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Abstract

In this paper, the re-defined generalized metric space which is equivalent to the generalized metric spaces defined by Jleli
and Samet is presented so that some well-known spaces are incorporated in the area of re-defined generalized metric spaces.
Some fixed point existence and uniqueness results of contractive and generalized contraction mappings defined on such metric
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1. Introduction

Fixed point theory is a very powerful tool and has been widely studied by many mathematicians and
practitioners of nonlinear phenomena. There exist many different branches in the theory of fixed points,
which are full developed today. During the past several decades, classical Banach contraction principle
has been generalized in many directions, many mathematicians have given significant contributions to
these areas. Ćirić introduced the notion of quasi-contraction mapping [4], Rhoades gave a comparative
study for some generalized mappings of contractive type [23], Nieto proved some fixed point theorems in
partially ordered sets in term of the non-decreasing mappings, non-increasing mappings as well as non-
monotone mappings, which are extension of the Banach contractive mapping [18, 19], much of their work
has a profound influence on follow-up studies of other people [5, 6, 18, 19, 22, 24]. As a generalization of
the notion of metric space, Czerwik presented the notion of b-metric space [7]. Subsequently, a lot more
people do work around this kind of spaces [11]. Hitzler and Seda have focused fixed point theorems on
dislocated metric spaces defined by themselves [10], more relevant results based on such spaces followed

∗Corresponding author
Email addresses: fanxm093@163.com (Xiaoming Fan), wangzg2003205@163.com (Zhigang Wang)

doi:10.22436/jnsa.010.04.07

Received 2016-9-26

http://dx.doi.org/10.22436/jnsa.010.04.07


X. Fan, Z. Wang, J. Nonlinear Sci. Appl., 10 (2017), 1350–1364 1351

in recent years [21, 28]. A lot of mathematicians [1, 2, 13–16, 27] have given fixed point results on modular
spaces since Nakano [17] introduced the notion of modular spaces as a generalization of metric spaces
in 1950. The second author et al. defined the class of (α,ψ)-Meir-Keeler-Khan multivalued mappings
recently and fixed point theorems and endpoints theorems are established on such mappings [25]. The
first author also introduced the concepts of qpb-cyclic-Banach contraction mapping, qpb-cyclic-Kannan
mapping and qpb-cyclic-quasi-contraction mapping and established the existence and uniqueness of fixed
point theorems for these mappings in quasi-partial b-metric spaces [8]. Jleli and Samet [12] introduced
the definition of the generalized metric spaces on which some spaces mentioned above have been unified
based, that is, all of the standard metric spaces, the dislocated metric spaces, and the modular metric
spaces Dm, which m are with Fatou property, are generalized metric space.

In this paper, inspired by [12], the definition re-defined generalized metric space, an equivalent space
of the generalized metric space defined by Jleli and Samet, is presented so that some spaces mentioned
above belong to the domain of new definition, both contractive mappings and Ćirić-Maiti-Pal orbit map-
pings of contractive type defined in the re-defined generalized metric spaces are discussed in detailed.
Some fixed point results for the two kinds of mappings are demonstrated in setting of the re-defined
generalized metric spaces. Some examples are provided to verify the effectiveness of the results.

2. The relationships between re-defined generalized metric spaces and other spaces

2.1. The re-defined generalized metric spaces
Jleli and Samet introduced the notion of generalized metric space which is shown as follows.

Definition 2.1 ([12]). A generalized metric on a nonempty set X is a function D : X × X → [0,+∞),
satisfying the following conditions:

(D1) If D(x,y) = 0, then x = y for every (x,y) ∈ X×X.

(D2) D(x,y) = D(y, x) for every (x,y) ∈ X×X.

(D3) There exists C > 0 such that if {xn}n∈N ∈ C(D,X, x), then D(x,y) 6 C lim sup
n→∞ D(xn,y) for all

(x,y) ∈ X×X, where

C(D,X, x) =
{
{xn} ⊂ X : lim

n→∞D(xn, x) = 0
}

.

The pair (X,D) is called a generalized metric space.
Let X be a nonempty set and Dg : X×X→ [0,+∞) be a given mapping. For every x ∈ X, let us define

the set
C (Dg,X, x, 0) =

{
{xn} ⊂ X : lim

n→∞Dg(xn, x) = 0
}

.

Definition 2.2. A re-defined generalized metric on a nonempty set X is a function Dg : X×X→ [0,+∞),
satisfying the following conditions:

(RGM1) If Dg(x,y) = 0, then x = y for every (x,y) ∈ X×X.

(RGM2) Dg(x,y) = Dg(y, x) for every (x,y) ∈ X×X.

(RGM3) There exists C > 0 such that if {xn}n∈N ∈ C (Dg,X, x, 0), then Dg(x,y) 6 Cϕ(lim sup
n→∞ Dg(xn,y)),

for all (x,y) ∈ X×X, where ϕ : [0,+∞)→ (0,+∞) is a continuous and monotone non-decreasing function
satisfying ϕ(0) = 0 and ϕ(t) > t for all t > 0 and there exists an M ∈ (1,+∞) such that ϕ(t) 6 Mt, for
all t > 0, here we call M an associated number of ϕ.

