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Abstract
In this paper, we introduce and study a class of new modified iterative approximation processes for two finite families of

total asymptotically nonexpansive nonself mappings in hyperbolic spaces. By using generalization of Schu’s lemma and Tan-Xu’s
inequality, some important related properties of this modified iterative approximation are proposed and analyzed. Further, based
on the related properties, we prove ∆-convergence and strong convergence of the modified iterative approximating process in
hyperbolic spaces. Because a total asymptotically nonexpansive nonself mapping in hyperbolic spaces includes asymptotically
nonexpansive mapping, (generalized) nonexpansive mapping of all normed linear spaces, Hadamard manifolds and CAT(0)
spaces as special cases, the results presented in this paper improve and generalize the corresponding results in the literature.
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1. Introduction and preliminaries

In this paper, we consider the following new modified iterative approximating process in a hyperbolic
space X:

yn = PW
(
Tr(PTr)

n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn
)

,

yn+1 = PW
(
Tr−1(PTr−1)

n−1yn,W(yn,Sr−1(PSr−1)
n−1yn, θ(r−1)n),α(r−1)n

)
,

...

yn+r−3 = PW
(
T3(PT3)

n−1yn+r−4,W(yn+r−4,S3(PS3)
n−1yn+r−4, θ3n),α3n

)
,

yn+r−2 = PW
(
T2(PT2)

n−1yn+r−3,W(yn+r−3,S2(PS2)
n−1yn+r−3, θ2n),α2n

)
,

xn+1 = PW
(
T1(PT1)

n−1yn+r−2,W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n),α1n

)
,

(1.1)
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where θin = βin
1−αin

for αin,βin ∈ (0, 1) and all i ∈ < = {1, 2, · · · , r} and n > 1, {Ti}i∈< and {Si}i∈< are
two finite families of nonlinear mappings on K onto X and P : X→ K ⊂ X is a nonexpansive retraction.

Remark 1.1. For appropriate and suitable choices of the nonlinear mappings Ti,Si, real numbers αin,βin
(i ∈ <), positive integer r, mapping P and the space X, the sequence {xn} generated by (1.1) includes
a number of known and investigated iterative schemas. See, for example, [1, 2, 4, 5, 8, 12, 14, 16, 19–
21, 24, 27–31, 33] and the references therein, and the following examples:

Example 1.2. If P = I (the identity mapping) and Ti and Si are self-mappings from K to K for all i =
1, 2, · · · , r, then (1.1) reduces to

yn =W (Tnr xn,W(xn,Snr xn, θrn),αrn) ,
yn+1 =W

(
Tnr−1yn,W(yn,Snr−1yn, θ(r−1)n),α(r−1)n

)
,

...
yn+r−3 =W (Tn3 yn+r−4,W(yn+r−4,Sn3 yn+r−4, θ3n),α3n) ,
yn+r−2 =W (Tn2 yn+r−3,W(yn+r−3,Sn2 yn+r−3, θ2n),α2n) ,
xn+1 =W (Tn1 yn+r−2,W(yn+r−2,Sn1 yn+r−2, θ1n),α1n) ,

(1.2)

which was considered by Fukhar-ud-din and Khan [4] when {Ti}i∈< and {Si}i∈< are two families of
asymptotically quasi-nonexpansive self-mappings on K.

Example 1.3. When r = 3 and αin = 0, (1.2) is equivalent to the iterative process introduced and studied
by Noor [16], which was dealt with variational inequalities in Hilbert spaces. Moreover, Sahin and Basarir
[20] considered a unified treatment regarding iterative process for total asymptotically nonexpansive
mapping in hyperbolic spaces. For more detail, refer to [19, 24] and the references therein.

Example 1.4. Let r = 2, α1n = β1n = 0, and α2n = 0, then (1.2) becomes to the iteration discussed by
Thakur et al. [27] in CAT(0) space as follows:

xn+1 = Sn1 yn, yn =W(xn,Sn2 xn,β2n). (1.3)

The iteration (1.3) is called a modified hybrid Picard-Mann iterative process, and includes Picard-Mann
iteration introduced firstly by Khan [5] in 2013.

Example 1.5. If r = 1 and α1n = 0 (or r = 2, α1n = 0, β1n = 1 and α2n = 0), then (1.2) is equivalent to

xn+1 =W(xn,Sn1 xn,β1n) (or xn+1 =W(xn,Sn2 xn,β2n)),

which is well-known modified Mann iteration, and was introduced and considered by Schu [21] in Banach
spaces.

In order to explore an iterative approximation for the process generated by (1.1), now we recall that
a hyperbolic space introduced by Kohlenbach [9], is a metric space (X,d) together with a mapping W :
X2 × [0, 1]→ X satisfying the following conditions: for all u, x,y, z,w ∈ X and α,β ∈ [0, 1],

(i) d (u,W(x,y,α)) 6 αd(u, x) + (1 −α)d(u,y);
(ii) d(W(x,y,α),W(x,y,β)) = |α−β|d(x,y);

(iii) W(x,y,α) =W(y, x, (1 −α));
(iv) d(W(x, z,α),W(y,w,α)) 6 αd(x,y) + (1 −α)d(z,w).

We note that a metric space which satisfies only condition (i), is consistent with a convex metric space,
which was introduced by Takahashi [25]. Further, the concept of hyperbolic spaces in [9] is more restrictive
than that introduced by Kuhfittig [11], because conditions (i)-(iii) together are equivalent to (X,d,W) being
a space of hyperbolic type in [11]. But the hyperbolic spaces in [9] are slightly more general than that
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defined by Reich and Shafrir [18]. However, the class of hyperbolic spaces in the sense of Kohlenbach [9]
contains all normed linear spaces and convex subsets thereof but also Hadamard manifolds and CAT(0)
spaces. For more on hyperbolic spaces and a comparison between different notions of hyperbolic space,
and some examples of hyperbolic spaces one can refer to [3, 9, 31] and the references therein.

Definition 1.6. Let X be a hyperbolic space and K ⊂ X be a nonempty subset, and let η : (0,+∞)× (0, 2]→
(0, 1] be a nonlinear mapping. Then

(i) K is convex if W(x,y,α) ∈ K for all x,y ∈ K and α ∈ [0, 1];
(ii) X is uniformly convex if for any r > 0 and ε ∈ (0, 2], and all u, x,y ∈ X, there exists δ ∈ (0, 1] such

that
d(W(x,y,

1
2
),u) 6 (1 − δ)r

with max{d(x,u),d(y,u)} 6 r and d(x,y) > rε (see [3, 23]);
(iii) A modulus of uniform convexity of X is denoted by δ = η(r, ε) for given r > 0 and ε ∈ (0, 2];
(iv) η is monotone if it decreases with respect to r, i.e.,

η(r2, ε) 6 η(r1, ε), ∀ε > 0, r2 > r1 > 0.

