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Abstract
Based on a specific way of choosing the indices and a new concept, namely, an analogue of inner product, a modified

Krasnoselski-Mann iteration scheme is proposed for approximating common fixed points of a countable family of asymptotically
nonexpansive mappings; and a strong convergence theorem is established in the framework of CAT(0) spaces. Our results greatly
improve and extend those of the authors whose related researches just involve a single mapping and the weaker ∆-convergence.
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1. Introduction

Let (X,d) be a metric space and x,y ∈ X with l = d(x,y). A geodesic path from x to y is an isometry
c : [0, l] → X such that c(0) = x and c(l) = y. The image of a geodesic path is called a geodesic segment,
denoted by [x,y] as it is unique. A metric space X is a (uniquely) geodesic space if every two points of X
are joined by only one geodesic segment. A geodesic triangle 4(x1, x2, x3) in a geodesic space X consists of
three points x1, x2, x3 of X and three geodesic segments joining each pair of vertices. A comparison triangle
of a geodesic triangle 4(x1, x2, x3) is the triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the Euclidean space R2

such that d(xi, xj) = dR2(xi, xj) for all i, j = 1, 2, 3, where xi is called the comparison vertex of xi, i = 1, 2, 3.
A geodesic space X is a CAT(0) space if for each geodesic triangle 4 := 4(x1, x2, x3) in X and its

comparison triangle 4 := 4(x1, x2, x3) in R2, the CAT(0) inequality

d(x,y) 6 dR2(x,y)

is satisfied by all x,y ∈ 4 and their comparison points x,y ∈ 4. The meaning of the CAT(0) inequality is
that a geodesic triangle in X is at least thin as its comparison triangle in the Euclidean plane. A thorough
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discussion of these spaces and their important role in various branches of mathematics are given in [1, 2].
The complex Hilbert ball with the hyperbolic metric is an example of a CAT(0) space (see [10]).

Fixed point theory in a CAT(0) space was first studied by Kirk (see [13, 15]) who showed that every
nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a complete CAT(0)
space always has a fixed point. Since then the fixed point theory for single-valued and multivalued
mappings in CAT(0) spaces has been rapidly developed and much papers have appeared (see, e.g., [3, 5–
8, 11, 12, 14, 17, 22–24]).

In 2008, Kirk and Panyanak [16] used the concept of ∆-convergence introduced by Lim [18] to prove the
CAT(0) space analogs of some Banach space results which involve weak convergence, and Dhompongsa
and Panyanak [9] obtained ∆-convergence theorems for the Picard, Mann and Ishikawa iterations in the
CAT(0) space setting.

In 2010, Nanjaras and Panyanak [19] proved the demiclosed principle for asymptotically nonexpansive
mappings in CAT(0) spaces. As a consequence, they also obtained a ∆-convergence theorem of the
Krasnoselski-Mann iteration for asymptotically nonexpansive mappings in this setting.

Inspired and motivated by those studies mentioned above, in this paper, by using a specific way of
choosing the indices of the involved mappings and a new concept, namely, an analogue of inner product,
we propose a modified Krasnoselski-Mann iteration scheme for approximating common fixed points of
a countable family of asymptotically nonexpansive mappings and obtain a strong convergence theorem
in CAT(0) space. The result improves and extends that of Nanjaras and Panyanak [19] whose related
research involves just a single mapping and the weaker ∆-convergence.

2. Preliminaries

In this paper, we write (1 − t)x⊕ ty for the the unique point z in the geodesic segment joining from x

to y such that
d(z, x) = td(x,y), d(z,y) = (1 − t)d(x,y), ∀t ∈ [0, 1]. (2.1)

We also denote by [x,y] the geodesic segment joining from x to y, that is, [x,y] := {(1− t)x⊕ ty : t ∈ [0, 1]}.
A subset C of a CAT(0) space is convex if [x,y] ⊂ C for all x,y ∈ C.

In the sequel we shall need the following preliminaries.
Let X be a uniquely geodesic space equipped with two operations ◦ and ⊕, respectively defined by:

Definition 2.1.