A re-defined generalized metric space (RGMS) is a pair (X,Dg,C,ϕ) such that X is a nonempty set
and Dg is a re-defined generalized metric on X.
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Remark 2.3. In Definition 2.2, it would not be difficult to find function ϕ satisfying the conditions of
(RGM3). For example, the function

ϕ(t) =

{
et − 1, t ∈ [0, 1),
(e− 1)t, t ∈ [1,+∞),

M > e− 1 can be taken as the associated number of ϕ.

Proposition 2.4. Any generalized metric D on X is equivalent to re-defined generalized metric Dg on X.

Proof. Let D be a generalized metric on X. To verify the proposition, we only need to check that (D3)
is equivalent to the property (RGM3). Indeed, if (RGM3) holds, then for {xn}n∈N ∈ C (D,X, x, 0) and
(x,y) ∈ X×X, we get (since ϕ(t) 6Mt)

Dg(x,y) 6 C lim sup
n→∞ Dg(xn,y)

6 CMϕ(lim sup
n→∞ Dg(xn,y))

= C1ϕ(lim sup
n→∞ Dg(xn,y)),

where C1 = CM, therefore, (D3) holds. On the other hand, by taking ϕ(t) = t, the contrary is clear. This
completes the proof.

Next we define convergent sequence, Cauchy sequence, and complete space in a natural way.

Definition 2.5. Let (X,Dg,C,ϕ) be a re-defined generalized metric space, {xn}n∈N be a sequence in X and
x ∈ X. We say that {xn}n∈N Dg-converges to x, if

{xn}n∈N ∈ C (Dg,X, x, 0).

We denote simply Dg-converges to x by xn
Dg−−→ x.

Proposition 2.6. Let (X,Dg) be a re-defined generalized metric space. Let {xn} be a sequence in X and (x,y) ∈
X×X. If {xn} Dg-converges to x and {xn} Dg-converges to y, then x = y.

Proof. Using the property (RGM3), we have

D(x,y) 6 Cϕ(lim sup
n→∞ D(xn,y)) = Cϕ(0) = 0,

which implies from the property (RGM1) that x = y.

Example 2.7. Let X = {1 −
1
n

: n ∈ Z+}∪ {1, 2}, Z+ be the set of positive integers. For any (x,y) ∈ X× X,
define the distances

Dg(x,y) = |x− y|, x,y ∈ {1 −
1
n

: n ∈ Z+},

Dg(x, 1) = Dg(1, x) = |x− 1|, x ∈ {1 −
1
n

: n ∈ Z+},

Dg(x, 2) = Dg(2, x) = |x− 2|, x ∈ {1 −
1
n

: n ∈ Z+},

Dg(1, 1) = 0,Dg(2, 2) = 1,Dg(1, 2) = Dg(2, 1) = 5.

It is clear that for a function

ϕ(t) =

{
(t+ 1)2 − 1, t ∈ [0, 1),
3t, t ∈ [1,+∞),
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there exist positive real numbers C > 5
3 and an associated number M = 3 of ϕ such that (RGM3) holds for

any x,y ∈ X. In fact, it can be observed that the sequence {1 −
1
n
}n∈Z+ ⊂ X converges to 1, which implies

{1−
1
n
}n∈Z+ belongs to C (Dg,X, 1, 0). When x = 1, the inequalityDg(x,y) 6 Cϕ(lim sup

n→∞ Dg(xn,y)) holds

for any y ∈ X. In addition, the conditions (RGM1) and (RGM2) are obviously satisfied, thus (X,Dg,C,ϕ)
is a re-defined generalized metric space.

Definition 2.8. Let (X,Dg,C,ϕ) be a re-defined generalized metric space, {xn}n∈N be a sequence in X.
We call {xn}n∈N a Dg-Cauchy sequence, if

lim
m,n→∞Dg(xm, xn) = 0.

Definition 2.9. Let (X,Dg,C,ϕ) be a re-defined generalized metric space, {xn}n∈N be a sequence in X. It
is said to be Dg-complete, if every Cauchy sequence in X is convergent to some element in X.

2.2. The relationships between other spaces and the re-defined generalized metric space and example
To be better able to show the relationships between the standard metric space and the re-defined

generalized metric space, let us review the standard metric space, though readers are very familiar with
it.

Let X be a nonempty set, the function d : X×X→ [0,+∞) satisfies

(d1) d(x,y) = 0 if and only if x = y;

(d2) d(x,y) = d(y, x) for all x,y ∈ X;

(d3) d(x, z) 6 d(x,y) + d(y, z) for all x,y, z ∈ X.

Then d is called a metric of X. The pair (X,d) is called a metric space.
By relaxing the triangle inequality in the definition of standard metric, Czerwik [7] introduced the

notion of b-metric space, we review it as follows.

Definition 2.10. Let X be a nonempty set, K > 1 be a real number, and the function D : X× X → [0,+∞)
satisfies:

(BM1) D(x,y) = 0 if and only if x = y;

(BM2) D(x,y) = D(y, x) for all x,y ∈ X;

(BM3) D(x, z) 6 K[D(x,y) +D(y, z)] for all x,y, z ∈ X.

Then D is called a b-metric. (X,D) is called a metric-type space or a b-metric space.

By weakening the equivalent condition d(x,y) = 0 in the definition of standard metric, Hitzler and
Seda [10] introduced the notion of dislocated metric which is reviewed as follows.

