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Abstract
In this paper, we introduce α-ψ-φ-Jachymski contractive mappings with generalized altering distance functions in the

setting of quasi-metric spaces. Some theorems on the existence and uniqueness of fixed points for such mappings via admissible
mappings are established. Utilizing above abstract results, we derive common fixed point theorem for two operators and
multidimensional fixed point results for nonlinear mappings satisfying different kinds of contractive conditions on partially
ordered metric spaces. Moreover, we present some examples and applications in a Fredholm integral equation and an initial
value problem for partial differential equation of parabolic type. c©2017 All rights reserved.
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1. Introduction

One of the generalizations of metric spaces is the so-called quasi-metric spaces in which the commu-
tativity condition does not hold in general [1, 2, 11, 17, 19]. Park [19] extended the notion of w-distance to
quasi-metric spaces and obtained far-reaching generalized forms of Ekeland’s principle and its six equiv-
alents. Al-Homidan et al. [2] introduced the concept of Q-function defined on a quasi-metric space as a
generalization of w-distances, and then established a Caristi-Kirk-type fixed point theorem, a Takahashi
minimization theorem, and versions of Ekeland’s principle in the setting of quasi-metric space with a
Q-function, generalizing the main results of [19]. This approach has been continued by Marı́n et al. [17].
We would like to mention the result of Alegre [1]. In [1], Alegre et al. obtained a fixed point theorem for
generalized contractions on complete quasi-metric spaces, which involves w-distances and functions of
Meir-Keeler and Jachymski type. They established the following result.

Theorem 1.1 ([1]). Let F be a self-map of a complete quasi-metric space (X,d). If there exist a w-distance p on
(X,d) and a Jachymski function φ : [0,+∞)→ [0,+∞) such that φ(t) < t for all t > 0, and

p(Fx, Fy) 6 φ(p(x,y)) (1.1)

for all x, y ∈ X, then F has a unique fixed point x ∈ X. Moreover, p(x, x) = 0.
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In recent years, the method of α-admissible mappings has been effectively used for proving the exis-
tence and uniqueness of fixed points for contractive operators on complete metric spaces. In 2012, Samet
et al. [24] introduced the concepts of α-admissible mappings as follows:

Definition 1.2 ([24]). Let F : X → X and α : X× X → [0,+∞) be two given mappings. Then F is called an
α-admissible mapping if

x, y ∈ X, α(x,y) > 1 =⇒ α(Fx, Fy) > 1.

Samet et al. [24] established various fixed point theorems for α-ψ-contractive mappings satisfying α-
admissibility condition in complete metric spaces. Furthermore, Alsulami et al. [4] gave the definition
of a class of α-admissible contraction via altering distance function. The results were reconsidered in
the context of partially ordered metric spaces and applied to boundary value problems for differential
equations with periodic boundary conditions. Very recently, Lakzian et al. [13] introduced the new
concept of generalized α-ψ-contractive mappings in the setting of w-distances and proved some new
fixed point results for such mappings which generalize fixed point theorems by Samet et al. [24].

On the other hand, there was much attention focused on Meir-Keeler contractive mappings with α-
admissible conditions. Karapinar et al. [12] discussed an α-ψ-Meir Keeler contractive mapping in the
setting of complete metric spaces via a triangular α-admissible mapping.

Definition 1.3 ([12]). A mapping F : X → X is called triangular α-admissible if it is α-admissible and
satisfies

α(x,y) > 1 and α(y, z) > 1 implies α(x, z) > 1,

where x, y, z ∈ X and α : X×X→ [0,+∞) is a given function.

Subsequently, Alsulami et al. [3] investigated the existence of fixed points of Meir-Keeler type con-
tractions defined on quasi-metric spaces and applied their results to G-metric spaces. They studied α-
admissible Meir-Keeler contractions which can be regarded as generalizations of the Meir-Keeler contrac-
tions defined in [18]. In essence, the authors of [3, 12] inserted α-admissibility into the definition of the
original Meir-Keeler contraction.

Definition 1.4 ([3]). Let (X,d) be a quasi-metric space, and T : X → X be a triangular α-admissible
mappings. Suppose that for every ε > 0 there exists δ > 0 such that

ε 6 d(x,y) < ε+ δ implies α(x,y)d(Tx, Ty) < ε (1.2)

for all x, y ∈ X. Then T is called an α-admissible-Meir-Keeler contractive mapping.

It is known that common fixed point (and coincidence point) theorems are generalizations of fixed
point theorems. However, Haghi et al. [8] proved that some generalizations in fixed point theory are
not real generalizations. Moreover, Rosa and Vetro [14] established some common fixed point theorems
for a large class of α-ψ-ϕ-contractions in generalized metric spaces. The purpose of this paper is to
prove some fixed point theorems with respect to w-distances in quasi-metric spaces employing general-
ized altering distance functions and the notation of a function involving Jachymski type. It should be
noted that coupled fixed point theorems of mappings satisfying certain α-admissible conditions can be
ascribed to the corresponding fixed point results of dimension one. It is natural to apply our theorems to
multidimensional fixed points results and common fixed point for multiple operators [5, 6, 21–23].

2. Preliminaries

Before presenting our results, we collect relevant definitions and results which will be needed in the
proof of our main results.

Denote with N the set of positive integers. Given a quasi-metric d on X, the function d−1 de-
fined by d−1(x,y) = d(y, x) for all x, y ∈ X, is also a quasi-metric on X, and the function ds(x,y) =
max{d(x,y),d(y, x)} for all x, y ∈ X, is a metric on X.
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Definition 2.1 ([14]). Let T , S : X → X and α : X× X → R. The mapping T is S-α-admissible if, for all
x, y ∈ X such that α(Sx,Sy) > 1, we have α(Tx, Ty) > 1. If S is the identity mapping, then T is called
α-admissible.

Lemma 2.2 ([1]). If q is a w-distance on a quasi-metric space (X,d), then for each ε > 0 there exists δ > 0 such
that q(x,y) 6 δ and q(x, z) 6 δ imply ds(y, z) 6 ε.

Definition 2.3 ([1]). A function p : X× X → [0,+∞) is said to be a w-distance on a quasi-metric space
(X,d) if it satisfies the following conditions:

(W1) p(x, z) 6 p(x,y) + p(y, z) for any x, y, z ∈ X;

(W2) p(x, ·) : X→ [0,+∞) is lower semi-continuous on (X, τd−1) for all x ∈ X;

(W3) for each ε > 0 there exists δ > 0 such that p(x,y) 6 δ and p(x, z) 6 δ imply d(y, z) 6 ε.

Definition 2.4 ([20]). A self-mapping T on a metric (X,d) is said to be asymptotically regular if

lim
n→∞d(Tnx, Tn+1x) = 0 for each x ∈ X.

Definition 2.5. A function φ(t) : [0,+∞) → [0,+∞) is said to be a generalized altering distance function
if it satisfied the following conditions:

(a) φ is non-decreasing;
(b) φ = 0 if and only if t = 0.

Definition 2.6 ([1, 9]). A Jachymski function is a function ψ : [0,+∞)→ [0,+∞) which satisfies:

(a) ψ(0) = 0;
(b) for every ε > 0 there exists δ > 0 such that for any t ∈ [0,+∞),

ε < t < ε+ δ implies ψ(t) 6 ε.

Lemma 2.7 ([12]). Let T be triangular α-admissible mapping. Assume that there exists x0 ∈ X such that
α(x0, Tx0) > 1. Define sequence {xn} by xn = Tnx0. Then

α(xm, xn) > 1 for all m, n ∈N with m < n.

Definition 2.8 ([10]). Let (X,d) be a metric space, and let S, T : X → X be maps. Then S and T are called
weakly comparable if STx = TSx, whenever Sx = Tx.

Lemma 2.9 ([8]). Let X be a nonempty set and T : X → X be a function. Then there exists a subset E ⊆ X such
that T(E) = T(X) and T : E→ X is one-to-one.

Definition 2.10 ([21, 23]). An ordered metric space (X,d,�) is said to have the sequential monotone
property if it satisfies:

(i) if {xm} is a non-increasing sequence and {xm}→ x, then xm � x for all m;
(ii) if {ym} is a non-decreasing sequence and {ym}→ y, then ym � y for all m.

Now, we denote
ΩA,B = {ρ : Λn → Λn : ρ(A) ⊆ A and ρ(B) ⊆ B},

and
Ω ′A,B = {ρ : Λn → Λn : ρ(A) ⊆ B and ρ(B) ⊆ A},

where Λn = {1, 2, · · · ,n}, A and B are non-empty sets with A∪B = Λn and A∩B = ∅.
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If (X,�) is a partially ordered space, x, y ∈ X, and i ∈ Λn, we will use the following notation:

x �i y ⇐⇒
{
x � y, if i ∈ A,
x � y, if i ∈ B.