Remark 1.7. A CAT(0) space is a uniformly convex hyperbolic space when η(r, ε) = ε2

8 (see [13]). Thus, the
class of uniformly convex hyperbolic spaces includes both uniformly convex normed spaces and CAT(0)
spaces as special cases.

In the sequel, let (X,d) be a metric space and K ⊂ X be nonempty. We shall denote the fixed point set
of a nonself-mapping T : K→ X by F(T) = {x ∈ K : Tx = x}. Recall that K is said to be a retract of X if there
exists a continuous mapping P : X→ K such that Px = x for all x ∈ K. A mapping P : X→ K is said to be
a retraction if P2 = P. If P is a retraction, then Py = y for y in the range of P.

Definition 1.8. Let P : X→ K be a nonexpansive retraction. A mapping T : K→ X is said to be

(i) nonexpansive if
d(Tx, Ty) 6 d(x,y), ∀x,y ∈ K;

(ii) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [0,+∞) with limn→∞ kn = 0 such
that

d(Tnx, Tny) 6 (1 + kn)d(x,y), ∀x,y ∈ K, n > 1; (1.4)

(iii) asymptotically quasi-nonexpansive if there exists {kn} as in (1.4) such that

d(Tnx,p) 6 (1 + kn)d(x,p), ∀x ∈ K, p ∈ F(T) 6= ∅, n > 1;

(iv) ({µn}, {ξn}, ρ)-total asymptotically nonexpansive if there exist nonnegative sequences {µn}, {ξn} and
a strictly increasing continuous function ρ : [0,+∞) → [0,+∞) with µn → 0, ξn → 0 and ρ(0) = 0
such that

d(Tnx, Tny) 6 d(x,y) + µnρ
(
d(x,y)

)
+ ξn, ∀x,y ∈ K, n > 1; (1.5)

(v) ({µn}, {ξn}, ρ)-total asymptotically nonexpansive nonself-mapping if there exist {µn}, {ξn} and ρ as
in (1.5) such that

d(T(PT)n−1x, T(PT)n−1y) 6 d(x,y) + µnρ
(
d(x,y)

)
+ ξn, ∀x,y ∈ K, n > 1;

(vi) ({µn}, {ξn}, ρ)-total asymptotically quasi-nonexpansive nonself-mapping if there exist {µn}, {ξn} and
ρ as in (1.5) such that

d(T(PT)n−1x,p) 6 d(x,p) + µnρ
(
d(x,p)

)
+ ξn, ∀x ∈ K, p ∈ F(T) 6= ∅, n > 1;
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(vii) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(T(PT)n−1x, T(PT)n−1y) 6 Ld(x,y), ∀x,y ∈ K, n > 1.

Remark 1.9. By Definition 1.8, one can know that a nonexpansive mapping is an asymptotically nonexpan-
sive mapping with kn ≡ 0 for n > 1, and each asymptotically nonexpansive mapping is a ({µn}, {ξn}, ρ)-
total asymptotically nonexpansive mapping with ξn = 0, and ρ(t) = t > 0. However, in general, the
converse is not true. Indeed, Wang et al. [30] introduced the class of total asymptotically nonexpansive
nonself-mappings, and generalized and extended several classes of asymptotically nonexpansive map-
pings. For more detail, see, for example, [29, 32] and the references therein.

As all we know that uniformly convex Banach spaces and even CAT(0) spaces enjoy the property
that “bounded sequences have unique asymptotic centers with respect to closed convex subsets”. The
following lemma is due to Leustean [13] and ensures that this property also holds in a complete uniformly
convex hyperbolic space.

Lemma 1.10 ([13]). Let (X,d,W) be a complete uniformly convex hyperbolic space with monotone modulus of
uniform convexity. Then every bounded sequence {xn} ⊂ X has a unique asymptotic center with respect to any
nonempty closed convex subset K ⊂ X.

Lemma 1.11 ([7]). Let (X,d,W) be a uniformly convex hyperbolic space with monotone modulus of uniform
convexity η. Let x ∈ X and sequence {αn} ⊂ [a,b] for some a,b ∈ (0, 1). If {xn} and {yn} are sequences in X such
that for some c > 0,

lim sup
n→∞ d(xn, x) 6 c, lim sup

n→∞ d(yn, x) 6 c, lim
n→∞d(W(xn,yn,αn), x) = c,

then limn→∞ d(xn,yn) = 0.

Lemma 1.12 ([26]). Let {an}, {bn}, and {ωn} be nonnegative real sequences satisfying

an+1 6 (1 +ωn)an + bn, ∀n > 1.

If
∑∞
n=1ωn <∞ and

∑∞
n=1 bn <∞, then limn→∞ an exists. Further, if there exists a subsequence {ani} ⊂ {an}

such that ani → 0, then limn→∞ an = 0.

Lemma 1.13 ([29]). Let (X,d,W) be a complete uniformly convex hyperbolic space with monotone modulus of
uniform convexity η, and K be a nonempty closed and convex subset of X. Suppose that T : K → X is a uniformly
L-Lipschitzian and ({µn}, {ξn}, ρ)-total asymptotically nonexpansive nonself-mapping, and P is a nonexpansive
retraction of X onto K. If {xn} ⊂ K is a bounded approximate fixed point sequence, i.e., limn→∞(xn, Txn) = 0 and
{xn} ⇀ p, then T(p) = p.

Inspired and motivated by the above recent works, in this paper, we shall study some important
related properties of the new modified iterative approximating process (1.1) for two finite families of total
asymptotically nonexpansive nonself-mappings as well as two finite families of total asymptotically quasi-
nonexpansive nonself-mappings in hyperbolic spaces. Further, ∆-convergence and strong convergence of
this iterative process are proved.

2. ∆-convergence

Throughout this paper, we assume that < = {1, 2, · · · , r}, {Ti}i∈< and {Si}i∈< are two finite families of
total asymptotically (quasi-) nonexpansive nonself-mappings on K onto X, P : X → K is a nonexpansive
retraction, and for each i ∈ < and all n > 1, θin = βin

1−αin
, {αin} and {βin} are two double real sequences

in [a,b], i.e,

0 < a 6 αin, βin 6 b < 1. (2.1)
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On behalf of defining the concept of ∆-convergence in the general setup of hyperbolic spaces, we first
give some basic concepts.

In 1976, Lim [15] proposed the notion of asymptotic center and original concept of ∆-convergence in
a general setting of a metric space. Recently, Kirk and Panyanak [10] introduced an analogous version of
convergence in geodesic spaces (i.e., ∆-convergence), and pointed out “∆-convergence coincides with the
usual weak convergence in Banach spaces and both concepts share many useful properties”.