Definition 2.11. Let X be a nonempty set, the function Dd : X×X→ [0,+∞) satisfies:

(DM1) If Dd(x,y) = 0, then x = y for every (x,y) ∈ X×X;

(DM2) Dd(x,y) = D(y, x) for all x,y ∈ X;

(DM3) Dd(x, z) 6 D(x,y) +D(y, z) for all x,y, z ∈ X.

Then Dd is called a dislocated metric. (X,Dd) is called a dislocated metric space.

In 1950, Nakano introduced the notion of modular spaces as a generalization of metric spaces [17],
Chistyakov [3] defined the notion of modular metric spaces in which the metrics were generated by the
modular on modular spaces in 2010, the series of definitions are reviewed as follows (see also [12]).
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Definition 2.12. Let X be a linear space over R. A function m : X→ [0,+∞) is called a modular on X, if

(m1) m(x) = 0 iff x = 0,

(m2) m(−x) = m(x) holds for any x ∈ X,

(m3) m(ax+ by) 6 m(x) +m(y) for any (x,y) ∈ X×X,

where a,b ∈ R and a+ b = 1.

Definition 2.13. Let m : X→ [0,+∞) be a modular on X, we say the set

Xm =
{
x ∈ X : lim

κ→∞m(κx) = 0
}

,

is a modular space.

A sequence {xn}n∈N ⊂ Xm is said to be m-convergent to x ∈ Xm, if

lim
n→∞m(xnx) = 0.

There exists a metric Dm induced by the modular m of X and defined by

Dm : X×X→ [0,+∞),Dm(x,y) = m(x− y)

for any (x,y) ∈ X×X. (Xm,Dm) is called a modular metric space.

Definition 2.14. The modular m is said to has the Fatou property, if for any y ∈ Xm, we have

lim
n→∞m(xy) 6 lim inf

n→∞ m(xn − y),

where {xn}n∈N ⊂ Xm is m-convergent to x ∈ Xm.

The convergent and complete concepts in the b-metric spaces, the dislocated metric spaces, and the
modular metric space are similar to that of standard metric spaces, so we do not repeat them here.
Because all of the standard metrics d, the b-metrics D, the dislocated metrics Dd, and the modular
metrics Dm, where m is with Fatou property, are generalized metric (Ref. [12]), therefore as a corollary of
Proposition 2.4, the following statement is given.

Corollary 2.15. All of the standard metrics, the dislocated metrics, and the metrics Dm, which m are with Fatou
property, are re-defined generalized metric.

3. The fixed point theorem for the contraction mapping in the re-defined generalized metric space

In this section, first of all, let us review the definition of contraction mapping on the standard metric
space, and then we apply contraction mappings which, of course, is different from that on the standard
metric space due to the different metrics to the re-defined generalized metric space. Secondly, we present
a fixed point theorem on the re-defined generalized metric space and state that it applies to some special
re-defined generalized metric spaces mentioned in previous section. In addition, we have also provided
an example to support the conclusions of fixed point.

Let (X,d) be a metric space and f : X→ X a mapping. If f satisfies the condition

d(f(x), f(y)) 6 kd(x,y),

for all x,y ∈ X and for some 0 6 k < 1, then f is called a contraction.

Definition 3.1. Let f : X → X be a self-mapping of a re-defined generalized metric space X, O(x, f) =
{x, f(x), f2(x), . . .} is called the orbit of x.

Next let us state the fixed point theorem applied in re-defined generalized metric spaces.
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Theorem 3.2. Let (X,Dg,C,ϕ) be aDg-complete re-defined generalized metric space, and f : X→ X be a mapping
satisfying the conditions:

Dg(f(x), f(y)) 6 kDg(x,y), 0 6 k < 1,

and
sup
n

Dg(f
n(x), x) <∞, n ∈N,

for any x,y ∈ X. Then {fn(x0)}n∈N is a convergent sequence for each x0 ∈ X. In addition, if {fn(x0)}n∈N is
convergent to ζ uniquely, then f has a fixed point ζ. Moreover, if there exists another fixed point ζ∗ such that
sup
n

Dg(f
n(x0), ζ) <∞,n ∈N, then ζ∗ = ζ.

Proof. Let O(x, f) = {x, f(x), f2(x), . . .} be the orbit of x. Denote xn = fn(x), x0 = x. We will show the
sequence {xn}n∈N is a convergent sequence. For any xn+m, xn ∈ O(x, f) and m,n ∈N, we have

Dg(xn+m, xn) = Dg(f ◦ fm(xn−1), f(xn−1))

6 k(Dg(f
m(xn−1), xn−1))

= k(Dg(f ◦ fm(xn−2), f(xn−2)))

6 k2(Dg(f
m(xn−2), xn−2))

...
6 kn(Dg(f

m(x0), x0)),

hence, Dg(xn+m, xn) 6 kn sup
m

Dg(f
m(x0), x0), because sup

m

Dg(f
m(x0), x0) < ∞ and k ∈ [0, 1), then it

is obvious that Dg(xn+m, xn) → 0 as m,n → ∞, thus the sequence {xn}n∈N is Cauchy. Since X is
Dg-complete, then the limit ζ of the sequence {xn}n∈N belongs to X.