The product space Xn is endowed with the following partial order:
for X = (x1, x2, · · · , xn), Y = (y1,y2, · · · ,yn) ∈ Xn,

X v Y ⇐⇒ xi �i yi, for all i ∈ Λn.

Definition 2.11 ([21, 23]). Let (X,�) be a partially ordered space. We say F : Xn → X has the mixed
monotone property with respect to the partition {A,B} if F is non-decreasing in arguments of A and
non-increasing in arguments of B, i.e., for all x1, x2, · · · , xn, y, z ∈ X and all i ∈ Λn,

y � z =⇒ F(x1, · · · , xi−1,y, xi+1, · · · , xn) �i F(x1, · · · , xi−1, z, xi+1, · · · , xn).

Let σ1, σ2, · · · ,σn : Λn → Λn be n mappings from Λn into itself and let Υ be the n-tuple
(σ1, σ2, · · · ,σn).

Definition 2.12 ([21, 23]). A point (x1, x2, · · · , xn) ∈ Xn is called a Υ-fixed point of the mapping F if

F(xσi(1), xσi(2), · · · , xσi(n)) = xi for all i ∈ Λn.

3. Main results

Theorem 3.1. Let T be a triangular α-admissible and asymptotically regular mapping of a complete quasi-metric
space (X,d). Suppose that there exists a w-distance p on (X,d) such that

α(x,y)ψ(p(Tx, Ty)) 6 φ(D(x,y)) (3.1)

for all x, y ∈ X, where
D(x,y) = p(x,y) + γp(x, Tx), γ > 0, (3.2)

ψ is a generalized altering distance function, and φ : [0,+∞) → [0,+∞) is a Jachymski function such that
φ(t) < ψ(t) for all t > 0. Furthermore, the following condition is satisfied

(H) If {xn} is a sequence in X such that xn → x ∈ X as n → ∞ and α(xn, xn+1) > 1 for all n > 1, then there
exists a subsequence {xnk} of {xn} for which α(xnk , x) > 1, k > 1.

If there exists x0 ∈ X such that α(x0, Tx0) > 1, then T has a fixed point.

Proof. Let xn+1 = Txn, n = 0, 1, 2, · · · . Since α(x0, Tx0) > 1, it follows from Definition 1.3 that α(Tn−1x0,
Tnx0) > 1. By (3.1), we deduce that

ψ(p(xn+1, xn+2)) 6 α(xn, xn+1)ψ(D(Txn, Txn+1)) 6 φ(D(xn, xn+1)). (3.3)

First, we shall prove that {xn} is a Cauchy sequence in (X,ds).
To this end put rn = p(xn, xn+1), n = 0, 1, 2, · · · . Since T is asymptotically regular, then rn → 0 (n→∞).
If there is n0 ∈ N such that rn0 = 0, then rn = 0 for all n > n0, by (3.3), Definition 2.5, and

our assumption that φ(0) = 0. Therefore p(xi, xj) = 0 whenever j > i > n0 by condition (W1), and
consequently, ds(xi, xj) = 0 by Lemma 2.2. Otherwise, noting the increasing property of ψ, we have that
the sequence {rn} is non-increasing and, consequently, there exists r > 0 such that rn → r+ as n→∞. If
r > 0, there exists δ = δ(r) such that ψ(r) < t < ψ(r) + δ implies φ(t) 6 ψ(r). Take Nδ ∈ N such that
rn < ψ(r) + δ for all n > Nδ. Therefore φ(rn) 6 ψ(r), so by (3.3), we derive that

ψ(rn+1) 6 φ(rn) 6 ψ(r).



Y. Sang, J. Nonlinear Sci. Appl., 10 (2017), 1377–1398 1381

Since ψ is increasing, we have that rn+1 6 r for all n > Nδ, a contradiction. Consequently, r = 0.
Now choose an arbitrary ε > 0. There exists δ = δ(ε) with δ ∈ (0, ε), for which condition (W3) and

Definition 2.6 hold. For δ1 = δ1(ε)(δ1 ∈ (0, δ2 )) there exists µ = µ(δ1) with µ ∈ (0, δ1) such that p(x,y) 6 µ
and p(x, z) 6 µ imply d(y, z) 6 δ1, and for each t > 0, δ1 < t < δ1 + µ implies φ(t) 6 ψ(δ1).

Since rn → 0 (n→∞), there exists N0 ∈N such that rn < µ
1+γ for all n > N0.

In the following, we shall show that for each n ∈N, we have

p(xk, xn+k) < δ1 +
µ

1 + γ
. (3.4)

Indeed, fix k > N0. Since p(xk, xk+1) <
µ

1+γ , (3.4) follows for n = 1.
Assume that (3.4) holds for some n ∈N. We shall distinguish two cases.

Case 1. D(xk, xn+k) > δ1.
By Lemma 2.7, we know that α(xk, xn+k) > 1, k = 0, 1, 2, · · · , n = 1, 2, · · · . Note that

D(xk, xn+k) = p(xk, xn+k) + γp(xk, xk+1) < δ1 +
µ

1 + γ
+

γµ

1 + γ
= δ1 + µ.

Then we deduce from (3.1) that

ψ(p(xk+1, xn+k+1)) = ψ(p(Txk, Txn+k)) 6 α(xk, xn+k)ψ(p(Txk, Txn+k)) 6 φ(D(xk, xn+k))
6 ψ(δ1).

(3.5)

Since ψ is non-decreasing, it follows that p(xk+1, xn+k+1) 6 δ1. Therefore

p(xk, xn+1+k) 6 p(xk, xk+1) + p(xk+1, xn+k+1) < µ+ δ1 < δ.

Case 2. D(xk, xn+k) 6 δ1.
If D(xk, xn+k) = 0, we derive that p(xk+1, xn+k+1) = 0 by (3.5). So, by (W1),

p(xk, xn+1+k) 6 p(xk, xn+k) 6 δ1 < δ1 + µ < δ.

If D(xk, xn+k) > 0, we get that

p(xk, xn+k+1) 6 p(xk, xk+1) + p(xk+1, xn+k+1) 6 p(xk, xk+1) +D(xk, xn+k) < µ+ δ1 < δ.

Now, take i, j ∈N with i, j > k. Then i = n1 + k and j = n2 + k for some n1,n2 ∈N. Hence, by (3.4),

p(xk, xi) = p(xk, xn1+k) < δ1 + µ < δ and p(xk, xj) = p(xk, xn2+k) < δ1 + µ < δ.

It follows from Lemma 2.2 that ds(xi, xj) 6 ε whenever i, j > k. We conclude that {xn}n∈N is a Cauchy
sequence in (X,ds). Since (X,d) is complete, there exists a ∈ X such that d(xn,a)→ 0 (n→∞).

Next we show that p(xn,a) → 0(n → ∞). In fact, choose an arbitrary ε > 0. We have proved that
there is N0 ∈ N such that p(xk, xn+k) < ε for all k > N0 and n ∈ N. Fix k > N0. Since d(xn,a) → 0 it
follows from condition (W2) that, for n sufficiently large,

p(xk,a) < p(xk, xn+k) + ε.

Hence p(xk,a) < 2ε for all k > N0. We deduce that p(xn,a)→ 0 (n→∞).
By condition (H) and (3.1), we obtain that

ψ(p(xnk+1, Ta)) = ψ(p(Txnk , Ta)) 6 α(xnk ,a)ψ(p(Txnk , Ta)) 6 φ(D(xnk ,a))→ 0 (k→∞).

Thus, p(xnk+1, Ta)→ 0 (k→∞). So ds(a, Ta) = 0.
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Theorem 3.2. Let T be a triangular α-admissible mapping of a complete quasi-metric space (X,d). Suppose that
there exists a w-distance p on (X,d) such that

α(x,y)ψ(p(Tx, Ty)) 6 φ(p(x,y)) (3.6)

for all x, y ∈ X, where ψ is a generalized altering distance function and φ : [0,+∞) → [0,+∞) is a Jachymski
function such that φ(t) < ψ(t) for all t > 0. Furthermore, the condition (H) is satisfied. If there exists x0 ∈ X such
that α(x0, Tx0) > 1, then T has a fixed point.

Remark 3.3. T is said to be an α-ψ-φ–Jachymski contractive mapping if T satisfies the contractive condi-
tion (3.6). Since each Meir-Keeler function is a Jachymski function, we can know that our new concept
generalizes and extends Definition 1.4.

Proof of Theorem 3.2. From the proof procedure of Theorem 3.1, we only need to show that rn → 0 (n →∞).
If there is n0 ∈ N such that rn0 = 0, then rn = 0 for all n > n0, by (3.6), Definition 2.5, and

our assumption that φ(0) = 0. Therefore p(xi, xj) = 0 whenever j > i > n0 by condition (W1), and
consequently, ds(xi, xj) = 0 by Lemma 2.2. Otherwise, noting the increasing property of ψ, we have that
the sequence {rn} is non-increasing and, consequently, there exists r > 0 such that rn → r+ as n → ∞.
If r > 0 there exists δ = δ(r) such that ψ(r) < t < ψ(r) + δ implies φ(t) 6 ψ(r). Take Nδ ∈ N such that
rn < ψ(r) + δ for all n > Nδ. Therefore φ(rn) 6 ψ(r), so by (3.6), we derive that

ψ(rn+1) 6 φ(rn) 6 ψ(r).