Let {xn} be a bounded sequence in a hyperbolic space X. For x ∈ X, we define a continuous functional
r(·, {xn}) : X→ [0,+∞) by

r(x, {xn}) = lim sup
n→∞ d(x, xn).

The asymptotic radius r({xn}) of {xn} is defined by r({xn}) = inf{r(x, {xn}) : x ∈ X}. The asymptotic center
of a bounded sequence {xn} with respect to K ⊂ X is defined as follows:

AK({xn}) = {x ∈ X : r(x, {xn}) 6 r(y, {xn}), ∀y ∈ K},

which is the set of minimizers for r(·, {xn}). If the asymptotic center is taken with respect to X, then it is
simply denoted by A({xn}).

Definition 2.1. A sequence {xn} ⊂ X is called ∆-converge to x ∈ X if x is the unique asymptotic center of
{xni} for every subsequence {xni} of {xn}.

By this time, we denote ∆-limn→∞ xn = x and call x the ∆-limit of {xn}. In what follows, we indicate
the notation {xn} ⇀ p if and only if Φ(p) = infx∈KΦ(x), where Φ(x) = lim supn→∞ d(xn, x). We note that
{xn} ⇀ p is equivalent to AK({xn}) = {p}, and ∆-limn→∞ xn = p implies that {xn} ⇀ p (see [29, 32]).

For discussing the new modified iterative approximating process (1.1), we present the following im-
portant related lemmas.

Lemma 2.2. Let K be a nonempty closed and convex subset of a hyperbolic space X. For i ∈ <, let Ti :
K → X be a ({µin}, {ξin}, ρi)-total asymptotically quasi-nonexpansive nonself-mapping with limn→∞ µin = 0 and
limn→∞ ξin = 0, and a strictly increasing continuous function ρi : [0,+∞)→ [0,+∞) satisfying ρi(0) = 0, and
let Si : K→ X be a ({µ̂in}, {ξ̂in}, ρ̂i)-total asymptotically quasi-nonexpansive nonself-mapping with limn→∞ µ̂in = 0
and limn→∞ ξ̂in = 0, and a strictly increasing continuous function ρ̂i : [0,+∞)→ [0,+∞) satisfying ρ̂i(0) = 0.
Assume that F =

⋂r
i=1(F(Ti)∩ F(Si)) 6= ∅, and for each i ∈ <, the following conditions hold:

(i)
∑∞
n=1 µ

i
n < +∞,

∑∞
n=1 µ̂

i
n < +∞,

∑∞
n=1 ξ

i
n < +∞,

∑∞
n=1 ξ̂

i
n < +∞.

(ii) There exist constants Mi > 0 and M̂i > 0 such that

ρi(r) 6Mir, ρ̂i(r) 6 M̂ir, ∀r > 0.

Then, for the sequence {xn} defined by (1.1), limn→∞ d(xn,p) exists for all p ∈ F.
Proof. Let µn = maxi∈<{µin, µ̂in}, and ξn = maxi∈<{ξin, ξ̂in}, ρ = maxi∈<{ρi, ρ̂i}, M∗ = maxi∈<{Mi, M̂i}.
By conditions (i) and (ii), we have

∑∞
n=1 µn < +∞,

∑∞
n=1 ξn < +∞, ρ(r) 6M∗r for any r > 0. For every

p ∈ F and any n > 1, it follows from (1.1) that

d(yn,p) = d(PW(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn),Pp)

6 d(W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn),p)

6 αrnd(Tr(PTr)
n−1xn,p) + (1 −αrn)d(W(xn,Sr(PSr)n−1xn, θrn),p)

6 αrnd(Tr(PTr)
n−1xn,p) +βrnd(xn,p) + (1 −αrn −βrn)d(Sr(PSr)

n−1xn,p)
6 αrn[d(xn,p) + µrnρ

r
(
d(xn,p)

)
+ ξrn] +βrnd(xn,p)

+ (1 −αrn −βrn)[d(xn,p) + µ̂rnρ̂
r
(
d(xn,p)

)
+ ξ̂rn]

6 αrn[d(xn,p) + µnρ
(
d(xn,p)

)
+ ξn] +βrnd(xn,p)

+ (1 −αrn −βrn)[d(xn,p) + µnρ
(
d(xn,p)

)
+ ξn]

6 [1 + (1 −βrn)µnM
∗]d(xn,p) + (1 −βrn)ξn

6 (1 + µnM
∗)d(xn,p) + ξn

(2.2)
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and

d(yn+1,p) = d(PW(Tr−1(PTr−1)
n−1yn,W(yn,Sr−1(PSr−1)

n−1yn, θ(r−1)n),α(r−1)n),Pp)

6 d(W(Tr−1(PTr−1)
n−1yn,W(yn,Sr−1(PSr−1)

n−1yn, θ(r−1)n),α(r−1)n),p)

6 α(r−1)nd(Tr−1(PTr−1)
n−1yn,p) +β(r−1)nd(yn,p)

+ (1 −α(r−1)n −β(r−1)n)d(Sr−1(PSr−1)
n−1yn,p)

6 α(r−1)n[d(yn,p) + µnρ
(
d(yn,p)

)
+ ξn] +β(r−1)nd(yn,p)

+ (1 −α(r−1)n −β(r−1)n)[d(yn,p) + µnρ
(
d(yn,p)

)
+ ξn]

6 [1 + (1 −β(r−1)n)µnM
∗]d(yn,p) + (1 −β(r−1)n)ξn

6 (1 + µnM
∗)d(yn,p) + ξn.

(2.3)

Similarly, we have

d(yn+r−2,p) 6 (1 + µnM
∗)d(yn+r−3,p) + ξn, d(xn+1,p) 6 (1 + µnM

∗)d(yn+r−2,p) + ξn.

Thus,

d(xn+1,p) 6 (1 + µnM
∗)rd(xn,p) +

r−1∑
j=0

(1 + µnM
∗)jξn

6 d(xn,p)
[
1 +

(r
1

)
µnM

∗ +
(r

2

)
(µnM

∗)2 +
(r

3

)
(µnM

∗)3 + · · ·+
(r
r

)
(µnM

∗)r
]

+

r−1∑
j=0

(1 + µnM
∗)jξn

6 (1 + arnµn)d(xn,p) +
r−1∑
j=0

(1 + µnM
∗)jξn

6 (1 +M1µn)d(xn,p) +M2ξn,

(2.4)

where arn =
(r

1

)
M∗+

(r
2

)
(M∗)2µn+

(r
3

)
(M∗)3(µn)

2 + · · ·+
(r
r

)
(M∗)r(µn)

r−1, and it follows from condition
(i) that there exist positive constants M1 and M2 such that arn 6 M1,

∑r−1
j=0 (1 + µnM

∗)j 6 M2 for each
n > 1. By Lemma 1.12, the inequality (2.4) implies that limn→∞ d(xn,p) exists for each p ∈ F.