(1) For any α ∈ R and any x ∈ X, α ◦ x stands for the unique point u ∈ X such that

u = αx,

where ·̄ is the comparison vertex in the comparison triangle 4(·̄, θ, ·) := 4(·̄,~0, ·) of 4(·, θ, ·); and θ
denotes a fixed x0 ∈ X.

(2) For any x,y ∈ X, x⊕ y stands for the unique point v ∈ X such that

v = x+ y,

where v is the comparison vertex in the comparison triangles 4(x, θ, v) and 4(y, θ, v) of 4(x, θ, v)
and 4(y, θ, v).

We then have the following conclusion:

Proposition 2.2. A uniquely geodesic space X equipped with two operations ◦ and ⊕ forms a vector space whenever
its power is no larger than ℵ, namely, the cardinality of continuum. Such a space is called a geodesic vector space.

This follows from the fact that it is reasonable to define the mappings x 7→ x̄ and v 7→ v̄ as in-
jections, determined respectively by the mappings 4(x, θ, x) 7→ 4(x, θ, x) and (4(x, θ, v),4(y, θ, v)) 7→
(4(x, θ, v),4(y, θ, v)), since X is equivalent to R2.
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By the uniqueness of the negative element of any member of geodesic vector X, an operation 	 is
defined by

x	 y = x⊕ ((−1) ◦ y), ∀x,y ∈ X.

Since a CAT(0) space is a uniquely geodesic space, then a CAT(0) space, equipped with two operations
◦ and ⊕, is called a CAT(0) vector space whenever it possesses the cardinality of continuum.

Let X be a CAT(0) vector space, with respect to which the following definition is given.

Definition 2.3. An analogue of inner product 〈·, ·〉 : X×X→ R is defined by

〈x,y〉 = 〈x,y〉R2 ,

where x,y are the comparison vertices in the comparison triangle 4(x, θ,y) of 4(x, θ,y).

It is obvious from the definition of the function 〈·, ·〉 that it has the following properties: for any
x,y, z ∈ X and any α ∈ R,
(1) 〈x, x〉 > 0, 〈x, x〉 = 0⇔ x = θ;
(2) 〈x,y〉 = 〈y, x〉;
(3) 〈α ◦ x,y〉 = α〈x,y〉;
(4) 〈x⊕ y, z〉 = 〈x, z〉+ 〈y, z〉.
Then a distance ρ on X can be defined by

ρ(x,y) :=
√
〈x	 y, x	 y〉,

which coincides with the original distance d on X, since the distance dR2 on R2 is just induced by 〈·, ·〉R2

and d(x,y) = dR2(x,y).
Next, we define a function φ : X×X→ R+ by

φ(x,y) := d2(x,y),

which obviously has the following property:

φ(y, x) = φ(z, x) +φ(y, z) + 2〈z	 y, x	 z〉, ∀x,y, z ∈ X. (2.2)

Lemma 2.4 ([20]). Let {an}, {δn}, and {bn} be sequences of nonnegative real numbers satisfying

an+1 6 (1 + δn)an + bn, ∀n ∈N.

If
∑∞
n=1 δn <∞ and

∑∞
n=1 bn <∞, then limn→∞ an exists.

Lemma 2.5 ([21]). A geodesic space X is a CAT(0) space if and only if the following inequality

d2((1 − t)x⊕ ty, z) 6 (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x,y)

is satisfied by all x,y, z ∈ X and all t ∈ [0, 1]. In particular, if x,y, z are points in a CAT(0) space and t ∈ [0, 1],
then

d((1 − t)x⊕ ty, z) 6 (1 − t)d(x, z) + td(y, z).

Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞ d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ K}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ K : r(x, {xn}) = r({xn})}.

It is known (see, e.g., [8]) that in a CAT(0) space, A({xn}) consists of exactly one point. We now give the
definition of ∆-convergence.
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Definition 2.6 ([16, 18]). A sequence {xn} in a CAT(0) space X is said to ∆-converge to x ∈ X if x is
the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case one writes ∆-
limn→∞ xn = x and calls x the ∆-limit of {xn}.

Recall that a mapping T : C → C is called asymptotically nonexpansive if there exists a sequence
{µn} ⊂ [0,∞) satisfying µn → 0 as n→∞ such that

d(Tnx, Tny) 6 (1 + µn)d(x,y), ∀x,y ∈ C, ∀n ∈N.