Next, let us prove that ζ is a fixed point of f. Because f is a contractive mapping for any n ∈ N,
therefore

Dg(f(ζ), fn+1(x0)) 6 kDg(ζ, fn(x0)),

it follows from fn(x0)
Dg−−→ ζ that fn(x0) converges to f(ζ). By the hypothesis of uniqueness of limit, we

have f(ζ) = ζ.
If there exists another fixed point ζ∗ such that sup

n

Dg(f
n(x0), ζ∗) <∞, then

Dg(ζ, ζ∗) = Dg(f(ζ), f(ζ∗)) 6 kDg(ζ, ζ∗) 6 kCϕ( lim
n→∞ sup

n

Dg(f
n(x0), ζ∗)).

Because ϕ(t) is continuous when t > 0 and sup
n

Dg(f
n(x0), ζ∗) <∞, therefore

kCϕ( lim
n→∞ sup

n

Dg(f
n(x0), ζ∗)) <∞.

Thus Dg(ζ, ζ∗) = Dg(f(ζ), f(ζ∗)) 6 kDg(ζ, ζ∗) < ∞ which implies Dg(ζ, ζ∗) = 0. Using the property
(RGM1), we obtain ζ∗ = ζ.

Example 3.3. Let us review Example 2.7. For X = {1 −
1
n

: n ∈ Z+}∪ {1, 2}, the metrics between elements
are listed as follows:

Dg(x,y) = |x− y|, x,y ∈ {1 −
1
n

: n ∈ Z+},

Dg(x, 1) = Dg(1, x) = |x− 1|, x ∈ {1 −
1
n

: n ∈ Z+},

Dg(x, 2) = Dg(2, x) = |x− 2|, x ∈ {1 −
1
n

: n ∈ Z+},

Dg(1, 1) = 0,Dg(2, 2) = 1,Dg(1, 2) = Dg(2, 1) = 5.
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It is easy to see that there exist two Cauchy sequences {1 −
1
n
}n∈Z+ and {xn = 1}n∈Z+ in X, while others

are the sub-sequence of {1 −
1
n
}n∈Z+ , all the Cauchy sequences converge to 1 ∈ X, thus (X,Dg,C,ϕ) be a

Dg-complete re-defined generalized metric space. Define the mapping

f(1 −
1
n
) = 1 −

1
2(n+ 1)

,n ∈ Z+, f(1) = 1, f(2) = 1.

By a simple calculation, one can show

Dg(f(1 −
1
m

), f(1 −
1
n
)) =

|m−n|

2(m+ 1)(n+ 1)
, m,n ∈ Z+,

Dg(f(1), f(1)) = Dg(f(2), f(2)) = Dg(f(1), f(2)) = 0,

Dg(f(1), f(1 −
1
n
)) = Dg(f(2), f(1 −

1
n
)) =

1
2(n+ 1)

, n ∈ Z+.

It can be verified that when we choose
1
2

6 k < 1, the following inequality will be satisfied for any
x,y ∈ X.

Dg(f(x), f(y)) 6 kDg(x,y).

If we choose x = 1 −
1
m

for every fixed m ∈N, then when n→∞,

fn(1 −
1
m

) = 1 −
1

2n(m+ 1) + 2n
Dg−−→ 1.

In addition, it is clear that

Dg(f
n(x), x) =

|2n(m+ 1) + 2n−m|

(2n(m+ 1) + 2n)m
<∞, n ∈ Z+,

for fixed m ∈ Z+, thus sup
n

Dg(f
n(x), x) <∞,n ∈ Z+.

Similarly, one can verify that whether x = 1 or x = 2, the facts

fn(x)
Dg−−→ 1 and sup

n

Dg(f
n(x), x) <∞

hold. All conditions of Theorem 3.2 are met in term of this example. As we have seen, there is really a
unique fixed point 1 ∈ X.

Lemma 3.4. Let (X,Dg,C,ϕ) be a Dg-complete re-defined generalized metric space, and f : X→ X be a mapping
satisfying the condition:

Dg(f(x), f(y)) 6 kDg(x,y), 0 6 k < 1.

If
sup
n

Dg(f
n(x), x) <∞, n ∈N,

holds for any x,y ∈ X, then

δ(Dg, f, x) = sup{Dg(fi(x), fj(x)), i, j ∈N} <∞.

In this case, it has been shown that {fn(x0)}n∈N is a convergent sequence for each x0 ∈ X and if {fn(x0)}n∈N

is convergent to ζ uniquely, f has a fixed point ζ. Moreover, if there exists another fixed point ζ∗ such that
sup
n

Dg(f
n(x0), ζ∗) <∞,n ∈N, then Dg(ζ, ζ∗) <∞.
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Proof. There exists O(x, f) for every x ∈ X such that x ∈ O(x, f), the condition sup
m

D(fm(x), x) <∞ implies

sup
m

D(fm(xn), xn) = sup
m

D(fn+m(x), fn(x)) <∞,

for every fixed n ∈N and all m ∈N, hence

δ(Dg, f, x) = sup{Dg(fi(x), fj(x)), i, j ∈N} <∞.

If there exists another fixed point ζ∗ such that sup
n

Dg(f
n(x0), ζ∗) <∞, then by (RGM3),

Dg(ζ, ζ∗) 6 Cϕ( lim
n→∞ sup

n

Dg(f
n(x0), ζ∗)).