Lemma 2.3. Let K be a nonempty closed and convex subset of a uniformly convex hyperbolic space X with monotone
modulus of uniform convexity η. For i ∈ <, let Ti : K → X be a uniformly Li-Lipschitzian and ({µin}, {ξin}, ρi)-
total quasi-asymptotically nonexpansive nonself-mapping, and Si : K → X be a uniformly L̂i-Lipschitzian and
({µ̂in}, {ξ̂in}, ρ̂i)-total asymptotically quasi-nonexpansive nonself-mapping, where constants µin, ξin, ρi, µ̂in, ξ̂in, ρ̂i

are the same as in Lemma 2.2. Suppose that F =
⋂r
i=1(F(Ti)∩ F(Si)) 6= ∅ and the conditions (i) and (ii) in Lemma

2.2 hold. Then, for i ∈ < and the sequence {xn} in (1.1), we have

lim
n→∞d(xn, Tixn) = lim

n→∞d(xn,Sixn) = 0.

Proof. From Lemma 2.2, it follows that limn→∞ d(xn,p) exists for each p ∈ F. Assume that

lim
n→∞d(xn,p) = c > 0.

Otherwise, the proof is trivial.
Since µn → 0 and ξn → 0 as n → ∞, taking lim sup on both sides of inequalities (2.2) and (2.3), we

have lim supn→∞ d(yn,p) 6 c and lim supn→∞ d(yn+1,p) 6 c. Similarly, lim supn→∞ d(yn+r−2,p) 6 c,
and so

lim sup
n→∞ d(yn+k−1,p) 6 c, ∀k = 1, 2, · · · , r− 1. (2.5)
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Since

d(xn+1,p) 6 (1 + µnM
∗)r−1d(yn,p) +

r−2∑
j=0

(1 + µnM
∗)jξn, (2.6)

and taking lim inf on both sides of (2.6), we have

lim inf
n→∞ d(yn,p) > c, d(xn+1,p) 6 (1 + µnM

∗)r−kd(yn+k−1,p) +
r−k−1∑
j=0

(1 + µnM
∗)jξn

for all k = 2, 3, · · · , r− 1. Also setting lim inf on both side of the above estimate, then we have

lim inf
n→∞ d(yn+k−1,p) > c, ∀k = 2, 3, · · · , r− 1.

Thus, for every k = 1, 2, · · · , r− 1,

lim inf
n→∞ d(yn+k−1,p) > c. (2.7)

Combining (2.5) and (2.7), we have

lim
n→∞d(yn+k−1,p) = c, ∀k = 1, 2, · · · , r− 1. (2.8)

For k = 1 in (2.8), and combining (2.2), we get

lim
n→∞d(W(Tr(PTr)

n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn),p) = c. (2.9)

Moreover,

d(W(xn,Sr(PSr)n−1xn, θrn),p) 6 θrnd(xn,p) + (1 − θrn)d(Sr(PSr)
n−1xn,p)

6 θrnd(xn,p) + (1 − θrn)[(1 + µnM
∗)d(xn,p) + ξn]

6 (1 + µnM
∗)d(xn,p) + ξn,

which implies that

lim sup
n→∞ d(W(xn,Sr(PSr)n−1xn, θrn),p) 6 c. (2.10)

Obviously,

lim sup
n→∞ d(Tr(PTr)

n−1xn,p) 6 c. (2.11)

It follows from (2.9)-(2.11) and Lemma 1.11 that

lim
n→∞d(Tr(PTr)n−1xn,W(xn,Sr(PSr)n−1xn, θrn)) = 0. (2.12)

Again, for k = 2, 3, · · · , r− 1, (2.8) is rewritten as

lim
n→∞d(PW(Tr−(k−1)(PTr−(k−1))

n−1yn+k−2,

W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n),p) = c.

In a similar way to (2.8), we have

lim
n→∞d(W(Tr−(k−1)(PTr−(k−1))

n−1yn+k−2,

W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n),p) = c.

(2.13)
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By (2.5) and the following inequality

d(W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),p)

6 θ(r−k+1)nd(yn+k−2,p) + (1 − θ(r−k+1)n)d(Sr−(k−1)(PSr−(k−1))
n−1yn+k−2,p)

6 θ(r−k+1)nd(yn+k−2,p) + (1 − θ(r−k+1)n)[(1 + µnM
∗)d(yn+k−2,p) + ξn]

6 (1 + µnM
∗)d(yn+k−2,p) + ξn,

now we know that

lim sup
n→∞ d(W(yn+k−2,Sr−(k−1)(PSr−(k−1))

n−1yn+k−2, θ(r−k+1)n),p) 6 c. (2.14)

Further,

lim sup
n→∞ d(Tr−(k−1)(PTr−(k−1))

n−1yn+k−2,p) 6 c, ∀k = 2, 3, · · · , r− 1. (2.15)

From (2.13)-(2.15) and Lemma 1.11, it follows that

lim
n→∞d(Tr−(k−1)(PTr−(k−1))

n−1yn+k−2,

W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n)) = 0

(2.16)

for k = 2, 3, · · · , r− 1. When k = r, we get

lim
n→∞d(xn+1,p) = lim

n→∞d(PW(T1(PT1)
n−1yn+r−2,W(yn+r−2,S1(PS1)

n−1yn+r−2, θ1n),α1n),p) = c.

This implies that

lim
n→∞d(W(T1(PT1)

n−1yn+r−2,W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n),α1n),p) = c. (2.17)

By (2.5), the following estimate

d(W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n),p) 6 θ1nd(yn+r−2,p) + (1 − θ1n)d(S1(PS1)

n−1yn+r−2,p)
6 θ1nd(yn+r−2,p) + (1 − θ1n)[(1 + µnM

∗)d(yn+r−2,p) + ξn]
6 (1 + µnM

∗)d(yn+r−2,p) + ξn

implies that

lim sup
n→∞ d(W(yn+r−2,S1(PS1)

n−1yn+r−2, θ1n),p) 6 c. (2.18)

Also,

lim sup
n→∞ d(T1(PT1)

n−1yn+r−2,p) 6 c. (2.19)

Hence, (2.17)-(2.19) and Lemma 1.11 imply that

lim
n→∞d(T1(PT1)

n−1yn+r−2,W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n)) = 0, (2.20)

and

d(W(T1(PT1)
n−1yn+r−2,W(yn+r−2,S1(PS1)

n−1yn+r−2, θ1n),α1n), T1(PT1)
n−1yn+r−2)

6 (1 −α1n)d(W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n), T1(PT1)

n−1yn+r−2)
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+α1nd(T1(PT1)
n−1yn+r−2, T1(PT1)

n−1yn+r−2).