Since ψ is increasing, we have that rn+1 6 r for all n > Nδ, a contradiction. Consequently, r = 0.

We next discuss the condition for the uniqueness of the fixed point. A sufficient condition for the
uniqueness of the fixed point in Theorem 3.2 can be stated as follows:

(U) For u, v ∈ X, there exists w ∈ X such that α(w,u) > 1 and α(w, v) > 1.

Theorem 3.4. If condition (U) is added to the hypotheses of Theorem 3.2, then the fixed point of T is unique.

Proof. By Theorem 3.1, we have known that T has a fixed point z1. Suppose that T has another fixed point
z2. In the following we shall show that z1 = z2.

From condition (U), there exists w ∈ X such that α(w, z1) > 1 and α(w, z2) > 1. Then, since T is
α-admissible, we obtain that

α(Tnw, z1) > 1, α(Tnw, z2) > 1, ∀ n ∈N.

Thus,
ψ(p(Tn+1w, z1)) 6 α(T

nw, z1)ψ(p(T(T
nw), Tz1)) 6 φ(p(T

nw, z1)).

Hence, the sequence {p(Tn+1w, z1)} is non-increasing and, consequently, there exists L > 0 such that
p(Tn+1w, z1)→ L+, as n→∞. Similarly to the proof of r = 0, we can show that p(Tn+1w, z1)→ 0 (n→∞). In the same arguments, we have that p(Tn+1w, z2) → 0 (n → ∞). By Lemma 2.2, we deduce that
ds(z1, z2) = 0, i.e., z1 = z2.

Theorem 3.5. Let T be a triangular α-admissible mapping of a complete quasi-metric space (X,d) such that

α(x,y)ψ(d(Tx, Ty)) < ψ(M(x,y)) for any x,y ∈ X, (3.7)
α(x,y)ψ(d(Tx, Ty)) 6 φ(M(x,y)) (3.8)

for all x, y ∈ X, where

M(x,y) := max
{
d(x,y),d(x, Tx),d(y, Ty),

d(x, Ty) + d(y, Tx)
2

}
,

ψ is a generalized altering distance function, and φ : [0,+∞) → [0,+∞) is a Jachymski function. Furthermore,
the following condition is satisfied
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(H ′) if {xn} is a sequence in X such that xn → x ∈ X as n → ∞ and α(xn, xn+1) > 1 and α(xn+1, xn) > 1 for
all n > 1, then there exists a subsequence {xnk} of {xn} for which α(xnk , x) > 1, k > 1 and α(x, xnk) >
1, k > 1.

If there exists x0 ∈ X such that α(x0, Tx0) > 1 and α(Tx0, x0) > 1, then T has a fixed point.

Proof. Take x ∈ X and assume that x 6= Tx, we have that

1
2
d(x, T 2x) 6

1
2
[d(x, Tx) + d(Tx, T 2x)].

Hence, by (3.7), we may conclude that

α(x, Tx)ψ(d(Tx, T 2x)) < ψ(M(x, Tx)) = ψ(d(x, Tx)). (3.9)

Define xn := Tnx0 and an = d(xn, xn+1) for n ∈ N. We shall show that an → 0 (n → ∞). We can
restrict to the case that an > 0. Since α(Tnx0, Tn+1x0) > 1, n ∈N, it follows from (3.9) and the increasing
property of ψ that an+1 < an, so {an} converges to some a in R+. Assume that a > 0. There exists
δ = δ(a) such that ψ(a) < t < ψ(a) + δ implies φ(t) 6 ψ(a). Take k ∈ N such that an < ψ(a) + δ for all
n > k. Therefore φ(an) 6 ψ(a), so by (3.8),

ψ(an+1) 6 α(xn, xn+1)ψ(an+1) 6 φ(an) 6 ψ(a).

Note that ψ is increasing, we obtain that an+1 6 a for all n > k, a contradiction. Consequently, a = 0. In
the same arguments, we can prove that ãn = d(xn+1, xn)→ 0 (n→∞).

Now, fix an ε > 0. There exists δ = δ(ε), with 0 < δ < ε, for which φ is a Jachymski function, i.e., for
each t > 0, ε < t < δ+ ε implies φ(t) 6 ψ(ε). Since an → 0, there exists i in N such that an < 1

2δ for
n > i > k. We shall apply induction to show that, for any n ∈N,

d(xi, xi+n) < ε+
1
2
δ. (3.10)

Obviously, (3.10) holds for n = 1. Assume that (3.10) holds for some n, we shall prove it for n+ 1. Similar
to the proof of Theorem 3.1, we only consider the case that ε < M(xi, xi+n). It suffices to show that
M(xi, xi+n) < ε+ δ. By the definition of M(x,y),

M(xi, xi+n) = max
{
d(xi, xi+n),ai,ai+n,

1
2
[d(xi, xi+n+1) + d(xi+1, xi+n)]

}
.

By the induction hypothesis and the definition of ai, we get

d(xi, xi+n) < ε+
1
2
δ, ai <

1
2
δ, ãi <

1
2
δ, ai+n <

1
2
δ.

Hence we have

1
2
[d(xi, xi+n+1) + d(xi+1, xi+n)] 6

1
2
[d(xi, xi+n) + ai+n + ãi + d(xi, xi+n)] < ε+ δ.

Thus, M(xi, xi+n) < ε+ δ. Since α(xi, xi+n) > 1 (n = 1, 2, 3, · · · ), we deduce that

ψ(d(xi+1, xn+i+1)) = ψ(d(Txi, Txn+i)) 6 α(xi, xn+i)ψ(d(Txi, Txn+i)) 6 φ(M(xi, xn+i)) 6 ψ(ε).

Since ψ is non-decreasing, it follows that d(xi+1, xn+i+1) 6 ε. Therefore

d(xi, xn+1+i) 6 d(xi, xi+1) + d(xi+1, xn+i+1) <
1
2
δ+ ε.

Obviously, (3.10) implies that {xn} is a Cauchy sequence. The remainder of proof is similar to that of
Theorem 3.1, we omit the detail.
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Example 3.6. Let d be the quasi-metric on R+ given by d(x,y) = max{y− x, 0} for all x, y ∈ R+. Since ds

is the usual metric on R+ it immediately follows that (R+,d) is complete.
Define p : R+ ×R+ → R+ as p(x,y) = y. It is clear that p is a w-distance on (R+,d). Define T by

Tx =


0, 0 6 x 6 1

2 ,
t
3 , 1

2 < x 6 1,
6x− 1

3 , x > 1.

Choose

φ(x) =


0, 0 6 x 6 1

2 ,
t
3 , 1

2 < x 6 1,
1, x > 1,

α(x,y) =
{

1, x, y ∈ [0, 1],
0, otherwise, and ψ(x) = x.

If x, y ∈ [0, 1],
α(x,y)p(Tx, Ty) = Ty = φ(y) = φ(p(x,y)).

If x, y 6∈ [0, 1],
α(x,y)p(Tx, Ty) = 0 6 φ(p(x,y)).

In the following, we shall prove that φ is a Jachymski function. Now, given ε > 0, we distinguish the
following cases.

(1) if 0 < ε < 1
2 , we take δ = 1

2 − ε, and thus, from ε < t < ε+ δ = 1
2 , it follows φ(t) = 0 < ε;

(2) if ε = 1
2 , we take δ = 1

3 , and thus, from ε < t < ε+ δ, it follows φ(t) = t
3 <

1
2 = ε;

(3) if 1
2 < ε < 1, we take δ = 1 − ε, and thus, from ε < t < ε+ δ = 1, it follows φ(t) = t

3 <
1
3 < ε;

(4) if ε > 1, we take δ = 1
2 , and thus, from ε < t < ε+ 1

2 , it follows φ(t) = 1 6 ε.

Therefore, all conditions of Theorem 3.2 are satisfied.
However, the contractive condition (1.1) is not satisfied. Indeed, if no, for any function φ : [0,∞) →

[0,+∞) with φ(t) < t for all t > 0, we have

p(T2, T3) = T3 =
53
3

6 φ(p(2, 3)) < p(2, 3) = 3,

which is a contradiction.

Example 3.7. Define a complete metric space (X,d) by X = [0,+∞) and d(x,y) = x+ y for x, y ∈ X with
x 6= y. Define

Tx =


0, 0 6 x 6 1,
1, 1 < x 6 2,
5x− 1, x > 2,

ψ(t) =

{
t, t 6 1,
3
2 + t, t > 1,

α(x,y) =
{

1, x, y ∈ [0, 2],
0, otherwise, φ(t) =

{
t
2 , t 6 1,
3
2 +

t
2 , t > 1.