Lemma 2.7 ([9]). Let K be a closed convex subset of a complete CAT(0) space X, and let T : K → X be a
nonexpansive mapping. Suppose {xn} is a bounded sequence in K such that limn→∞ d(xn, Txn) = 0 and {d(xn, v)}
converges for all v ∈ F(T), then ωw(xn) ⊂ F(T). Here ωw(xn) := ∪A({xn}) where the union is taken over all
subsequences {un} of {xn}. Moreover, ωw(xn) consists of exactly one point.

We now turn to a wider class of spaces, namely, the class of hyperbolic spaces, which contains the
class of CAT(0) spaces (see Lemma 2.11).

Definition 2.8 ([17]). A hyperbolic space is a triple (X,d,W) where (X,d) is a metric space and W :
X×X× [0, 1]→ X is such that

(W1) d(z,W(x,y,α)) 6 (1 −α)d(z, x) +αd(z,y);
(W2) d(W(x,y,α),W(x,y,β)) = |α−β|d(x,y);
(W3) W(x,y,α) =W(y, x, 1 −α);
(W4) d(W(x, z,α),W(y,w,α)) = (1 −α)d(x,y) +αd(z,y) for all x,y, z,w ∈ X,α,β ∈ [0, 1].

It follows from (W1) that for each x,y ∈ X and α ∈ [0, 1],

d(x,W(x,y,α)) 6 αd(x,y), d(y,W(x,y,α)) 6 (1 −α)d(x,y). (2.3)

Comparing (2.3) with (2.1), we can also use the notation (1−α)x⊕αy for W(x,y,α) in a hyperbolic space
(X,d,W).

Definition 2.9 ([17]). The hyperbolic space (X,d,W) is called uniformly convex if for any r > 0 and
ε ∈ (0, 2] there exists a δ ∈ (0, 1] such that for all a, x,y ∈ X,

d(x,a) 6 r
d(y,a) 6 r
d(x,y) 6 εr

⇒ d

(
1
2
x⊕ 1

2
y,a

)
6 (1 − δ)r.

A mapping η : (0,∞)× (0, 2] → (0, 1] providing such a δ := η(r, ε) for given r > 0 and ε ∈ (0, 2] is
called a modulus of uniform convexity.

Lemma 2.10 ([17]). Let (X,d,W) be a uniformly convex hyperbolic with modulus of uniform convexity η. For any
r > 0, ε ∈ (0, 2], λ ∈ [0, 1], and a, x,y ∈ X,

d(x,a) 6 r
d(y,a) 6 r
d(x,y) 6 εr

⇒ d((1 − λ)x⊕ λy,a) 6 (1 − 2λ(1 − λ)η(r, ε))r.

Lemma 2.11 ([17]). Assume that X is a CAT(0) space. Then X is uniformly convex, and

η(r, ε) =
ε2

8

is a modulus of uniform convexity.
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Lemma 2.12 ([4]). The unique solutions to the positive integer equation

n = in +
(mn − 1)mn

2
, mn > in, n = 1, 2, 3, . . .

are

in = n−
(mn − 1)mn

2
, mn = −

[
1
2
−

√
2n+

1
4

]
, n = 1, 2, 3, . . . ,

where [x] denotes the maximal integer that is not larger than x.

3. Main results

Theorem 3.1. Let X be a complete CAT(0) vector space and C a closed convex nonempty subset of X. Let {Ti}∞i=1 :

C→ C be a sequence of nonexpansive mappings with a sequence
{
µ
(i)
n

}
satisfying

∑∞
i=1
∑∞
n=1 µ

(i)
n <∞ and the

interior of F := ∩∞i=1F(Ti) 6= ∅. Starting from an arbitrary x1 ∈ C, define {xn} by

xn+1 = (1 −αn)xn ⊕αn(T∗n)mnxn, ∀n ∈N, (3.1)

where {αn} ⊂ [ε, 1 − ε] for some ε > 0 and T∗n = Tin with in and mn being the solutions to the positive integer
equation: n = in +

(mn−1)mn

2 (mn > in,n = 1, 2, . . .), that is, for each n ∈ N, there exist unique in and mn
such that

i1 = 1, i2 = 1, i3 = 2, i4 = 1, i5 = 2, i6 = 3, i7 = 1, i8 = 2, . . . ,
m1 = 1,m2 = 2,m3 = 2,m4 = 3,m5 = 3,m6 = 3,m7 = 4,m8 = 4, . . . .