Because ϕ(t) is continuous when t > 0 and sup
n

Dg(f
n(x0), ζ∗) <∞, therefore

Cϕ( lim
n→∞ sup

n

Dg(f
n(x0), ζ∗)) <∞.

Lemma 3.5 ([12]). Let (X,D) be a generalized metric space and {xn} be a sequence in X, (x,y) ∈ X×X. If {xn} is
D-convergent in X, then the limit is unique.

The subsequent corollary (Jleli and Samet, ref. Theorem 3.3 in [12]) is an immediate consequence of
of Proposition 2.4, Theorem 3.2, Lemma 3.5, and Lemma 3.4.

Corollary 3.6. Let (X,D) be a D-complete generalized metric space, and f : X → X be a mapping satisfying the
conditions:

D(f(x), f(y)) 6 kD(x,y), 0 6 k < 1,

and
δ(D, f, x) = sup{Dg(fi(x), fj(x)), i, j ∈N} <∞,

for any x,y ∈ X. Then f has a fixed point ζ and fn(x0) converges to ζ for each x0 ∈ X. If there exists another fixed
point ζ∗ such that D(ζ, ζ∗) <∞,n ∈N, then ζ∗ = ζ.

Because all of the standard metrics d, the b-metrics D, the dislocated metrics Dd, and the modu-
lar metrics Dm, where m is with Fatou property, are generalized metric ([12]), the subsequent several
corollaries can be derived directly from Corollary 2.15 and Corollary 3.6.

Corollary 3.7. Let (X,d) be a complete b-metric space, and f : X→ X be a mapping satisfying the conditions:

d(f(x), f(y)) 6 kd(x,y), 0 6 k < 1,

and
sup
n

d(fn(x), x) <∞, n ∈N,

for any x,y ∈ X. Then f has a fixed point ζ and fn(x0) converges to ζ for each x0 ∈ X. If there exists another fixed
point ζ∗ such that sup

n

d(fn(x0), ζ∗) <∞,n ∈N, then ζ∗ = ζ.

Corollary 3.8. Let (X,D) be a complete b-metric space, and f : X→ X be a mapping satisfying the conditions:

D(f(x), f(y)) 6 kD(x,y), 0 6 k < 1,

and
sup
n

D(fn(x), x) <∞, n ∈N,

for any x,y ∈ X. Then f has a fixed point ζ and fn(x0) converges to ζ for each x0 ∈ X. If there exists another fixed
point ζ∗ such that sup

n

D(fn(x0), ζ∗) <∞,n ∈N, then ζ∗ = ζ.
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Corollary 3.9. Let (X,Dd) be a complete dislocated metric space, and f : X → X be a mapping satisfying the
conditions:

Dd(f(x), f(y)) 6 kDd(x,y), 0 6 k < 1,

and
sup
n

Dd(f
n(x), x) <∞, n ∈N,

for any x,y ∈ X. Then f has a fixed point ζ and fn(x0) converges to ζ for each x0 ∈ X. If there exists another fixed
point ζ∗ such that sup

n

Dd(f
n(x0), ζ∗) <∞,n ∈N, then ζ∗ = ζ.

Corollary 3.10. Let (X,Dm) be a complete modular space with Fatou property, and f : X → X be a mapping
satisfying the conditions:

Dm(f(x), f(y)) 6 kDm(x,y), 0 6 k < 1,

and
sup
n

Dm(f
n(x), x) <∞, n ∈N,

for any x,y ∈ X. Then f has a fixed point ζ and fn(x0) converges to ζ for each x0 ∈ X. If there exists another fixed
point ζ∗ such that sup

n

Dm(f
n(x0), ζ∗) <∞,n ∈N, then ζ∗ = ζ.

4. The fixed point theorem related to Ćirić-Maiti-Pal orbit mapping of contractive type in re-defined
generalized metric spaces

Wong [26] and Guseman [9] have studied the mappings which are contractive over an orbit. Here we
apply such mappings into the re-defined generalized metric spaces.

Definition 4.1. Let f : X → X be a self-mapping of a re-defined generalized metric space X, O(x, f) is the
orbit of x. The closure of O(x, f) will be denoted by O(x, f). The space X is said to be f-orbitally complete,
if every Cauchy sequence contained in O(x, f) converges in X, for all x ∈ X.

In 1974, Ćirić [4] defined quasi-contractive mappings and stated some fixed point results in which
it has shown that the condition of quasi-contractivity implies all conclusions of Banach’s contraction
principle. The definition was extended by Pal and Maiti [20] subsequently and the following mapping of
contractive type was presented.

Let X denote a complete metric space with metric d, and f a function mapping X into itself. There
exists a constant h, 0 < h < 1, such that for each x,y ∈ X, the following is true:

d(f(x), f(y)) 6 hmax
{
d(x,y),d(x, f(y)),d(y, f(y)),

1
2

[
d(x, f(y)) + d(y, f(x))

]}
,

here we extend it to the Ćirić-Maiti-Pal orbit mapping of contractive type which is shown as follows.