Based on (2.20), this implies

lim
n→∞d(W(T1(PT1)

n−1yn+r−2,W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n),α1n), T1(PT1)

n−1yn+r−2) = 0, (2.21)

and so

lim
n→∞d(xn+1, (PT1)

nyn+r−2) = 0.

In addition, it follows from (2.1) that

d(W(T1(PT1)
n−1yn+r−2,W(yn+r−2,S1(PS1)

n−1yn+r−2, θ1n),α1n),p)

6 α1nd(T1(PT1)
n−1yn+r−2,p) + (1 −α1n)d(W(yn+r−2,S1(PS1)

n−1yn+r−2, θ1n),p)

6 α1nd(W(T1(PT1)
n−1yn+r−2,W(yn+r−2,S1(PS1)

n−1yn+r−2, θ1n),α1n),p)

+α1nd(W(T1(PT1)
n−1yn+r−2,W(yn+r−2,S1(PS1)

n−1yn+r−2, θ1n),α1n), T1(PT1)
n−1yn+r−2)

+ (1 −α1n)d(W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n),p)

6
α1n

1 −α1n
d(W(T1(PT1)

n−1yn+r−2,W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n),α1n), T1(PT1)

n−1yn+r−2)

+ d(W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n),p)

6
b

1 − b
d(W(T1(PT1)

n−1yn+r−2,W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n),α1n), T1(PT1)

n−1yn+r−2)

+ d(W(yn+r−2,S1(PS1)
n−1yn+r−2, θ1n),p).

(2.22)

Taking lim inf on both sides of the estimate (2.22), and from (2.17) and (2.21), we have

lim inf
n→∞ d(W(yn+r−2,S1(PS1)

n−1yn+r−2, θ1n),p) > c. (2.23)

Combining (2.18) and (2.23), we get

lim
n→∞d(W(yn+r−2,S1(PS1)

n−1yn+r−2, θ1n),p) = c. (2.24)

By Lemma 1.11 and (2.24), we have

lim
n→∞d(yn+r−2,S1(PS1)

n−1yn+r−2) = 0.

In a similar way, for k = 2, 3, · · · , r− 1, we compute

d(W(Tr−(k−1)(PTr−(k−1))
n−1yn+k−2,W(yn+k−2,Sr−(k−1)(PSr−(k−1))

n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n),

Tr−(k−1)(PTr−(k−1))
n−1yn+k−2)

6 (1 −α(r−k+1)n)d(W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),

Tr−(k−1)(PTr−(k−1))
n−1yn+k−2)

+α(r−k+1)nd(Tr−(k−1)(PTr−(k−1))
n−1yn+k−2, Tr−(k−1)(PTr−(k−1))

n−1yn+k−2).

Utilizing (2.16), we have

lim
n→∞d(W(Tr−(k−1)(PTr−(k−1))

n−1yn+k−2,W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2,

θ(r−k+1)n),α(r−k+1)n), Tr−(k−1)(PTr−(k−1))
n−1yn+k−2) = 0, ∀k = 2, 3, · · · , r− 1

(2.25)
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and so

lim
n→∞d(yn+k−1, (PTr−(k−1))

nyn+k−2) = 0, ∀k = 2, 3, · · · , r− 1. (2.26)

For k = 1, we calculate

d(W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn), Tr(PTr)n−1xn)

6 αrnd(Tr(PTr)
n−1xn, Tr(PTr)n−1xn) + (1 −αrn)d(W(xn,Sr(PSr)n−1xn, θrn), Tr(PTr)n−1xn).

Now, using (2.12), we have

lim
n→∞d(W(Tr(PTr)

n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn), Tr(PTr)n−1xn) = 0, (2.27)

and so

lim
n→∞d(yn, (PTr)nxn) = 0.

Reasoning as above, we get

d(W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn),p)

6
b

1 − b
d(Tr(PTr)

n−1xn,W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn))

+ d(W(xn,Sr(PSr)n−1xn, θrn),p).

(2.28)

Setting lim inf on both sides of the estimate (2.28) and utilizing (2.9) and (2.27), we know

lim inf
n→∞ d(W(xn,Sr(PSr)n−1xn, θrn),p) > c. (2.29)

Inequalities (2.10) and (2.29) collectively imply that

lim
n→∞d(W(xn,Sr(PSr)n−1xn, θrn),p) = c. (2.30)

Consequently, Lemma 1.11 and (2.30) imply that

lim
n→∞d(xn,Sr(PSr)n−1xn) = 0. (2.31)

Note that

d(xn, Tr(PTr)n−1xn) 6 d(xn,W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn))

+ d(W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn), Tr(PTr)n−1xn)

6 αrnd(xn, Tr(PTr)n−1xn) + (1 −αrn)d(W(xn,Sr(PSr)n−1xn, θrn), xn)

+ d(W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn), Tr(PTr)n−1xn)

6 (1 − θrn)d(xn,Sr(PSr)n−1xn)

+
1

1 −αrn
d(W(Tr(PTr)

n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn), Tr(PTr)n−1xn)

6
1 − 2a
1 − b

d(xn,Sr(PSr)n−1xn)

+
1

1 − b
d(W(Tr(PTr)

n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn), Tr(PTr)n−1xn).
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From (2.27) and (2.31), we have

lim
n→∞d(xn, Tr(PTr)n−1xn) = 0. (2.32)

Moreover

d(xn,W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn))

6 αrnd(xn, Tr(PTr)n−1xn) + (1 −αrn)d(xn,W(xn,Sr(PSr)n−1xn, θrn))

6 αrnd(xn, Tr(PTr)n−1xn) + (1 −αrn −βrn)d(xn,Sr(PSr)n−1xn)

6 bd(xn, Tr(PTr)n−1xn) + (1 − 2a)d(xn,Sr(PSr)n−1xn).

By (2.31) and (2.32), we have

lim
n→∞d(xn,W(Tr(PTr)

n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn)) = 0.

Since

d(xn,yn) = d(Pxn,P(W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn))

6 d(xn,W(Tr(PTr)
n−1xn,W(xn,Sr(PSr)n−1xn, θrn),αrn)),

we have

lim
n→∞d(xn,yn) = 0. (2.33)

Similarly, we have

d(yn+k−1,p) 6 d(W(Tr−(k−1)(PTr−(k−1))
n−1yn+k−2,

W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n),p)

6 d(W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),p)

+
b

1 − b
d(Tr−(k−1)(PTr−(k−1))

n−1yn+k−2,W(Tr−(k−1)(PTr−(k−1))
n−1yn+k−2,

W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n)).