It is easy to check that
α(x,y)ψ(d(Tx, Ty)) 6 φ(d(x,y)), x, y ∈ [0, 2].

In fact, {d(Tx, Ty) : x, y ∈ [0, 2]} = {0, 1}, and hence {ψ(d(Tx, Ty)) : x, y ∈ [0, 2]} = {0, 1}. If ψ(d(Tx, Ty)) = 1
and x > y, then x > 1 and 0 6 y 6 1, and hence φ(d(x,y)) = φ(x+ y) > φ(x) > 2. Therefore,

α(x,y)ψ(d(Tx, Ty)) 6 1 <
3
2
+
x+ y

2
, x, y ∈ [0, 2].



Y. Sang, J. Nonlinear Sci. Appl., 10 (2017), 1377–1398 1385

Then all the assumptions of Theorem 3.2 are satisfied. From [10], we have known that T is not a Meir-
Keeler contractive mapping. Furthermore, ψ is non-decreasing and

ψ(d(T2, T3)) = ψ(16) 6 φ(d(2, 3)) = φ(5) < ψ(5),

which is a contradiction. Thus, the condition (C4) of Theorem 2.7 in [26] is not satisfied. We can know
that Theorem 2.7 in [26] cannot be applied to this example.

Example 3.8. Let X = [0,+∞). Let d(x,y) be defined as follows:

d(x,y) := max{x,y} for x 6= y, and d(x,y) := 0 for x = y.

Then (X,d) is a complete metric space. Define T by

Tx =


0, if x = 0,

1
n+2 , if 1

n+1 < x 6
1
n ,

1, if 1 < x 6 2,
3x2 − 1

2 , if x > 2.

First, we prove that all conditions of Theorem 3.5 are satisfied. Take

α(x,y) =
{

1, if x, y ∈ [0, 2],
0, otherwise,

ψ(x) = x, φ(x) = Tx. For x ∈ (2,+∞), there exists δ =
√

2ε+1
6 − ε > 0 such that ε < x < ε+ δ implies

3x2 − 1
2 6 ε. Thus, φ is a Jachymski function.

In the following, we shall show that T is not an α-admissible-Meir-Keeler contractive mapping.
For any δ > 0 (δ < 1), there exists ε = 1, such that

1 6 α(x,y)d
(

1, 1 +
δ

2

)
< 1 + δ, x, y ∈ [0, 2]

implies

α(x,y)d
(
T1, T(1 +

δ

2
)

)
= 1 = ε, x, y ∈ [0, 2].

Therefore, the contractive condition (1.2) is not satisfied.
The next is an example where we can apply Theorem 3.1 for an appropriatew-distance p on a complete

quasi-metric space (X,d) but not for d.

Example 3.9. Let X = N and let d be the quasi-metric on X defined as

d(x,y) =


0, x = y, and x, y ∈ X,
1
x , x ∈ X\{0}, and y = 0,
1, x = 0, and y ∈ X\{0},
| 1
x −

1
y |, x, y ∈ X\{0}.

Clearly (X,d) is complete (observe that {n} is a Cauchy sequence in (X,ds) with d(n, 0)→ 0). Let p be the
w-distance on (X,d) given by p(x,y) = y for all x, y ∈ X. Now define T : X→ X as

Tx =


0, x = 0,
x− 1, x ∈ {1, 2, 3, · · · , 2016},
x3, x ∈ X\{0, 1, 2, 3, · · · , 2016},

ψ(x) =
1008x
10075

, φ(x) =
x

10
,
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and

α(x,y) =
{

1, if x, y ∈ {0, 1, 2, · · · , 2016},
0, otherwise.

It is routine to check that φ is a Jachymski function satisfying φ(t) < ψ(t) for all t > 0. Since p(Tx, T0) = 0
for all x ∈ X, and for each x, y ∈ X with y 6= 0, we have

α(x,y)ψ(p(fx, fy)) =
1008

10075
(y− 1) 6

1
10
y = φ(p(x,y)), x, y ∈ {1, 2, · · · , 2016},

it follows that all conditions of Theorem 3.1 are satisfied. In fact x = 0 is the unique fixed point of T .
However, the contractive condition 3.1 is not satisfied for d. Indeed, for any y ∈ {2, 3, · · · , 2016}, we

have
α(0,n)ψ(d(T0, Ty)) = ψ(d(0,y− 1)) =

1008
10075

>
1
10

= φ(d(0,y)).

Therefore, Theorem 2.16 in [15] cannot be applied to operator T .
In the following, we utilize Theorem 3.2 to obtain common fixed points results for two mappings with

α-admissible conditions.

Theorem 3.10. Let T be a triangular S-α-admissible mapping of a complete quasi-metric space (X,d) such that
T(X) ⊂ S(X) and α(Sx,Sy) 6 α(x,y) for all x, y ∈ X. Suppose that the following conditions are satisfied:

(i) there exists a w-distance p on (X,d) such that

α(x,y)ψ(p(Tx, Ty)) 6 φ(p(Sx,Sy)) (3.11)

for all x, y ∈ X, where ψ is a generalized altering distance function and φ : [0,+∞)→ [0,+∞) is a Jachymski
function such that φ(t) < ψ(t) for all t > 0;

(ii) there exists x0 ∈ X such that α(Sx0, Tx0) > 1;
(iii) if every sequence {xn} ⊆ X such that α(Sxn,Sxn+1) > 1 for all n ∈ N and Sxn → Sx ∈ SX as n → ∞,

then there exists a subsequence {Sxnk} of {Sxn} such that for all k ∈N, α(Sxnk ,Sx) > 1.

If S(X) is a complete subspace of X, then S and T have a coincidence point. Moreover, suppose that

(iv) for all coincidence points z of S and T , α(Tz, z) > 1, and S and T are weakly compatible,

then S and T have a common fixed point in X.

Proof. By Lemma 2.9, there exists a subset Y of X such that S(Y) = S(X) and S : Y → X is one-to-one.
Define a map A : S(Y)→ S(Y) by A(Sx) = Tx. Then A is well-defined, because A is one-to-one.
From (3.11) we have

α(Sx,Sy)ψ(p(A(Sx),A(Sy))) 6 α(x,y)ψ(p(Tx, Ty)) 6 φ(p(Sx,Sy))

for all Sx, Sy ∈ S(Y). Hence, A is a α-ψ-φ-contractive type mapping on S(X).
In addition, α(Sx0, Tx0) > 1 implies that α(Sx0,A(Sx0)) > 1, and condition (iv) implies that condition

(H) holds. By Theorem 3.2, A has a fixed point in S(X). That is, there exists x̃ ∈ X such that A(Sx̃) = S(x̃).
By definition of A, S(x̃) = T(x̃). Thus, x̃ is a coincidence point of S and T .

We now show the existence of common fixed points of S and T with their weak compatibility. Assume
that condition (iv) holds. Let z = S(x̃) = T(x̃). Then Sz = Tz. Since α(z, x̃) = α(Tx̃, x̃) > 1, from (3.11) we
have

ψ(p(Tz, z)) = ψ(p(Tz, Tx̃)) 6 α(z, x̃)ψ(p(Tz, Tx̃)) 6 φ(p(Sz,Sx̃)) = φ(p(Tz, z)).

If p(Tz, z) > 0, it follows that

ψ(p((Tz, z)) 6 φ(p(Tz, z)) < ψ(p(Tz, z)),

which is a contradiction. Hence, p(Tz, z) = 0. Thus Tz = z = Sz, and z is a common fixed point.
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4. Multidimensional fixed point theorems

Consider the following conditions:

(i) for all X, Y, Z ∈ Xn, we have

α(X, Y) > 1 =⇒ α(TX, TY) > 1,

and
α(X, Y) > 1 and α(Y, Z) > 1 implies α(X, Z) > 1,

where
X = (x1, x2, · · · , xn), Y = (y1,y2, · · · ,yn), Z = (z1, z2, · · · , zn),

and T is defined by

T(x1, x2, · · · , xn) = (F(xσ1(1), xσ1(2), · · · , xσ1(n)), F(xσ2(1), xσ2(2), · · · , xσ2(n)), · · ·
, F(xσn(1), xσn(2), · · · , xσn(n)));

(ii) there exists (z1, z2, · · · , zn) ∈ Xn such that

α
(
(zσi(1), zσi(2), · · · , zσi(n)),

(
Fσi(1)(zσ1(1), zσ1(2), · · · , zσ1(n)), Fσi(2)(zσ2(1), zσ2(2), · · · , zσ2(n)),

· · · , Fσi(n)(zσn(1), zσn(2), · · · , zσn(n))
))

> 1, i = 1, 2, 3, · · · ,n;

(iii) if {(w1)m}, {(w2)m}, · · · , {(wn)m} are sequences in X such that

α(((wσi(1))m, (wσi(2))m, (wσi(3))m, · · · , (wσi(n))m),

((wσi(1))m+1, (wσi(2))m+1, (wσi(3))m+1, · · · , (wσi(n))m+1)) > 1, i = 1, 2, 3, · · · ,n,

(w1)m → w1 ∈ X, (w2)m → w2 ∈ X, · · · , (wn)m → wn ∈ X (n→∞), then

α
(
((wσi(1))m, (wσi(2))m, (wσi(3))m, · · · , (wσn(n))m, ),

(wσi(1),wσi(2),wσi(3), · · · ,wσi(n))
)
> 1, i = 1, 2, 3, · · ·n

for all m ∈N.