Definition 4.2. Let f : X → X be a map on a re-defined generalized metric space (X,Dg,C,ϕ) and X is
f-orbitally complete. If there exists an element x ∈ X such that for any elements u, v ∈ O(x, f), u and v do
not belong to O(x, f)\O(x, f) together and there exists 0 < α < 1, the following is true:

Dg(f(u), f(v)) 6 αmax
{
Dg(u, v),Dg(u, f(u)),Dg(v, f(v)),

1
2

[
Dg(u, f(v)) +Dg(v, f(u))

]}
, (4.1)

then f is called a Ćirić-Maiti-Pal orbit mapping of contractive type.

Theorem 4.3. Let f : X → X be a Ćirić-Maiti-Pal orbit mapping of contractive type on a re-defined generalized
metric space (X,Dg,C,ϕ) and X is f-orbitally complete, that is, there exists an element x ∈ X such that for any
elements u, v ∈ O(x, f), u and v do not belong to O(x, f)\O(x, f) together and there exists 0 < α < 1, the following
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inequality holds:

Dg(f(u), f(v)) 6 αmax
{
Dg(u, v),Dg(u, f(u)),Dg(v, f(v)),

1
2

[
Dg(u, f(v)) +Dg(v, f(u))

]}
,

then we have the following results:
If sup

n

D(fn(x), x) < ∞ for all x ∈ X, then {fn(x0)}n∈N is convergent to some ζ. Moreover, let M be an

associated number of ϕ, if {fn(x0)}n∈N is convergent to ζ uniquely and CMα < 1, then ζ is a fixed point of f.

Proof. For x ∈ O(x, f), the condition sup
m

D(fm(x), x) <∞ implies

sup
m

D(fm(xn), xn) = sup
m

D(fn+m(x), fn(x)) <∞,

for every fixed n ∈N and all m ∈N. Hence

sup
m1,m2

D(fm1(xn), fm2(xn)) = sup
m1,m2

D(fn+m1(x), fn+m2(x)) <∞,

for all n,m1,m2 ∈ N. We denote sup
m1,m2

D(fm1(xn), fm2(xn)) by Bn(x, f) for every fixed n ∈ N and all

m1,m2 ∈ N. Because f is a Ćirić-Maiti-Pal orbit mapping of contractive type, then for every fixed n ∈ N

and all m1,m2 ∈N, we have

Dg(f
m1(xn+1), fm2(xn+1)) = Dg(f(xn+m1), f(xn+m2))

6 αmax
{
Dg(xn+m1 , xn+m2),Dg(xn+m1 , f(xn+m1)),Dg(xn+m2 , f(xn+m2)),

1
2

[
Dg(xn+m1 , f(xn+m2)) +Dg(xn+m2 , f(xn+m1))

]}
6 αmax

{
Dg(f

m1(xn), fm2(xn)),Dg(fm1(xn), fm1+1(xn)),Dg(fm2(xn),

fm2+1(xn)),
1
2

[
Dg(f

m1(xn), fm2+1(xn)) +Dg(f
m2(xn), fm1+1(xn))

]}
.

Note that
sup
m1,m2

Dg(f
m1(xn), fm2+1(xn)) = sup

m1,m2

Dg(f
m2(xn), fm1+1(xn)),

then
sup
m1,m2

Dg(f
m1(xn+1), fm2(xn+1)) 6 α sup

m1,m2

Dg(f
m2(xn), fm1(xn)),

that is,
Bn+1(x, f) 6 αBn(x, f),

for all n ∈N. Subsequently,

Dg(f
n(x), fn+m(x)) 6 Bn(x, f) 6 αnB0(x, f).

Because α ∈ (0, 1) and B0(x, f) is bounded, therefore Dg(fn(x), fn+m(x)) → 0 when n → ∞, which
implies that {fn(x)}n∈N is Cauchy. On the other hand, since X be f-orbitally complete, then the limit ζ of
the sequence {fn(x)}n∈N belongs to X.

Next, let us prove that ζ is a fixed point of f.
If Dg(ζ, f(ζ)) = 0, then it is obvious from (RGM1) that f(ζ) = ζ.
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If Dg(ζ, f(ζ)) > 0, using (RGM3), one can obtain that

Dg(ζ, f(ζ)) 6 Cϕ
(

lim sup
n→∞ Dg(f

n(x0), f(ζ))
)
. (4.2)

Hence

Dg(f
n(x0), f(ζ)) 6 αmax

{
Dg(f

n−1(x0), ζ),Dg(fn−1(x0), fn(x0)),Dg(ζ, f(ζ)),

1
2

[
Dg(f

n−1(x0), f(ζ)) +Dg(ζ, fn(x0))
]}

,

holds for every positive number n. Taking upper limits on the both sides of the inequality,

lim sup
n→∞ Dg(f

n(x0), f(ζ)) 6 αmax
{

lim sup
n→∞ Dg(f

n−1(x0), ζ), lim sup
n→∞ Dg(f

n−1(x0), fn(x0)),

Dg(ζ, f(ζ)),
1
2

[
lim sup
n→∞ Dg(f

n−1(x0), f(ζ)) + lim sup
n→∞ Dg(ζ, fn(x0))

]}
.

Because {fn(x0)}n∈N is a Cauchy sequence and converges to ζ, therefore

lim sup
n→∞ Dg(f

n−1(x0), fn(x0)) = lim sup
n→∞ Dg(ζ, fn(x0)) = 0,

hence

lim sup
n→∞ Dg(f

n(x0), f(ζ)) 6 αmax
{
Dg(ζ, f(ζ)),

1
2

lim sup
n→∞ Dg(f

n(x0), f(ζ))
}

.