Now, Utilizing (2.7) and (2.25), we get

lim inf
n→∞ d(W(yn+k−2,Sr−(k−1)(PSr−(k−1))

n−1yn+k−2, θ(r−k+1)n),p) > c. (2.34)

Thus, (2.14) and (2.34) imply

lim
n→∞d(W(yn+k−2,Sr−(k−1)(PSr−(k−1))

n−1yn+k−2, θ(r−k+1)n),p) = c,

and by Lemma 1.11, we know that

lim
n→∞d(yn+k−2,Sr−(k−1)(PSr−(k−1))

n−1yn+k−2) = 0. (2.35)

for all k = 2, 3, · · · , r− 1. Also,

d(yn+k−2, Tr−(k−1)(PTr−(k−1))
n−1yn+k−2)

6 d(yn+k−2,W(Tr−(k−1)(PTr−(k−1))
n−1yn+k−2,

W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n))

+ d(W(Tr−(k−1)(PTr−(k−1))
n−1yn+k−2,
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W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n), Tr−(k−1)(PTr−(k−1))

n−1yn+k−2)

6 α(r−k+1)nd(yn+k−2, Tr−(k−1)(PTr−(k−1))
n−1yn+k−2)

+ (1 −α(r−k+1)n)d(yn+k−2,W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n))

+ d(W(Tr−(k−1)(PTr−(k−1))
n−1yn+k−2,

W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n), Tr−(k−1)(PTr−(k−1))

n−1yn+k−2)

6 (1 − θ(r−k+1)n)d(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2)

+
1

1 −α(r−k+1)n
d(W(Tr−(k−1)(PTr−(k−1))

n−1yn+k−2,

W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n), Tr−(k−1)(PTr−(k−1))

n−1yn+k−2)

6
1 − 2a
1 − b

d(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2)

+
1

1 − b
d(W(Tr−(k−1)(PTr−(k−1))

n−1yn+k−2,

W(yn+k−2,Sr−(k−1)(PSr−(k−1))
n−1yn+k−2, θ(r−k+1)n),α(r−k+1)n), Tr−(k−1)(PTr−(k−1))

n−1yn+k−2).

Now, it follows from (2.25) and (2.35) that for all k = 2, 3, · · · , r− 1,

lim
n→∞d(yn+k−2, Tr−(k−1)(PTr−(k−1))

n−1yn+k−2) = 0. (2.36)

For k = 2, 3, · · · , r− 1, we have

d(yn+k−2,yn+k−1) 6 d(yn+k−2, (PTr−(k−1))
nyn+k−2) + d((PTr−(k−1))

nyn+k−2,yn+k−1)

= d(Pyn+k−2, (PTr−(k−1))
nyn+k−2) + d((PTr−(k−1))

nyn+k−2,yn+k−1)

6 d(yn+k−2, Tr−(k−1)(PTr−(k−1))
n−1yn+k−2) + d((PTr−(k−1))

nyn+k−2,yn+k−1).

Hence, (2.26) and (2.36) imply that

lim
n→∞d(yn+k−2,yn+k−1) = 0. (2.37)

Additionally,

d(xn,yn+k−1) 6 d(xn,yn) + d(yn,yn+1) + · · ·+ d(yn+k−2,yn+k−1).

By (2.33) and (2.37), we have

lim
n→∞d(xn,yn+k−1) = 0, ∀k = 1, 2, · · · , r− 1. (2.38)

Let L = maxi∈<{Li, L̂i}, where Li and L̂i are Lipschitz constants for Ti and Si for i ∈ <, respectively.
Since each Ti is uniformly L-Lipschitzian for i ∈ <, we have

d(xn, Ti(PTi)n−1xn) 6 d(xn,yn+r−i−1) + d(yn+r−i−1, Ti(PTi)n−1xn)

6 d(xn,yn+r−i−1) + d(yn+r−i−1, Ti(PTi)n−1yn+r−i−1)

+ d(Ti(PTi)
n−1yn+r−i−1, Ti(PTi)n−1xn)

6 (1 + L)d(xn,yn+r−i−1) + d(yn+r−i−1, Ti(PTi)n−1yn+r−i−1)

for 1 6 i 6 r− 1. It follows from (2.36) and (2.38) that

lim
n→∞d(xn, Ti(PTi)n−1xn) = 0, ∀1 6 i 6 r− 1. (2.39)
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Moreover,

d(xn+1, Tixn+1)

6 d(xn+1, Ti(PTi)nxn+1) + d(Ti(PTi)
nxn+1, Ti(PTi)nyn+r−i−1) + d(Ti(PTi)

nyn+r−i−1, Tixn+1)

6 d(xn+1, Ti(PTi)nxn+1) + Ld(xn+1,yn+r−i−1) + Ld((PTi)
nyn+r−i−1, xn+1)

6 d(xn+1, Ti(PTi)nxn+1) + 2Ld(xn+1,yn+r−i−1) + Ld((PTi)
nyn+r−i−1,yn+r−i−1)

6 d(xn+1, Ti(PTi)nxn+1) + 2Ld(xn+1,yn+r−i−1) + Ld(PTi(PTi)
n−1yn+r−i−1,Pyn+r−i−1)

6 d(xn+1, Ti(PTi)nxn+1) + 2Ld(xn+1,yn+r−i−1) + Ld(Ti(PTi)
n−1yn+r−i−1,yn+r−i−1).

Thus, (2.36), (2.38), and (2.39) (or (2.32)) imply that d(xn+1, Tixn+1)→ 0 as n→∞ and so

lim
n→∞d(xn, Tixn) = 0, ∀1 6 i 6 r.

Similarly, we have

lim
n→∞d(xn,Sixn) = 0, ∀1 6 i 6 r.

This completes the proof.

Now we are in a position to give ∆-convergence results of this paper.

Theorem 2.4. Let K be a nonempty closed and convex subset of a complete uniformly convex hyperbolic space X
with monotone modulus of uniform convexity η. For i ∈ < = {1, 2, 3, · · · , r}, let Ti and Si be the same in Lemma
2.3. Assume that F =

⋂r
i=1(F(Ti)∩ F(Si)) 6= ∅ and for i ∈ <, the following conditions hold:

(i)
∑∞
n=1 µ

i
n < +∞,

∑∞
n=1 µ̂

i
n < +∞,

∑∞
n=1 ξ

i
n < +∞,

∑∞
n=1 ξ̂

i
n < +∞.

(ii) There exist constants Mi > 0 and M̂i > 0 such that

ρi(r) 6Mir, ρ̂i(r) 6 M̂ir, ∀r > 0.

Then the sequence {xn} defined in (1.1) ∆-converges to a common fixed point p ∈ F.

Proof. Since it follows from Lemma 2.2 that the sequence {xn} defined in (1.1) is bounded, Lemma 1.10
asserts that {xn} has a unique asymptotic center in K. That is, AK({xn}) = {x}. Let {vn} be any subsequence
of {xn} such that AK({vn}) = {v}. Then, by Lemma 2.3, we have

lim
n→∞d(vn, Tivn) = lim

n→∞d(vn,Sivn) = 0, ∀i ∈ <.