Theorem 4.1. Let (X,d) be a complete metric space and F : Xn → X. Suppose that there exists a function
α : Xn ×Xn → [0,+∞) such that

α(X, Y)ψ


n∑
i=1

d(F(xσi(1), xσi(2), · · · , xσi(n)), F(yσi(1),yσi(2), · · · ,yσi(n)))

n

 < ψ


n∑
i=1

d(xi,yi)

n

 (4.1)

for xi 6= yi, i = 1, 2, · · · ,n,

α(X, Y)ψ


n∑
i=1

d(F(xσi(1), xσi(2), · · · , xσi(n)), F(yσi(1),yσi(2), · · · ,yσi(n)))

n

 6 φ


n∑
i=1

d(xi,yi)

n

 (4.2)

for all X, Y ∈ Xn, where ψ is a generalized altering distance function and φ : [0,+∞)→ [0,+∞) is a Jachymski
function. Furthermore, conditions (i)-(iii) are satisfied. Then F has a Υ-fixed point.
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Proof. The idea consists in transporting the problem to the complete metric space (Y, δ), where Y = Xn,
and δ(X, Y) = 1

n

∑n
i=1 d(xi,yi) for all X, Y ∈ Xn. By (4.2), we have

α((xσ1(1), xσ1(2), · · · , xσ1(n)), (yσ1(1),yσ1(2), · · · ,yσ1(n)))ψ(δ(TX, TY)) 6 φ(δ(X, Y)),

α((xσ2(1), xσ2(2), · · · , xσ2(n)), (yσ2(1),yσ2(2), · · · ,yσ2(n)))ψ(δ(TX, TY)) 6 φ(δ(X, Y)),
...

α((xσn(1), xσn(2), · · · , xσn(n)), (yσn(1),yσn(2), · · · ,yσn(n)))ψ(δ(TX, TY)) 6 φ(δ(X, Y)).

Denote β : Y × Y → [0,+∞) by

β(X, Y) = min
{
α((xσ1(1), xσ1(2), · · · , xσ1(n)), (yσ1(1),yσ1(2), · · · ,yσ1(n)))

,α((xσ2(1), xσ2(2), · · · , xσ2(n)), (yσ2(1),yσ2(2), · · · ,yσ2(n))), · · ·
, α((xσn(1), xσn(2), · · · , xσn(n)), (yσn(1),yσn(2), · · · ,yσn(n)))

}
.

(4.3)

Subsequently, we deduce that
β(X, Y)ψ(δ(TX, TY)) 6 φ(δ(X, Y)).

Then T is a β-ψ-φ-Jachymski contractive mapping. Using condition (i), we know that T is β-admissible.
Moreover, from condition (ii), we obtain that there exists (z1, z2, · · · , zn) ∈ Y such that

β((z1, z2, · · · , zn), T(z1, z2, · · · , zn)) > 1.

Let {(w1)m, (w2)m, · · · , (wn)m} be a sequence in Y such that

β (((w1)m, (w2)m, · · · , (wn)m), ((w1)m+1, (w2)m+1, · · · , (wn)m+1)) > 1

and
((w1)m, (w2)m, · · · , (wn)m)→ (w1,w2, · · · ,wn) (m→∞).

It follows from condition (iii) that

β (((w1)m, (w2)m, · · · , (wn)m), (w1,w2, · · · ,wn)) > 1.

All the hypotheses of Theorem 3.5 are satisfied, and so we derive the existence of a fixed point of T that
gives us the existence of Υ-fixed point of F.

Theorem 4.2. Let (X,d) be a complete metric space and F : Xn → X. Suppose that there exists a function
α : Xn ×Xn → [0,+∞) such that

α(X, Y)ψ(d(FX, FY)) < ψ

(
max

16i6n
d(xi,yi)

)
(4.4)

for xi 6= yi, i = 1, 2, · · · ,n,

α(X, Y)ψ(d(FX, FY)) 6 φ

(
max

16i6n
d(xi,yi)

)
for all X, Y ∈ Xn, where ψ is a generalized altering distance function and φ : [0,+∞) → [0,+∞) is a Jachymski
function. Furthermore, conditions (i)-(iii) are satisfied. Then F has a Υ-fixed point.

Proof. From (4.3) and (4.4), for all X, Y ∈ Xn, we have

α((xσ1(1), xσ1(2), · · · , xσ1(n)), (yσ1(1),yσ1(2), · · · ,yσ1(n))),
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·ψ
(
d(F(xσ1(1), xσ1(2), · · · , xσ1(n)), F(yσ1(1),yσ1(2), · · · ,yσ1(n)))

)
6 φ

(
max

16i6n
d(xi,yi)

)
,

α((xσ2(1), xσ2(2), · · · , xσ2(n)), (yσ2(1),yσ2(2), · · · ,yσ2(n))),

·ψ
(
d(F(xσ2(1), xσ2(2), · · · , xσ2(n)), F(yσ2(1),yσ2(2), · · · ,yσ2(n)))

)
6 φ

(
max

16i6n
d(xi,yi)

)
,

...
α((xσn(1), xσn(2), · · · , xσn(n)), (yσn(1),yσn(2), · · · ,yσn(n))),

·ψ
(
d(F(xσn(1), xσn(2), · · · , xσn(n)), F(yσn(1),yσn(2), · · · ,yσn(n)))

)
6 φ

(
max

16i6n
d(xi,yi)

)
.

This implies (since ψ is nondecreasing) that for all X, Y ∈ Xn,

β(X, Y)ψ
(
max

{
d(F(xσ1(1), xσ1(2), · · · , xσ1(n)), F(yσ1(1),yσ1(2), · · · ,yσ1(n))),

d(F(xσ2(1), xσ2(2), · · · , xσ2(n)), F(yσ2(1),yσ2(2), · · · ,yσ2(n))),
...

d(F(xσn(1), xσn(2), · · · , xσn(n)), F(yσn(1),yσn(2), · · · ,yσn(n)))
})

6 φ

(
max

16i6n
d(xi,yi)

)
,

where β is defined in (4.3). Denote η : Yn → [0,+∞) as

η(X, Y) = max
16i6n

d(xi,yi).

Thus,
β(X, Y)ψ(η(TX, TY)) 6 φ(η(X, Y)).

Therefore, we prove that the mapping T satisfies the conditions of Theorem 3.5. The rest of the proof is
similar to the above proof.

Theorem 4.3. Assume that (H) is satisfied. Let T : X→ X be a nondecreasing and asymptotically regular mapping
of a partially ordered complete quasi-metric space (X,d,�). Suppose that there exists a w-distance p on (X,d) such
that

ψ(p(Tx, Ty)) 6 φ(D(x,y))

for all x, y ∈ X with x � y, where D(x,y) is defined in (3.2), ψ is a generalized altering distance function, and
φ : [0,+∞) → [0,+∞) is a Jachymski function such that φ(t) < ψ(t) for all t > 0. Suppose that there exists
x0 � Tx0 and the following condition holds:

(R) for every nondecreasing sequence {xn} ⊂ X which converges to x ∈ X, there exists a subsequence {xnk} of
{xn} satisfying xnk � x.

Then T has a fixed point.

Proof. Define the mapping α : X×X→ [0,+∞) as

α(x,y) =
{

1, if x � y or y � x,
0, otherwise.

It is clear that T satisfies
α(x,y)ψ(p(Tx, Ty)) 6 φ(D(x,y)), ∀ x, y ∈ X.

Let x0 ∈ X satisfy x0 � Tx0. Then, α(x0, Tx0) > 1. On the other hand, since T is nondecreasing, then T is
α-admissible. Indeed, α(x,y) > 1 =⇒ x � y or y � x =⇒ Tx � Ty or Ty � Tx =⇒ α(Tx, Ty) > 1. Note
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also that if x � Tx then Tx � T 2x, and hence x � T 2x; that is, if α(x, Tx) > 1 then α(Tx, T 2x) > 1 and
α(x, T 2x) > 1. Similar conclusion can be done if x � Tx. Therefore, T is weak triangular α-admissible.
By condition (R), every nondecreasing sequence {xn} which converges to x has a subsequence {xnk} for
which xnk � x holds for all k ∈ N. Hence, α(xn, xn+1) > 1 implies α(xnk , x) > 1 for all k ∈ N. In other
words, the set X satisfies condition (H). By Theorem 3.1, the mapping T has a fixed point.