If

αmax
{
Dg(ζ, f(ζ)),

1
2

lim sup
n→∞ Dg(f

n−1(x0), f(ζ))
}

= αDg(ζ, f(ζ)),

in combination with inequality (4.2) and RGM3, we obtain that

Dg(ζ, f(ζ)) 6 Cϕ
(

lim sup
n→∞ Dg(f

n(x0), f(ζ))
)

6 Cϕ(αDg(ζ, f(ζ))),
6 CMαDg(ζ, f(ζ)),

it follows from CMα < 1 that Dg(ζ, f(ζ)) = 0, which contradicts Dg(ζ, f(ζ)) > 0, so

lim sup
n→∞ Dg(f

n(x0), f(ζ)) 6 αmax
{
Dg(ζ, f(ζ)),

1
2

lim sup
n→∞ Dg(f

n(x0), f(ζ))
}

=
α

2
lim sup
n→∞ Dg(f

n(x0), f(ζ)),

then from 0 < α < 1,
lim sup
n→∞ Dg(f

n(x0), f(ζ)) = 0,

thus, {fn(x0)}n∈N converges to f(ζ), by the hypothesis of uniqueness of limit, we have f(ζ) = ζ.

Remark 4.4. It is worth noting that in Theorem 4.3, the re-defined generalized metric space (X,Dg,C,ϕ) is
not necessarily complete, but merely f-orbitally complete. The contractive condition (4.1) of Theorem 4.3
only holds at points in the closure of the orbit of x for some point x ∈ X, rather than for all x,y ∈ X.

Example 4.5. Let X = {1 −
1
p

, 3 −
1
q

, 5 −
1
r
: p,q, r ∈ Z+}∪ {1, 3, 7}, we denote

X1 = {1 −
1
p

, 3 −
1
q

, 5 −
1
r
: p,q, r ∈ Z+},
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and define the distances

Dg(x,y) = |x− y|, x,y ∈ X1,
Dg(x, 1) = Dg(1, x) = |x− 1|, x ∈ X1,
Dg(x, 3) = Dg(3, x) = |x− 3|, x ∈ X1,
Dg(x, 7) = Dg(7, x) = |x− 7|, x ∈ X1,
Dg(1, 1) = 1,Dg(3, 3) = 0,Dg(1, 3) = Dg(3, 1) = 1,
Dg(7, 7) = 7,Dg(3, 7) = Dg(7, 3) = 5,Dg(1, 7) = Dg(7, 1) = 3.

We can verify that (X,Dg,C,ϕ) is a re-defined generalized metric space when taking C = 2,

ϕ(t) =

{
et − 1, t ∈ [0, 1),
(e− 1)t, t ∈ [1,+∞),

and M = e− 1. In addition, the conditions (RGM1) and (RGM2) are obviously satisfied. However, it is
demonstrated that (X,Dg,C,ϕ) is not a Dg-complete re-defined generalized metric space since the fact

that the Cauchy sequence {5 −
1
n
}n∈Z+ converges to 5 /∈ X.

Define the mapping

f(1) = 1, f(3) = 3, f(7) = 3, f(1 −
1
p
) = 1 −

1
40(p+ 1)

,

f(3 −
1
q
) = 3 −

1
40(q+ 1)

, f(5 −
1
r
) = 3 −

1
40(r+ 1)

,

for any p,q, r ∈ Z+.
By a simple calculation, one can show that for any m,n ∈ Z+,

Dg(f(1), f(1)) = 1, Dg(f(3), f(3)) = 0, Dg(f(1), f(3)) = 1,
Dg(f(7), f(7)) = 0, Dg(f(7), f(3)) = 3, Dg(f(7), f(1)) = 1,

Dg(f(1), f(1 −
1
n
)) = Dg(f(3), f(3 −

1
n
)) = Dg(f(7), f(3 −

1
n
)) =

1
40(n+ 1)

,

Dg(f(1), f(3 −
1
n
)) = Dg(f(3), f(1 −

1
n
)) = Dg(f(7), f(1 −

1
n
)) = 2 −

1
40(n+ 1)

,

Dg(f(1), f(5 −
1
n
)) = 2 −

1
40(n+ 1)

,

Dg(f(3), f(5 −
1
n
)) = Dg(f(7), f(5 −

1
n
)) =

1
40(n+ 1)

,

Dg(f(l1 −
1
m

), f(l2 −
1
n
)) =

|m−n|

40(m+ 1)(n+ 1)
, l1 = l2 ∈ {1, 3, 5},

Dg(f(l1 −
1
m

), f(l2 −
1
n
)) = |l1 − l2|−

|m−n|

40(m+ 1)(n+ 1)
, l1 6= l2, l1, l2 ∈ {1, 3, 5},

which implies f is not a mapping of contractive type. In fact, one can observe that

Dg(f(1), f(3 −
1
n
)) = 2 −

1
40(n+ 1)

> Dg(1, 3 −
1
n
) = 2 −

1
n

.