By Lemma 1.13, we know that v is the common fixed point of {Ti}i∈< and {Si}i∈<, i.e., v ∈ F.
Next, we claim that the common fixed point v is the unique asymptotic center for each subsequence

{vn} of {xn}. In fact, if v 6= x, then it follows Lemma 2.2 that limn→∞ d(xn, v) exists, and by the uniqueness
of asymptotic centers, we have

lim sup
n→∞ d(vn, v) < lim sup

n→∞ d(vn, x) 6 lim sup
n→∞ d(xn, x) < lim sup

n→∞ d(xn, v) = lim sup
n→∞ d(vn, v),

which is a contradiction. Therefore v = x. Since {vn} is an arbitrary subsequence of {xn}, AK({vn}) = {x}

for all subsequence {vn} of {xn}. Therefore, {xn} ∆-converges to a common fixed point x of {Ti}i∈< and
{Si}i∈<.

From Theorem 2.4, we have the following results.

Corollary 2.5. Let K be a nonempty closed and convex subset of a complete uniformly convex hyperbolic space
X with monotone modulus of uniform convexity η. For i ∈ <, let Ti : K → K be a uniformly Li-Lipschitzian



T.-J. Xiong, H.-Y. Lan, J. Nonlinear Sci. Appl., 10 (2017), 1407–1423 1420

and ({µin}, {ξin}, ρi)-total quasi-asymptotically nonexpansive self-mapping, and Si : K → K be a uniformly L̂i-
Lipschitzian and ({µ̂in}, {ξ̂in}, ρ̂i)-total asymptotically quasi-nonexpansive self-mapping, where constants µin, ξin,
ρi, µ̂in, ξ̂in, ρ̂i are the same as in Lemma 2.2. Assume that F =

⋂r
i=1(F(Ti) ∩ F(Si)) 6= ∅ and conditions (i)-(ii) in

Theorem 2.4 are satisfied, then the sequence {xn} defined in (1.2) ∆-converges to a common fixed point p ∈ F.

Corollary 2.6. Let K be a nonempty closed and convex subset of a complete uniformly convex hyperbolic space X
with monotone modulus of uniform convexity η. For i ∈ <, let Ti : K→ K be a uniformly Li-Lipschitzian and {kin}-
asymptotically nonexpansive mapping with

∑∞
n=1 k

i
n < +∞, and Si : K → K be a uniformly L̂i-Lipschitzian and

{k̂in}-asymptotically nonexpansive mapping with
∑∞
n=1 k̂

i
n < +∞. Assume that F =

⋂r
i=1(F(Ti) ∩ F(Si)) 6= ∅.

Then the sequence {xn} defined in (1.2) ∆-converges to a common fixed point p ∈ F.

3. Strong convergence

In this section, we will prove strong convergence of the modified iterative approximating process (1.1)
in hyperbolic spaces by using the related properties in Section 2.

Recall that a mapping T : K→ X is semi-compact if every bounded sequence {xn} ⊂ K, which satisfies
d(xn, Txn)→ 0 as n→∞, has a convergent subsequence.

Senter and Dotson [22] introduced condition (I) for T : K → X with F(T) 6= ∅: if there exists a
nondecreasing self-mapping on [0,+∞) with f(0) = 0 and f(t) > 0 for all t ∈ (0,+∞) such that d(x, Tx) >
f(d(x, F(T))) for all x ∈ K, where d(x, F(T)) = inf{d(x,y) : y ∈ F(T)}. Further, for two finite families of
self-maps, the corresponding conditions have been made recently in the literature [4, 6, 17] as follows:

For i ∈ <, letting {Ti}i∈< and {Si}i∈< be two finite families of total asymptotically nonexpansive
mappings on K with F =

⋂n
i=1(F(Ti)∩ F(Si)) 6= ∅, then the two families are said to satisfy:

(i) Condition (A) holds on K, if d(x, Tx) > f(d(x, F)) or d(x,Sx) > f(d(x, F)) for x ∈ K, holds for at least
one T ∈ {Ti}i∈< or S ∈ {Si}i∈<, where d(x, F) = inf{d(x,y) : y ∈ F};

(ii) Condition (B) holds on K, if d(x, Tix) + d(x,Six) > f(d(x, F)) for x ∈ K and i ∈ <.

Now we give the following conditions for two finite families of total asymptotically nonexpansive nonself-
mappings {Ti}i∈< and {Si}i∈< with F =

⋂n
i=1(F(Ti)∩ F(Si)) 6= ∅:

(iii) Condition (C1) holds on K if, 1
2r

(∑r
i=1 d(x, Tix) +

∑r
i=1 d(x,Six)

)
> f(d(x, F)) for x ∈ K;

(iv) Condition (C2) holds on K if, 1
2

(
max16i6r d(x, Tix) + max16i6r d(x,Six)

)
> f(d(x, F)) for x ∈ K;

(v) Condition (C3) holds on K if, max
{

max16i6r d(x, Tix), max16i6r d(x,Six)
}
> f(d(x, F)) for x ∈ K.

Remark 3.1. The conditions (A), (B) and (C1)-(C3) are equivalent to the condition (I), if Ti = Si for i ∈ <.
We shall use conditions (C1)-(C3) to study strong convergence of the iteration (1.1).

In order to prove strong convergence of the iteration (1.1), we need the following lemma.

Lemma 3.2. Let K, X, {Ti}i∈<, {Si}i∈<, and {xn} be as in Theorem 2.4. Then {xn} converges strongly to some
p ∈ F if and only if

lim inf
n→∞ d(xn, F) = 0.

Proof. If {xn} converges strongly to p ∈ F, then limn→∞ d(xn,p) = 0. Since 0 6 d(xn, F) 6 d(xn,p), we
have lim infn→∞ d(xn, F) = 0.

Conversely, suppose that lim infn→∞ d(xn, F) = 0. It follows from Lemma 2.2 that limn→∞ d(xn, F)
exists. Now lim infn→∞ d(xn, F) = 0 reveals that limn→∞ d(xn, F) = 0.