The uniqueness of a fixed point on partially ordered metric spaces requires an additional assumption
on the set X. This assumption reads as follows.

(C) For all x, y ∈ X there exists z ∈ X which is comparable to both x and y.

Theorem 4.4. Adding condition (C) to the hypotheses of Theorem 4.3 one obtains the uniqueness of the fixed point.

Proof. The proof is trivial, here we omit the detail. The readers are referred to the proof of Theorem 20 in
[4].

Theorem 4.5. Let (X,d) be a partially ordered set and suppose there is a metric d on X such that (X,d) is
completely metric space. Let F : Xn → X be a mapping having the mixed monotone property. Assume that the
following contractive conditions are satisfied

ψ


n∑
i=1

d(F(xσi(1), xσi(2), · · · , xσi(n)), F(yσi(1),yσi(2), · · · ,yσi(n)))

n

 < ψ


n∑
i=1

d(xi,yi)

n


for xi 6= yi, i = 1, 2, · · · ,n with xi �i yi for all i ∈ Λi,

ψ


n∑
i=1

d(F(xσi(1), xσi(2), · · · , xσi(n)), F(yσi(1),yσi(2), · · · ,yσi(n)))

n

 6 φ


n∑
i=1

d(xi,yi)

n


for which xi �i yi for all i ∈ Λn, where ψ is a generalized altering distance function and φ : [0,+∞)→ [0,+∞)
is a Jachymski function. Suppose that (X,d,�) has the sequential monotone property. Suppose that there exist
x1

0, x2
0, · · · , xn0 ∈ X verifying

xi0 �i F(x
σi(1)
0 , xσi(2)

0 , · · · , xσi(n)0 ) (4.5)

for all i ∈ Λn. Furthermore, if for all A,B ∈ Xn there exists U ∈ Xn such that A v U and B v U, then F has a
unique Υ-fixed point.

Proof. Define the mapping α : Xn ×Xn → [0,+∞) as

α(X, Y) =

{
1, if xi � yi for all i,
0, otherwise. (4.6)

It is easy to check that

α(X, Y)ψ


n∑
i=1

d(F(xσi(1), xσi(2), · · · , xσi(n)), F(yσi(1),yσi(2), · · · ,yσi(n)))

n

 < ψ


n∑
i=1

d(xi,yi)

n


for xi 6= yi, i = 1, 2, · · · ,n with xi �i yi for all i ∈ Λn,

α(X, Y)ψ


n∑
i=1

d(F(xσi(1), xσi(2), · · · , xσi(n)), F(yσi(1),yσi(2), · · · ,yσi(n)))

n

 6 φ


n∑
i=1

d(xi,yi)

n


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for which xi �i yi for all i ∈ Λn. It implies that F is an α-ψ-φ-Jachymski contractive mapping.
Let X, Y ∈ Xn such that α(X, Y) > 1. By the definition of α, this implies that xi �i yi for all i ∈ Λn.

Since F satisfies the mixed monotone property, we have that

i ∈ A, xi � yi =⇒ F(xσi(1), xσi(2), · · · , xσi(n)) 6 F(yσi(1),yσi(2), · · · ,yσi(n)),

i ∈ B, xi � yi =⇒ F(xσi(1), xσi(2), · · · , xσi(n)) > F(yσi(1),yσi(2), · · · ,yσi(n)).

By the definition of α, we deduce that α(TX, TY) > 1. It follows from (4.5) that

α
(
(x
σ1(1)
0 , xσ1(2)

0 , · · · , xσ1(n)
0 ),

(
Fσ1(1)(x

σ1(1)
0 , xσ1(2)

0 , · · · , xσ1(n)
0 ),

Fσ1(2)(x
σ2(1)
0 , xσ2(2)

0 , · · · , xσ2(n)
0 ), · · · , Fσ1(n)(x

σn(1)
0 , xσn(2)

0 , · · · , xσn(n)0 )
))

> 1,

α
(
(x
σ2(1)
0 , xσ2(2)

0 , · · · , xσ2(n)
0 ),

(
Fσ2(1)(x

σ1(1)
0 , xσ1(2)

0 , · · · , xσ1(n)
0 ),

Fσ2(2)(x
σ2(1)
0 , xσ2(2)

0 , · · · , xσ2(n)
0 ), · · · , Fσ2(n)(x

σn(1)
0 , xσn(2)

0 , · · · , xσn(n)0 )
))

> 1,

...

α
(
(x
σn(1)
0 , xσn(2)

0 , · · · , xσn(n)0 ),
(
Fσn(1)(x

σ1(1)
0 , xσ1(2)

0 , · · · , xσ1(n)
0 ),

Fσn(2)(x
σ2(1)
0 , xσ2(2)

0 , · · · , xσ2(n)
0 ), · · · , Fσn(n)(x

σn(1)
0 , xσn(2)

0 , · · · , xσn(n)0 )
))

> 1.

That is, condition (ii) is satisfied.
In the following, we check that condition (iii) holds with α given by (4.6). Let {(ci)m}, i ∈ Λn are n

sequences in X such that (c1)m → c1, (c2)m → c2, · · · , (cn)m → cn, (m→∞). Suppose that

α
((

(cσ1(1))m, (cσ1(2))m, · · · , (cσ1(n))m

)
,
(
(cσ1(1))m+1, (cσ1(2))m+1, · · · , (cσ1(n))m+1

))
> 1,

α
((

(cσ2(1))m, (cσ2(2))m, · · · , (cσ2(n))m

)
,
(
(cσ2(1))m+1, (cσ2(2))m+1, · · · , (cσ2(n))m+1

))
> 1,

...

α
((

(cσn(1))m, (cσn(2))m, · · · , (cσn(n))m
)

,
(
(cσn(1))m+1, (cσn(2))m+1, · · · , (cσn(n))m+1

))
> 1.

By the definition of α, we deduce that

(cσi(n))m �i (cσi(n))m+1 for all i ∈ Λn.

That is, for i ∈ A, {(cσi(n))m} is non-decreasing and (cσi(n))m → cσi(n)(m → ∞). Since (X,d,�) has
sequential monotone property, we have that (cσi(n))m 6 cσi(n). Similarly, for i ∈ B, {(cσi(n))m} is non-
increasing and (cσi(n))m → cσi(n)(m → ∞). Thus (cσi(n))m > cσi(n). By the definition of α, we derive
that

α
((

(cσi(1))m, (cσi(2))m, · · · , (cσi(n))m
)

,
(
cσi(1), cσi(2), · · · , cσi(n)

))
= 1.

Example 4.6. Let X = [0,+∞) endowed with the usual order � in R and the standard metric d(x,y) =
|x− y| for all x, y ∈ X. Define the continuous mapping F : X×X→ X by

F(x,y) = 5x−
y

7
for all x, y ∈ X.

Now we prove that (3.13) of [25] is not satisfied. Indeed, assume that there exist a generalized altering
distance function ψ and a Jachymski function φ with φ(t) < ψ(t) for all t > 0 such that

ψ

(
|5x− y

7 − (5u− v
7 )|+ |5y− x

7 − (5v− u
7 )|

2

)
6 φ

(
|x− u|+ |y− v|

2

)
(4.7)
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for all x, y, u, v ∈ X. Taking x = 6, u = 5, y = 2, v = 1 in (4.7), we have

ψ

(
25 − 1

7 + 5 − 1
7

2

)
< ψ(1),

which is a contradiction. This implies that F does not satisfy (3.13) of [25].
Define the mapping α : X2 ×X2 → [0,+∞) by

α((x,y), (u, v)) =
{ 1

100 , if (x,y,u, v) 6= (0, 0, 0, 0),
1, if x = y = u = v = 0.

For all x, y, u, v ∈ X, we have

|5x−
y

7
− (5u−

v

7
)|+ |5y−

x

7
− (5v−

u

7
)| 6

72
7
|x− u|+ |y− v|

2
.

Taking ψ(x) = 1
2x, φ(x) = 1

7x, for all x > 0, we get that (4.1) and (4.2) of our Theorem 4.1 are satisfied.
Let (x,y), (u, v) ∈ X × X such that α((x,y), (u, v)) > 1. This means that x = y = u = v = 0 and
F(x,y) = F(y, x) = F(u, v) = F(v,u) = 0. It follows that α((F(x,y), F(y, x)), (F(u, v), F(v,u))) = 1. Then
conditions (i) and (iii) of Theorem 4.1 hold, and condition (ii) of the same theorem is also satisfied with
x0 = y0 = 0. Now, all the hypotheses of Theorem 4.1 are true, and so we deduce the existence of a coupled
fixed point of F.

