.6) that

lim
n→∞d(xn+1, Tnxn+1) = 0. (3.7)

Hence

d(Txn+1, xn+1) 6 d(Txn+1, Tn+1xn+1) + d(T
n+1xn+1, xn+1)

6 k1d(xn+1, Tnxn+1) + d(T
n+1xn+1, xn+1). (3.8)

It follows from (3.7) and (3.8) that limn→∞ d(Txn+1, xn+1) = 0, which implies that

lim
n→∞d(Txn, xn) = 0. (3.9)

(IV) We prove that
w4{xn} :=

⋃
{un}⊂{xn}

{A({un})} ⊂ F(T), (3.10)

where A({un}) is the asymptotic center of {un}.

Let u ∈ w4{xn}, then there exists a subsequence {un} of {xn} such that A({un}) = {u}. It follows from
Lemma 2.4 that there exists a subsequence {vn} of {un} such that 4-limn→∞ vn = u. In view of (3.9),

lim
n→∞d(Tvn, vn) = 0,

and T is demi-closed at 0. By Lemma 2.14, Tu = u, that is u ∈ F(T). Hence w4{xn} ⊂ F(T).
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(V) We prove that xn → q as n → ∞, where q ∈ F(T) is the unique fixed point of contraction PF(T)f,
that is, q = PF(T)f(q).

First, we show that
lim sup
n→∞ 〈

−−−→
qf(q),−−→qxn〉 6 0.

As a matter of fact, since {xn} is bounded, there exists a subsequence {xnk} ⊂ {xn}, which 4-converges to
a point p. By Lemma 2.5, Lemma 2.6 and (3.10), we get

lim sup
n→∞ 〈

−−−→
qf(q),−−→qxn〉 = lim

k→∞〈
−−−→
qf(q),−−−→qxnk〉 = 〈

−−−→
qf(q),−→qp〉 6 0. (3.11)

Next, for n > 0, let zn := αnq⊕ (1 −αn)T
n(xn⊕xn+1

2 ). It follows from Lemma 2.8 that

〈−−−−−→znxn+1,−−−−→qxn+1〉 6 αn〈
−−−−→
qf(xn),−−−−→qxn+1〉.

Hence, it follows from Lemma 2.1 (v), Lemma 2.7, (2.2) and (2.3) that

d2(xn+1,q) 6 d2(zn,q) + 2〈−−−−−→znxn+1,−−−−→qxn+1〉

= d2(αnq⊕ (1 −αn)T
n(
xn ⊕ xn+1

2
),q) + 2〈−−−−−→znxn+1,−−−−→qxn+1〉

6 (1 −αn)
2d2(Tn(

xn ⊕ xn+1

2
),q) + 2〈−−−−−→znxn+1,−−−−→qxn+1〉

6 (1 −αn)
2k2
nd

2(
xn ⊕ xn+1

2
,q) + 2αn〈

−−−−→
qf(xn),−−−−→qxn+1〉

= (1 −αn)
2k2
nd

2(
xn ⊕ xn+1

2
,q) + 2αn〈

−−−−−−→
f(q)f(xn),−−−−→qxn+1〉+ 2αn〈

−−−→
qf(q),−−−−→qxn+1〉

6 (1 −αn)
2k2
nd

2(
xn ⊕ xn+1

2
,q) + 2αnd(f(xn), f(q))d(xn+1,q) + 2αn〈

−−−→
qf(q),−−−−→qxn+1〉

6 (1 −αn)
2k2
nd

2(
xn ⊕ xn+1

2
,q) + 2ααnd(xn,q)d(xn+1,q) + 2αn〈

−−−→
qf(q),−−−−→qxn+1〉

6 (1 −αn)
2k2
n(

1
2
d2(xn,q) +

1
2
d2(xn+1,q) −

1
4
d2(xn+1, xn))

+ααn(d
2(xn,q) + d2(xn+1,q)) + 2αn〈

−−−→
qf(q),−−−−→qxn+1〉

=
(1 − 2αn)k2

n + 2ααn
2

(d2(xn,q) + d2(xn+1,q))

+
1
2
α2
nk

2
n(d

2(xn,q) + d2(xn+1,q)) + 2αn〈
−−−→
qf(q),−−−−→qxn+1〉.

Since {xn} is bounded, there exists M > 0 such that supn>1{k
2
nd

2(xn,q)} 6M. Hence we have

d2(xn+1,q) 6
(1 − 2αn)k2

n + 2ααn
2

(d2(xn,q) + d2(xn+1,q)) +α2
nM+ 2αn〈

−−−→
qf(q),−−−−→qxn+1〉. (3.12)

It follows from (3.2), (3.3) and (3.12) that for all n > N

(1 −
(1 − 2αn)k2

n + 2ααn
2

)d2(xn+1,q)

6
(1 − 2αn)k2

n + 2ααn
2

d2(xn,q) +α2
nM+ 2αn〈

−−−→
qf(q),−−−−→qxn+1〉

6
1 + 2εαn − 2(1 −α)αn

2
d2(xn,q) +α2

nM+ 2αn〈
−−−→
qf(q),−−−−→qxn+1〉
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=
1 − 2(1 − ε−α)αn

2
d2(xn,q) +α2

nM+ 2αn〈
−−−→
qf(q),−−−−→qxn+1〉.