Then {xn} converges strongly to a common fixed point x∗ of the mappings {Ti}∞i=1.

Proof. We divide the proof into several steps.

(I) limn→∞ d(xn,q) exists, ∀q ∈ F.
From (3.1), we have

d(xn+1,q) = d((1 −αn)xn ⊕αn(T∗n)mnxn,q)
6 (1 −αn)d(xn,q) +αnd((T∗n)

mnxn, (T∗n)
mnq)

6 (1 −αn)d(xn,q) +αn
(

1 + µ
(in)
mn

)
d(xn,q)

6
(

1 + µ
(in)
mn

)
d(xn,q).

Note that
∑∞
n=1 µ

(in)
mn =

∑∞
i=1
∑∞
n=i µ

(i)
n 6

∑∞
i=1
∑∞
n=1 µ

(i)
n < ∞. So by Lemma 2.4 we conclude

limn→∞ d(xn,q) exists and hence {xn} and {(T∗n)
mnxn} are bounded.

(II) xn → x∗ ∈ C as n→∞.
For any q ∈ F, we have, by Lemma 2.5,

d2(xn+1,q) = d2((1 −αn)xn ⊕αn(T∗n)mnxn,q)

6 (1 −αn)d
2(xn,q) +αnd2((T∗n)

mnxn,q) −αn(1 −αn)d
2(xn, (T∗n)

mnxn)

6 (1 −αn)d
2(xn,q) +αn

(
1 + µ

(in)
mn

)
d2(xn,q) −αn(1 −αn)d

2(xn, (T∗n)
mnxn)

6
(

1 + µ
(in)
mn

)
d2(xn,q)

= d2(xn,q) + ν(in)mn ,

(3.2)
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where ν(in)mn := µ
(in)
mn d

2(xn,q), and so
∑∞
n=1 ν

(in)
mn <∞. Furthermore, it follows from (2.2) that

φ(p, xn) = φ(xn+1, xn) +φ(p, xn+1) + 2〈xn+1 	 p, xn 	 xn+1〉, ∀p ∈ X.

This implies that

〈xn+1 	 p, xn 	 xn+1〉+
1
2
φ(xn+1, xn) =

1
2
(φ(p, xn) −φ(p, xn+1)). (3.3)

Moreover, since the interior of F is nonempty, there exists a p∗ ∈ F and r > 0 such that (p∗ ⊕ r ◦ h) ∈ F
whenever

√
〈h,h〉 6 1. Thus, from (3.2) and (3.3) we obtain

0 6 〈xn+1 	 (p∗ ⊕ r ◦ h), xn 	 xn+1〉+
1
2
φ(xn+1, xn) +

1
2
ν
(in)
mn . (3.4)

Then from (3.3) and (3.4) we obtain

r〈h, xn 	 xn+1〉 6 〈xn+1 	 p∗, xn 	 xn+1〉+
1
2
φ(xn+1, xn) +

1
2
ν
(in)
mn =

1
2
(φ(p∗, xn) −φ(p∗, xn+1)) +

1
2
ν
(in)
mn ,

and hence
〈h, xn 	 xn+1〉 6

1
2r

(φ(p∗, xn) −φ(p∗, xn+1)) +
1
2r
ν
(in)
mn .

Since h with
√
〈h,h〉 6 1 is arbitrary, we have, by taking h = 1

d(xn,xn+1)
◦ (xn 	 xn+1),

d(xn, xn+1) 6
1
2r

(φ(p∗, xn) −φ(p∗, xn+1)) +
1
2r
ν
(in)
mn . (3.5)

So, if n > m, then we have

d(xm, xn) 6
n−1∑
j=m

d(xj, xj+1) 6
1
2r

n−1∑
j=m

(φ(p∗, xj) −φ(p∗, xj+1)) +
1
2r

n−1∑
j=m

ν
(ij)
mj

=
1
2r

(φ(p∗, xm) −φ(p∗, xn)) +
1
2r

n−1∑
j=m

ν
(ij)
mj

.