5. Some applications

Motivated by the works in [16, 25], we study the existence of solutions for the integral equations in
the following system

x(t) =

∫b
a

G1(t, s)[f(s, x(s)) + g(s,y(s))]ds

+

∫b
a

G2(t, s)[f(s,y(s)) + g(s, x(s))]ds+ h(t), t ∈ I = [a,b],

y(t) =

∫b
a

G1(t, s)[f(s,y(s)) + g(s, x(s))]ds

+

∫b
a

G2(t, s)[f(s, x(s)) + g(s,y(s))]ds+ h(t), t ∈ I.

(5.1)

Let C(I, R) be the space of all continuous functions defined on I. It is well-known that such a space
with the metric given by

d(x,y) = sup
t∈I

|x(t) − y(t)|

is a complete metric space. We will use the following assumptions:

(i) G1, G2 ∈ C(I× I, R), G1(t, s) > 0 and G2(t, s) 6 0;
(ii) h(t) ∈ C(I, R);

(iii) there exists a function ξ : R2 ×R2 → R and positive numbers µ, ν such that for all (x,y), (u, v) ∈
C2(I, R) with ξ((x,y), (u, v)) > 0, we have

|f(t, x) − f(t,u)| 6 µφ(|x− u|),

and
|g(t,y) − g(t, v)| 6 νφ(|y− v|),

where φ ∈ Φ, and Φ is the family of all non-decreasing functions φ : [0,+∞) → [0,+∞) satisfying
the following condition:
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(C) there exists a Jachymski function ψ : [0,+∞) → [0,+∞) with ψ(t) < t for all t > 0 such that
φ(t) = ψ(t/2).

Moreover,

ξ((x1,y1), (x2,y2)) > 0 and ξ((x2,y2), (x3,y3)) > 0 imply ξ((x1,y1), (x3,y3)) > 0

for all (x1,y1), (x2,y2), (x3,y3) ∈ C2(I, R);
(iv) there exist p > 1 and q > 0 with 1/p+ 1/q = 1 such that

(µ+ ν) sup
t∈I

(∫b
a

(G1(t, s) −G2(t, s))pds

)1/p

(b− a)1/q 6 1;

(v) there exists (x0,y0) ∈ C2(I, R) such that for all t ∈ I, we have

ξ

(
(x0(t),y0(t)),

(∫b
a

G1(t, s)[f(s, x0(s)) + g(s,y0(s))]ds

+

∫b
a

G2(t, s)[f(s,y0(s)) + g(s, x0(s))]ds+ h(t),
∫b
a

G1(t, s)[f(s,y0(s)) + g(s, x0(s))]ds

+

∫b
a

G2(t, s)[f(s, x0(s)) + g(s,y0(s))]ds+ h(t)

))
> 0;

(vi) for all t ∈ I, (x,y), (u, v) ∈ C2(I, R),

ξ((x(t),y(t)), (u(t), v(t))) =⇒

ξ

((∫b
a

G1(t, s)[f(s, x(s)) + g(s,y(s))]ds +

∫b
a

G2(t, s)[f(s,y(s)) + g(s, x(s))]ds+ h(t),∫b
a

G1(t, s)[f(s,y(s)) + g(s, x(s))]ds +
∫b
a

G2(t, s)[f(s, x(s)) + g(s,y(s))]ds+ h(t)

)
,(∫b

a

G1(t, s)[f(s,u(s)) + g(s, v(s))]ds +
∫b
a

G2(t, s)[f(s, v(s)) + g(s,u(s))]ds+ h(t),∫b
a

G1(t, s)[f(s, v(s)) + g(s,u(s))]ds +

∫b
a

G2(t, s)[f(s,u(s)) + g(s, v(s))]ds+ h(t)

))
> 0;

(vii) if {xn} and {yn} are sequences in C(I, R) such that ξ((xn,yn), (xn+1,yn+1))>0 and ξ((yn, xn), (yn+1,
xn+1))> 0 for all n with xn → x ∈ C(I, R) and yn → y ∈ C(I, R) as n →∞, then ξ((xn,yn), (x,y))
> 0 and ξ((yn, xn), (y, x)) > 0 for all n ∈N.

Theorem 5.1. Suppose that conditions (i)-(vii) hold. Then (5.1) has at least a solution (x,y) ∈ C2(I, R).

Proof. Define the operator F : C2(I, R)→ C(I, R) by

F(x,y)(t) =
∫b
a

G1(t, s)[f(s, x(s)) + g(s,y(s))]ds

+

∫b
a

G2(t, s)[f(s,y(s)) + g(s, x(s))]ds+ h(t) for all t ∈ I.

Then problem (5.1) is equivalent to find (x∗,y∗) ∈ C2(I, R) that is a coupled fixed point of F.
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Now, let (x,y), (u, v) ∈ C2(I, R) such that ξ((x(t),y(t)), (u(t), v(t))) > 0 for all t ∈ I. It follows from
the monotonicity of φ, condition (iii) and G2(t, s) 6 0 that

d(F(x,y), F(u, v)) 6 sup
t∈I

∣∣∣∣∣
∫b
a

G1(t, s)[µφ(d(x,u)) + νφ(d(y, v))]ds

−

∫b
a

G2(t, s)[µφ(d(v,y)) + νφ(d(x,u))]ds

∣∣∣∣∣ .
(5.2)

Similarly, we have

d(F(y, x), F(v,u)) 6 sup
t∈I

∣∣∣∣∣
∫b
a

G1(t, s)[νφ(d(x,u)) + µφ(d(y, v))]ds

−

∫b
a

G2(t, s)[νφ(d(v,y)) + µφ(d(x,u))]ds

∣∣∣∣∣ .
(5.3)

By summing (5.2) and (5.3), and applying the condition (iv) and the definition of Φ, we deduce that

d(F(x,y), F(u, v)) + d(F(y, x), F(v,u))
2

6 sup
t∈I

(∫b
a

(G1(t, s) −G2(t, s))ds

)1/p

(b− a)1/q(µ+ ν)
φ(d(x,u)) +φ(d(v,y))

2

6
φ(d(x,u)) +φ(d(v,y))

2
6 φ(d(x,u) + d(y, v)) = ψ

(
d(x,u) + d(y, v)

2

)
.

Define the function α : C2(I, R)×C2(I, R)→ [0,+∞) by

α((x,y), (u, v)) =
{

1, if ξ((x(t),y(t)), (u(t), v(t))) > 0,
0, otherwise.

For all (x,y), (u, v) ∈ C2(I, R), we have

α((x,y), (u, v))
d(F(x,y), F(u, v)) + d(F(y, x), F(v,u))

2
6 φ

(
d(x,u) + d(y, v)

2

)
.

Then, T is an α-ψ-φ-contractive mapping. From condition (vi), for all (x,y), (u, v) ∈ C2(I, R),

α((x,y), (u, v)) > 1 =⇒ ξ((x(t),y(t)), (u(t), v(t))) > 0
=⇒ ξ((F(x(t),y(t)), F(y(t), x(t))), (F(u(t), v(t)), F(v(t),u(t)))) > 0
=⇒ α((F(x,y), F(y, x)), (F(u, v), F(v,u))) > 1.

From (v), there exists (x0,y0) ∈ C2(I, R) such that

α((x0,y0), (F(x0,y0), F(y0, x0))) > 1.

Finally, from (vii), and using Theorem 4.1, we deduce the existence of (x∗,y∗) ∈ C2(I, R) such that
x∗ = F(x∗,y∗) and y∗ = F(y∗, x∗), that is (x∗,y∗) is a solution to (5.1).

Finally, we show the existence of solution for the following initial-value problem
ut(x, t) = uxx(x, t) + f(x, t,u,ux) + g(x, t, v, vx), −∞ < x <∞, 0 < t 6 T ,
u(x, 0) = ϕ(x), −∞ < x <∞,
vt(x, t) = vxx(x, t) + f(x, t, v, vx) + g(x, t,u,ux), −∞ < x <∞, 0 < t 6 T ,
v(x, 0) = ϕ(x), −∞ < x <∞,

(5.4)
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where f, g are continuous functions, ϕ is continuously differentiable, and ϕ and ϕ ′ are bounded. Define

Ω = {u(x, t) : u, ux ∈ C(R× [0, T ]) and ‖u‖ <∞},

where
‖u‖ = sup

x∈R, t∈[0,T ]
|u(x, t)|+ sup

x∈R, t∈[0,T ]
|ux(x, t)|.

It is easy to check that such a space with the metric given by

d(u, v) = sup
x∈R, t∈[0,T ]

|u(x, t) − v(x, t)|+ sup
x∈R, t∈[0,T ]

|ux(x, t) − vx(x, t)|

is complete metric space.