From (3.2) and (3.3), we have

1 −
(1 − 2αn)k2

n + 2ααn
2

>
1 + 2(1 − ε−α)αn

2
,

and arrive at

d2(xn+1,q) 6
1 − 2(1 − ε−α)αn
1 + 2(1 − ε−α)αn

d2(xn,q) +
α2
nM

1 + 2(1 − ε−α)αn
+

4αn
1 + 2(1 − ε−α)αn

〈
−−−→
qf(q),−−−−→qxn+1〉

= (1 − γn)d
2(xn,q) + δn,

where

γn =
4(1 − ε−α)αn

1 + 2(1 − ε−α)αn
,

δn =
α2
nM

1 + 2(1 − ε−α)αn
+

4αn
1 + 2(1 − ε−α)αn

〈
−−−→
qf(q),−−−−→qxn+1〉.

It follows from conditions (i), (ii) and (3.11) that

γn ⊂ (0, 1), and
∞∑
n=1

γn = ∞,

lim sup
n→∞

δn

γn
= lim sup

n→∞
αnM+ 2〈

−−−→
qf(q),−−−−→qxn+1〉

2(1 − ε−α)
6 0.

By Lemma 2.5 and Lemma 2.15, we get that xn → q = PF(T)f(q), which solves the following variational
inequality:

〈
−−−→
f(q)q,−→qx〉 > 0, ∀x ∈ F(T).

This completes the proof of Theorem 3.1.

Remark 3.2. Since a real Hilbert space is a complete CAT(0), and every nonexpansive mapping is an
asymptotically nonexpansive mapping, Theorem 3.1 is an improvement and generalization of the main
results in Alghamdi et al. [3], Xu et al. [26, 27] and Zhao et al. [29].

The following result can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let C be a closed convex subset of a complete CAT(0) space X. Let T : C → C be a nonexpansive
mapping. Let f be a contraction on C with coefficient 0 < α < 1. For an arbitrary initial point x0 ∈ C, let {xn} be a
sequence generated by

xn+1 = αnf(xn)⊕ (1 −αn)T(
xn ⊕ xn+1

2
), n > 0,

where {αn} satisfies the following conditions:

(i) {αn} ⊂ (0, 1) and limn→∞ αn = 0;
(ii)

∑+∞
n=1 αn = +∞.

Then {xn} converges strongly as n→∞ to q = PF(T)f(q), which solves the following variational inequality:

〈
−−−→
f(q)q,−→qx〉 > 0, ∀x ∈ F(T).

Remark 3.4. Note that the condition limn→∞ d(xn, Txn) = 0 is not needed, since it suffices to prove that
the condition is satisfied.
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In fact, similar to the result given in [29], we have limn→∞ d(xn, xn+1) = 0. Therefore,

d(xn+1, Txn+1) = d(αnf(xn)⊕ (1 −αn)T(
xn ⊕ xn+1

2
), Txn+1)

6 αnd(f(xn), Txn+1) + (1 −αn)d(T(
xn ⊕ xn+1

2
), Txn+1)

6 αnd(f(xn), Txn+1) + (1 −αn)d(
xn ⊕ xn+1

2
, xn+1)

6 αnd(f(xn), Txn+1) +
1
2
(1 −αn)d(xn, xn+1)

= αnM+
1
2
(1 −αn)d(xn, xn+1)→ 0 as n→∞,

where M = supn>0 d(f(xn), Txn+1).

4. Application to equilibrium problem

First, we present an example of a nonexpansive mapping.

Example 4.1 ([8]). Let H be a real Hilbert space, D be a nonempty closed and convex subset of H and
φ : D×D→ R be a bifunction satisfying the conditions:

(A1) φ(x, x) = 0,∀x ∈ D;

(A2) φ(x,y) +φ(y, x) 6 0, ∀x,y ∈ D;

(A3) for each x,y, z ∈ D, limt→0φ(tz+ (1 − t)x,y) 6 φ(x,y);

(A4) for each given x ∈ D, the function y 7−→ φ(x,y) is convex and lower semicontinuous. The ”so-
called” equilibrium problem for φ is to find an x∗ ∈ D such that φ(x∗,y) > 0, ∀y ∈ D. The set of its
solutions is denoted by EP(φ).

Let r > 0, x ∈ H and define a mapping Tr : D→ D ⊂ H as follows

Tr(x) = {z ∈ D,φ(z,y) +
1
r
〈y− z, z− x〉 > 0, ∀y ∈ D}, ∀x ∈ D ⊂ H. (4.1)

Then

(1) Tr is single-valued, and so z = Tr(x);

(2) Tr is a relatively nonexpansive mapping. Therefore, it is a closed nonexpansive mapping;

(3) F(Tr) = EP(φ) and F(Tr) is a nonempty and closed convex subset of D;

(4) Tr : D→ D is a nonexpansive.

Since every real Hilbert space is a complete CAT(0) space, using Theorem 3.3 to study the implicit
midpoint rule of a modified nonexpansive mapping for a system of equilibrium problems, we have the
following result.

Theorem 4.2. Let H be a real Hilbert space, D be a nonempty closed and convex subset of H. {αn} and f are the
same as in Theorem 3.3. Let φ : D×D → R be a bifunction satisfying conditions (A1)–(A4) as given in example
above. Let Tr : D→ D ⊂ H be mapping defined by (4.1), i.e.,

Tr(x) = {z ∈ D,φ(z,y) +
1
r
〈y− z, z− x〉 > 0, ∀y ∈ D}, ∀x ∈ D ⊂ H.

Let {xn} be the sequence generated by

xn+1 = αnf(xn) + (1 −αn)Tr(
xn + xn+1

2
), n > 0.

If F(Tr) 6= ∅, then {xn} converges strongly to q = PF(Tr)f(q), which is a common solution of the system of
equilibrium problems EP(φ).
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