But we can verify subsequently that f is a Ćirić-Maiti-Pal orbit mapping of contractive type. Let us
consider the orbit

O(1 −
1
m

, f) =
{

1 −
1
m

, f(1 −
1
m

), f2(1 −
1
m

), . . . , fn(1 −
1
m

), . . .
}

,

for every fixed m ∈ Z+, where

fn(1 −
1
m

) = 1 −
1

40n(m+ 1) + 40n
.
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In term of ϕ, C and M mentioned above in this example, we can choose α, 0 < α < 1 such that CMα < 1,

when u, v ∈ O(1 −
1
m

, f) and u and v do not belong to O(1 −
1
m

, f)\O(1 −
1
m

, f) at the same time, the
following inequality is true:

Dg(f(u), f(v)) 6 αmax
{
Dg(u, v),Dg(u, f(u)),Dg(v, f(v)),

1
2

[
Dg(u, f(v)) +Dg(v, f(u))

]}
.

So, it suffices to show that the orbit O(1 −
1
m

, f) satisfies the condition sup
n

D(fn(1 −
1
m

), 1 −
1
m

) <∞. In

addition, one can see that fn(1−
1
m

)
Dg−−→ 1 which implies the element 1 is a fixed point of f from Theorem

4.3. Similarly, if we consider another orbit O(3 −
1
m

, f) for every fixed m ∈ Z+, then one can derive that

the element 3 ∈ X is a fixed point of f. Moreover, the orbit O(7, f) = {7, 3 = f(7), 3 = f2(7), . . .} satisfies the
conditions of Theorem 4.3, it can also be demonstrated that the element 3 is a fixed point of f. Our results
are verified and explained well by this example.

Remark 4.6. Under the conditions of Theorem 4.3, the fixed point of Ćirić-Maiti-Pal orbit mapping of
contractive type is not necessarily unique, which can be verified from Example 4.5. This is because, as
remarked in Remark 4.4, the contractive conditions (4.1) of Theorem 4.3 only hold at points in the closure
of the orbit of x for some point x ∈ X, rather than for all x,y ∈ X.

If the contractive condition (4.1) holds for all u, v ∈ X, then the following theorem can be stated.

Theorem 4.7. Let f be a mapping of contractive type satisfying the contraction condition

Dg(f(u), f(v)) 6 αmax
{
Dg(u, v),Dg(u, f(u)),Dg(v, f(v)),

1
2

[
Dg(u, f(v)) +Dg(v, f(u))

]}
,

for all u, v ∈ X in the setting of a re-generalized metric space (X,Dg,C,ϕ) and X isDg-complete,M is an associated
number of ϕ, O(x, f) is the orbit of x, and xn = fn(x) ∈ O(x, f), then we have the following results:

If sup
n

D(fn(x), x) < ∞ for all x ∈ X, then {fn(x0)}n∈N is convergent to some ζ. In addition, if {fn(x0)}n∈N

is convergent to ζ uniquely and CMα < 1, then ζ is a fixed point of f. Moreover, if there exists another fixed point
ζ∗ such that sup

n

Dg(f
n(x0), ζ∗) <∞,n ∈N, then ζ∗ = ζ.

Proof. We check the sequence {xn}n∈N for every x ∈ O(x, f), it can be obtained that {xn}n∈N is a Cauchy
sequence as proved in Theorem 4.3. Because X is Dg-complete implies that X is f-orbitally complete and
there is always the orbit of x for all x ∈ X, which implies the conditions of Theorem 4.3 are met, therefore
f has a fixed point ζ (see the proof of Theorem 4.3), so we need only prove that the fixed point of f is
unique. Suppose that f has another fixed point ζ∗ such that sup

n

Dg(f
n(x0), ζ∗) <∞, then by (RGM3),

Dg(ζ, ζ∗) 6 Cϕ(lim sup
n→∞ Dg(f

n(x0), ζ∗)).

Because ϕ(t) is continuous when t > 0 and sup
n

Dg(f
n(x0), ζ∗) <∞, therefore

Cϕ( lim
n→∞ sup

n

Dg(f
n(x0), ζ∗)) <∞,

that is, Dg(ζ, ζ∗) <∞. On the other hand,

Dg(ζ, ζ∗) = Dg(f(ζ), f(ζ∗))

6 αmax
{
Dg(ζ, ζ∗),Dg(ζ, f(ζ)),Dg(ζ∗, f(ζ∗)),

1
2

[
Dg(ζ, f(ζ∗))
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+Dg(ζ
∗, f(ζ))

]}
,

= αmax
{
Dg(ζ, ζ∗),Dg(ζ, ζ),Dg(ζ∗, ζ∗)

}
.

Similarly, Dg(ζ, ζ) 6 αmax{Dg(ζ, ζ)} = αDg(ζ, ζ), because sup
n

Dg(f
n(x), x) <∞, it is derived Dg(ζ, ζ) =

Dg(ζ, f(ζ)) < ∞, hence Dg(ζ, ζ) = 0 since Dg(ζ, ζ) 6 αDg(ζ, ζ) and 1 < α < 1. In the same way, one can
obtain Dg(ζ∗, ζ∗) = 0, thus the inequality

Dg(ζ, ζ∗) 6 αDg(ζ, ζ∗)

holds. Consequently, Dg(ζ, ζ∗) = Dg(f(ζ), f(ζ∗)) 6 αDg(ζ, ζ∗) < ∞ which implies Dg(ζ, ζ∗) = 0. Using
the property (RGM1), we obtain ζ∗ = ζ.
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