(3.6)

But we know that {φ(p∗, xn)} converges, and
∑∞
n=1 ν

(in)
mn < ∞. Therefore, we obtain from (3.6) that {xn}

is a Cauchy sequence. Since X is complete there exists an x∗ ∈ X such that xn → x∗ ∈ X as n→∞. Thus,
since {xn} ⊂ C and C is closed and convex, then x∗ ∈ C, that is,

xn → x∗ ∈ C (n→∞). (3.7)

(III) x∗ is one of members of F.
Since {αn} ⊂ [ε, 1 − ε], we have, from (3.2),

ε2d2(xn, (T∗n)
mnxn) 6 d

2(xn,q) − d2(xn+1,q) + ν(in)mn

so that

ε2
∞∑
n=1

d2(xn, (T∗n)
mnxn) 6 d

2(x1,q) +
∞∑
n=1

ν
(in)
mn <∞.

This implies that
lim
n→∞d(xn, (T∗n)

mnxn) = 0. (3.8)

It follows from (3.5) that
lim
n→∞d(xn+1, xn) = 0,
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which implies that, by induction, for any nonnegative integer j,

lim
n→∞d(xn+j, xn) = 0. (3.9)

Next, for any i ∈ N, we consider the corresponding subsequence
{
x
(i)
k

}
k∈Γi

of {xn}, where k ∈ Γi :={
k ∈N : k = ik +

(jk−1)jk
2 , jk > ik, jk ∈N

}
. For example, by Lemma 2.12 and the definition of Γ1, we

have Γ1 = {1, 2, 4, 7, 11, 16, ...} and i1 = i2 = i4 = i7 = i11 = i16 = · · · = 1. For simplicity,
{
x
(i)
k

}
k∈Γi

,{
(T∗k)

(i)
}
k∈Γi

, and
{
j
(i)
k

}
k∈Γi

are written as {x ′n}, {T ′n}, and {mn}, respectively. Since mn > 2 whenever

n > 2, we have, for each n ∈N,

d(x ′n, T ′nx
′
n) 6 d(x

′
n+1, x ′n) + d

(
x ′n+1, (T ′n+1)

mn+1x ′n+1
)

+ d
(
(T ′n+1)

mn+1x ′n+1, (T ′n+1)
mn+1x ′n

)
+ d

(
(T ′n+1)

mn+1x ′n, T ′nx
′
n

)
6 d(x ′n+1, x ′n) + d

(
x ′n+1, (T ′n+1)

mn+1x ′n+1
)

+
(

1 + µ
(i)
mn+1

)
d(x ′n+1, x ′n) + d

(
(T ′n+1)

mn+1x ′n, T ′nx
′
n

)
.

Note that {mn}n∈Γi = {i, i+ 1, i+ 2, ...}, i.e., mn+1 − 1 = mn,µ(ik)1 = µ
(i)
1 , and T ′n = Ti = T ′n+1 whenever

k ∈ Γi. Then from (3.8), we have, as n→∞,

d
(
(T ′n+1)

mn+1x ′n, T ′nx
′
n

)
= d

(
(T ′n+1)((T

′
n+1)

mn+1−1x ′n), T
′
nx
′
n

)
6
(

1 + µ
(i)
1

)
d
(
(T ′n+1)

mn+1−1x ′n, x ′n
)

=
(

1 + µ
(i)
1

)
d((T ′n)

mnx ′n, x ′n)→ 0.

Then it follows from (3.8) and (3.9) that

lim
n→∞d(x ′n, T ′nx

′
n) = 0.

That is, for each i ∈N, there exists a subsequence
{
x
(i)
n

}
of {xn} such that

lim
n→∞d

(
x
(i)
n , ((T∗n)

(i)x
(i)
n

)
= 0.

Since (T∗n)
(i) = Ti, we have, for each i ∈N,

lim
n→∞d

(
x
(i)
n , Tix

(i)
n

)
= 0.

Thus, from (3.7), since for any i ∈N, x(i)n → x∗ as n→∞ and Ti is continuous, we obtain x∗ ∈ F(Ti), i.e.,
x∗ ∈ ∩∞i=1F(Ti). The proof is completed.
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