Theorem 5.2. Assume that the following conditions are satisfied

(i) f, g : R× [0, T ]×R×R → R are continuous. For any ε > 0 with |u| < ε and |v| < ε, the functions
f(x, t,u, v), g(x, t,u, v) are uniformly Hölder continuous in x and t for each compact subset of Ω× [0, T ];

(ii) there exists a function ξ ∈ Ω2×Ω2 → R and positive constants c1 and c2 such that for all (u1, v1), (u2, v2) ∈
Ω2 with ξ((u1, v1), (u2, v2)) > 0, we have

|f(x, t,u1, (u1)x) − f(x, t,u2, (u2)x)| 6 c1ϕ

(
|u1 − u2 + (u1)x − (u2)x|

2

)
,

|g(x, t, v1, (v1)x) − g(x, t, v2, (v2)x)| 6 c2ϕ

(
|v1 − v2 + (v1)x − (v2)x|

2

)
,

where ϕ(t) : [0,+∞) → [0,+∞) is a non-decreasing Jachymski function with ϕ(t) < t for all t > 0. In
addition, ξ((u1, v1), (u2, v2)) > 0 and ξ((u2, v2), (u3, v3)) > 0 imply that ξ((u1, v1), (u3, v3)) > 0, for all
(ui, vi) ∈ Ω2, i = 1, 2, 3;

(iii) f,g are bounded for bounded u and v;
(iv) c1 + c2 6 (T + 2π−1/2T 1/2)−1;
(v) there exists (u0, v0) ∈ Ω×Ω such that for all x ∈ R and t ∈ [0, T ], we have

ξ

(
(u0(x, t), v0(x, t)),

( ∫∞
−∞ k(x− ξ, t)ϕ(ξ)dξ+

∫t
0

∫∞
−∞ k(x− ξ, t− τ)

× [f(ξ, τ,u0(ξ, τ), (u0)x(ξ, τ)) + g(ξ, τ, v0(ξ, τ), (v0)x(ξ, τ))]dξdτ,∫∞
−∞ k(x− ξ, t)ϕ(ξ)dξ+

∫t
0

∫∞
−∞ k(x− ξ, t− τ)[f(ξ, τ, v0(ξ, τ), (v0)x(ξ, τ))

+ g(ξ, τ,u0(ξ, τ), (u0)x(ξ, τ))]dξdτ

))
> 0;

(vi) for all x ∈ R and t ∈ [0, T ], (u1, v1), (u2, v2) ∈ Ω×Ω,

ξ((u1(x, t), v1(x, t)), (u2(x, t), v2(x, t))) =⇒

ξ

((∫∞
−∞ k(x− ξ, t)ϕ(ξ)dξ+

∫t
0

∫∞
−∞ k(x− ξ, t− τ)[f(ξ, τ,u1(ξ, τ), (u1)x(ξ, τ))

+ g(ξ, τ, v1(ξ, τ), (v1)x(ξ, τ))]dξdτ,
∫∞
−∞ k(x− ξ, t)ϕ(ξ)dξ

+

∫t
0

∫∞
−∞ k(x− ξ, t− τ)[f(ξ, τ, v1(ξ, τ), (v1)x(ξ, τ)) + g(ξ, τ,u1(ξ, τ), (u1)x(ξ, τ))]dξdτ

)
,
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−∞ k(x− ξ, t)ϕ(ξ)dξ+

∫t
0

∫∞
−∞ k(x− ξ, t− τ)[f(ξ, τ,u2(ξ, τ), (u2)x(ξ, τ))

+ g(ξ, τ, v2(ξ, τ), (v2)x(ξ, τ))]dξdτ,
∫∞
−∞ k(x− ξ, t)ϕ(ξ)dξ

+

∫t
0

∫∞
−∞ k(x− ξ, t− τ)[f(ξ, τ, v2(ξ, τ), (v2)x(ξ, τ)) + g(ξ, τ,u2(ξ, τ), (u2)x(ξ, τ))]dξdτ

))
;

(vii) if {un} and {vn} are sequences inΩ such that ξ((un, vn), (un+1, vn+1))>0 and ξ((vn,un), (vn+1,un+1))>
0 for all n with un → u ∈ Ω and vn → v ∈ Ω as n → ∞, then ξ((un, vn), (u, v)) > 0 and
ξ((vn,un), (v,u)) > 0 for all n ∈N.

Then initial-value problem (5.4) has a solution.

Proof. The problem (5.4) is equivalent to the integral equation

u(x, t) =
∫∞
−∞ k(x− ξ, t)ϕ(ξ)dξ+

∫t
0

∫∞
−∞ k(x− ξ, t− τ)[f(ξ, τ,u(ξ, τ),ux(ξ, τ))

+ g(ξ, τ, v(ξ, τ), vx(ξ, τ))]dξdτ,

v(x, t) =
∫∞
−∞ k(x− ξ, t)ϕ(ξ)dξ+

∫t
0

∫∞
−∞ k(x− ξ, t− τ)[f(ξ, τ, v(ξ, τ), vx(ξ, τ))

+ g(ξ, τ,u(ξ, τ),ux(ξ, τ))]dξdτ

for all x ∈ R and 0 < t 6 T , where

k(x, t) =
1√
4πt

exp
{
−x2

4t

}
(5.5)

for all x ∈ R and t > 0. Define a mapping F : Ω×Ω→ Ω by

F(u, v)(x, t) =
∫∞
−∞ k(x− ξ, t)ϕ(ξ)dξ+

∫t
0

∫∞
−∞ k(x− ξ, t− τ)[f(ξ, τ,u(ξ, τ),ux(ξ, τ))

+ g(ξ, τ, v(ξ, τ), vx(ξ, τ))]dξdτ

for all x ∈ R and t ∈ [0, T ]. We can see that (u, v) is a solution of the problem (5.4) if and only if
(u, v) ∈ Ω×Ω is a coupled fixed point of F.

Now, let (u1,u2), (v1, v2) ∈ Ω×Ω such that

ξ((u1(x, t),u2(x, t)), (v1(x, t), v2(x, t)) > 0

for all x ∈ R and t ∈ [0, T ]. It follows from the increasing property of ϕ and (5.5) that

d(F(u1, v1), F(u2, v2)) 6
(
T + 2π−

1
2 T

1
2

)[
c1ϕ

(
d(u1,u2)

2

)
+ c2ϕ

(
d(v2, v1)

2

)]
. (5.6)

In similar arguments, we have

d(F(v1,u1), F(v2,u2)) 6
(
T + 2π−

1
2 T

1
2

)[
c2ϕ

(
d(u1,u2)

2

)
+ c1ϕ

(
d(v2, v1)

2

)]
. (5.7)

By summing (5.6) and (5.7), and combining the increasing property of ϕ and condition (iv), we get

d(F(u1, v1), F(u2, v2)) + d(F(v1,u1), F(v2,u2))

2

6
(
T + 2π−

1
2 T

1
2

)(c1 + c2

2

)[
ϕ

(
d(u1,u2)

2

)
+ϕ

(
d(v2, v1)

2

)]
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6
(
T + 2π−

1
2 T

1
2

)(c1 + c2

2

)
2ϕ
(
d(u1,u2) + d(v2, v1)

2

)
6 ϕ

(
d(u1,u2),d(v2, v1)

2

)
.

Define the function α : Ω2 ×Ω2 → [0,+∞) by

α((u1, v1), (u2, v2)) =

{
1, if ξ((u1(x, t), v1(x, t)), (u2(x, t), v2(x, t))) > 0,
0, otherwise.

For all (u1, v1), (u2, v2) ∈ Ω×Ω, we have

α((u1, v1), (u2, v2))
d(F(u1, v1), F(u2, v2)) + d(F(v1,u1), F(v2,u2))

2
6 ϕ

(
d(u1,u2) + d(v1, v2)

2

)
.

Then, T is an α-ψ-ϕ-contractive mapping. From condition (vi), for all (u1, v1), (u2, v2) ∈ Ω×Ω,

α((u1, v1), (u2, v2)) > 1
=⇒ ξ((u1(x, t), v1(x, t)), (u2(x, t), v2(x, t))) > 0
=⇒ ξ((F(u1(x, t), v1(x, t))), F(v1(x, t),u1(x, t))), (F(u2(x, t), v2(x, t)), F(v2(x, t),u2(x, t)))) > 0
=⇒ α((F(u1, v1), F(v1,u1)), (F(u2, v2), F(v2,u2))) > 1.

From (v), there exists (x0,y0) ∈ Ω×Ω such that

α((x0,y0), (F(x0,y0), F(y0, x0))) > 1.

Finally, from (vii), and using Theorem 4.1, we deduce the existence of (x∗,y∗) ∈ C2(I, R) such that
x∗ = F(x∗,y∗) and y∗ = F(y∗, x∗), that is (x∗,y∗) is a solution to (5.4).

Remark 5.3. Chaipunya et al. [7] considered the initial value problem (5.4) when g(x, t,u,ux) = g(x, t, v, vx)
≡ 0. Very recently, in [25], we discussed the corresponding initial-value problem of single parabolic
equation for (5.4). Unlike to Theorem 4.2 of [25], it should be noted that we do not require f and g to have
the mixed monotone properties.
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