Next, we show that {xn} is a Cauchy sequence. By last inequalities in the proof of Lemma 2.2

d(xn+1,p) 6 (1 +M1µn)d(xn,p) +M2ξn,

and taking infimum on p ∈ F on both sides in the above inequality, then we have

d(xn+1, F) 6 (1 +M1µn)d(xn, F) +M2ξn.
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On account of
∑∞
n=1 µn < ∞,

∑∞
n=1 ξn < ∞, set eM1

∑∞
n=1 µn = M. Since limn→∞ d(xn, F) = 0, for any

given ε > 0, there exists a positive integer n0 such that

d(xn0 , F) <
ε

4(M+ 1)
and

∞∑
n=n0

ξn <
ε

2MM2
. (3.1)

The first inequality in (3.1) implies that there exists p0 ∈ F such that d(xn0 ,p0) <
ε

2(M+1) . Hence, for any
n > n0 and m > 1, we have

d(xn0+m, xn0) 6 d(xn0+m,p0) + d(xn0 ,p0)

6
[
e
M1
∑n0+m−1
k=n0

µk + 1
]
d(xn0 ,p0) +M2

[
ξn0+m−1

+ ξn0+m−2e
M1µn0+m−1 + ξn0+m−3e

M1
∑n0+m−1
k=n0+m−2 µk + · · ·+ ξn0e

M1
∑n0+m−1
k=n0+1 µk

]
6 (M+ 1)d(xn0 ,p0) +MM2

∞∑
n=n0

ξn

< (M+ 1)
ε

2(M+ 1)
+MM2

ε

2MM2
= ε.

This implies that {xn} is a Cauchy sequence in X. Sine K is a closed subset of a complete hyperbolic space
X, it is complete. We can assume that limn→∞ xn = q, and q ∈ K. One can easily see that F(T) is a close
subset in K, so is F(T). Since limn→∞ d(xn, F) = 0, we obtain q ∈ F(T). This completes the proof.

We now establish strong convergence of the iteration schema (1.1) based on Lemma 3.2.

Theorem 3.3. Suppose that K, X, {Ti}i∈<, {Si}i∈<, and F be the same as in Theorem 2.4, and {Ti}i∈<, and {Si}i∈<,
satisfies condition (C1 or C2 or C3). Then the sequence {xn} defined in (1.1) converges strongly to some p ∈ F.

Proof. It follows from Lemma 2.2 that limn→∞ d(xn, F) exists. Moreover, Lemma 2.3 implies that

lim
n→∞d(xn, Tixn) = lim

n→∞d(xn,Sixn) = 0

for each i ∈ <. Thus, the condition (C1 or C2 or C3) guarantees that limn→∞ f(d(xn, F)) = 0. Since f is
nondecreasing with f(0) = 0, it follows that limn→∞ d(xn, F) = 0. Thus, by Lemma 3.2, now we know
that {xn} converges strongly to a common fixed point p ∈ F.

From Theorem 3.3, we have the following results.

Corollary 3.4. Let K, X, {Ti}i∈<, {Si}i∈<, and F be the same as in Corollary 2.5. Suppose that {Ti}i∈< and {Si}i∈<
satisfy condition (C1 or C2 or C3). Then the sequence {xn} defined in (1.2) converges strongly to some p ∈ F.

Corollary 3.5. Assume that K, X, {Ti}i∈<, {Si}i∈<, and F are the same as in Corollary 2.6, and {Ti}i∈< and
{Si}i∈< satisfy condition (C1 or C2 or C3). Then the sequence {xn} defined in (1.2) converges strongly to some
p ∈ F.

Theorem 3.6. Let K, X, {Ti}i∈<, {Si}i∈<, and F be the same as in Theorem 2.4. Suppose that either Tl ∈ {Ti}i∈<
or Sl ∈ {Si}i∈< is semi-compact. Then the sequence {xn} defined in (1.1) converges strongly to p ∈ F.

Proof. Let Tl ∈ {Ti}i∈< be semi-compact. By Lemma 2.3, we know that limn→∞ d(Tixn, xn) = 0 for all
i ∈ <. By Lemma 2.2, {xn} is bounded and Tl is semi-compact, there exists a subsequence {xnj} of {xn}
such that xnj → q as j→∞. By continuity of Ti and Lemma 2.3, we obtain

d(q, Tiq) = lim
j→∞d(xnj , Tixnj) = 0, i ∈ <,

which implies that q is the common fixed point of {Ti}i∈<. Similarly, we can show that q is the common
fixed point of {Si}i∈<. Hence, q ∈ F. Again, by Lemma 2.2, limn→∞ d(xn,q) exists. Therefore, q is the
strong limit of the sequence {xn}. As a result, {xn} converges strongly to a point q.
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From Theorem 3.6, we have the following results.

Corollary 3.7. Let K, X, {Ti}i∈<, {Si}i∈<, and F be the same as in Corollary 2.5. Suppose that either Tl ∈ {Ti}i∈<
or Sl ∈ {Si}i∈< is semi-compact. Then the sequence {xn} defined in (1.2) converges strongly to p ∈ F.

Corollary 3.8. Suppose that K, X, {Ti}i∈<, {Si}i∈<, and {xn} be the same as in Corollary 2.6, and either Tl ∈
{Ti}i∈< or Sl ∈ {Si}i∈< is semi-compact. Then the sequence {xn} defined in (1.2) converges strongly to p ∈ F.

Remark 3.9. The results presented in the paper extend and improve some recent results given in [4, 5, 14,
19, 20, 24, 27, 29, 30, 33]. Some special cases are listed as follows.

(i) If {Ti}i∈< and {Si}i∈< are asymptotically nonexpansive self-mappings on K, and the iterative process
(1.1) reduce to (1.2), then Theorem 2.4, Lemma 3.2, and Theorems 3.3 and 3.6 reduce to Theorems
3.1 and 3.3-3.5 in [4], respectively.

(ii) when the uniformly convex hyperbolic spaces reduce to CAT(0) spaces, and the iterative process
(1.1) is equivalent to (1.3), then Theorem 2.4, Lemma 3.2, and Theorem 3.3 become Theorems 3.1-3.3
proved by Thakur et al. [27], respectively.

(iii) Theorem 2.4, Lemma 3.2, and Theorems 3.3 and 3.6 are equivalent to Theorems 1-4 of [20], respec-
tively, when r = 3 and αin = 0 and S1 = S2 = · · · = Sr = T are self-mappings.

(iv) If the uniformly convex hyperbolic spaces reduce to CAT(0) spaces, r = 3, αin = 0, and Sn1 = Sn2 =
· · · = Snr = T , where T is a nonexpansive mappings on K ⊂ X, then Theorem 2.4, Lemma 3.2, and
Theorem 3.3 reduce to Theorems 1-3 in [19], respectively.
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[20] A. Şahin, M. Başarır, Some convergence results for modified SP-iteration scheme in hyperbolic spaces, Fixed Point Theory

Appl., 2014 (2014), 11 pages. 1.3, 3.9, iii
[21] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc.,

43 (1991), 153–159. 1.1, 1.5
[22] H. F. Senter, W. G. Dotson Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974),

375–380. 3
[23] T. Shimizu, W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods

Nonlinear Anal., 8 (1996), 197–203. 1.6
[24] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math.

Anal. Appl., 311 (2005), 506–517. 1.1, 1.3, 3.9
[25] W. Takahashi, A convexity in metric space and nonexpansive mappings, I. Kōdai Math. Sem. Rep., 22 (1970), 142–149.
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