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1. Introduction

A capital letter, such as T , stands for a bounded linear operator on a Hilbert space. The notation T > 0
means that T is positive semidefinite and T > 0 means that T is positive definite.

Definition 1.1 ([1]). Log majorization for two positive semidefinite n× n matrices A and B, denoted by
A �(log) B, if

∏k
i=1 λi(A) >

∏k
i=1 λi(B) for k = 1, 2, · · · ,n − 1 and

∏n
i=1 λi(A) =

∏n
i=1 λi(B), where

λ1(A) > λ2(A) > · · · > λn(A) and λ1(B) > λ2(B) > · · · > λn(B) are the eigenvalues of A and B,
respectively.

Definition 1.2 ([6]). For A,B > 0, Kubo-Ando mean of A and B for α power is defined by

A
1
2 (A− 1

2BA− 1
2 )αA

1
2 ,

which is denoted by A]αB, where α ∈ [0, 1];
If A,B > 0, A]αB is defined by lim

ε→0+
(A+ εI)]α(B+ εI);

If A > 0, B > 0 with α ∈ R, A
1
2 (A− 1

2BA− 1
2 )αA

1
2 is denoted by A\αB.

In 1994, Ando and Hiai proved the first log majorization inequality as follows, which is also called
Ando-Hiai inequality.

Theorem 1.3 ([1, Ando-Hiai inequality]). If A,B > 0, 0 6 α 6 1, then (A]αB)
r �(log) A

r]αB
r holds for

r > 1.
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In 1995, Furuta generalized Ando-Hiai inequality and obtained the following theorem.

Theorem 1.4 ([2]). If A,B > 0, 0 6 α 6 1, then (A]αB)
h �(log) A

r]h
sα
Bs holds for r, s > 1 with h =

(αs−1 + (1 −α)r−1)−1.

Subsequently, various log majorization inequalities were shown, such as [3, 4, 7]. One of the most
wonderful result is proved by Furuta ([3]) in 2009 as follows.

Theorem 1.5 ([3]). For A > 0,B > 0, t ∈ [0, 1] and r > t, p1,p2, · · · ,p2n > 1, then

(A] 1
p1
B)h �(log)

A1−t+r]β{A
1−t\p2n{A\p2n−1{A

1−t\p2n−2{A\p2n−3 · · · [A\p3(A
1−t\p2B)] · · · }}}}

holds, where h =
p1p2···p2n(1−t+r)

φ , β = h
p1p2···p2n

, with φ =
[
· · · {[(p1 − t)p2 + t]p3 − t}p4 + t · · ·− t

]
p2n + r.

In this paper, we shall show an extension of Theorem 1.5. In order to prove the main results, we shall
list a useful theorem first.

Theorem 1.6 ([5, Koizumi-Watanabe inequality]). For A > 0,B > 0, t2k−1 ∈ [0, 1] and t2k−1 6 t2k for
k = 1, 2, · · · ,n, p1,p2, · · · ,p2n > 1, then

{A
t2n

2 [A−
t2n−1

2 · · · [A
t2
2 (A−

t1
2 Bp1A−

t1
2 )p2A

t2
2 ]p3 · · ·A−

t2n−1
2 ]p2nA

t2n
2 }

α(2n)
φ(2n) 6 Aα(2n)

holds for α(2n) = 1− t1 + t2 · · ·− t2n−1 + t2n, φ(2n) =
[
· · · {[(p1 − t1)p2 + t2]p3 − t3}p4 + t4 · · ·− t2n−1

]
p2n+

t2n.

2. Main results

By using the method in [1] and [3], we can show the main result.

Theorem 2.1. For A > 0,B > 0, the following log majorization inequality

(A]αB)
h �(log)

Aα(2n)]β{A
α(2n−1)\p2n{A

α(2n−2)\p2n−1{A
α(2n−3)\p2n−2 · · · [A

α(2)\p3(A
α(1)\p2B)] · · · }}}

(2.1)

holds for α = 1
p1

, β =
α(2n)
φ(2n) , h =

p1p2···p2nα(2n)
φ(2n) with α(k) = 1 − t1 + t2 · · ·+ (−1)ktk, φ(2n) =

[
· · · {[(p1 −

t1)p2 + t2]p3 − t3}p4 + t4 · · · − t2n−1
]
p2n + t2n, where t2k−1 ∈ [0, 1] and t2k−1 6 t2k for k = 1, 2, · · · ,n;

p1,p2, · · · ,p2n > 1.

Proof. In order to prove (2.1), we only need to prove that I > A]αB ensures that

I > Aα(2n)]β{A
α(2n−1)\p2n{A

α(2n−2)\p2n−1{A
α(2n−3)\p2n−2 · · · [A

α(2)\p3(A
α(1)\p2B)] · · · }}}. (2.2)

By the definition of ] and \, I > A]αB is equivalent to A−1 > (A− 1
2BA− 1

2 )α and (2.2) is equivalent to

A−α(2n) >{A−
t2n

2 [A
t2n−1

2 (A−
t2n−2

2 · · ·

(A
t3
2 (A−

t2
2 (A−

1−t1
2 BA−

1−t1
2 )p2A−

t2
2 )p3A

t3
2 )p4 · · ·A−

t2n−2
2 )p2n−1A

t2n−1
2 ]p2nA−

t2n
2 }β.

(2.3)

Let A1 = A−1 and B1 = (A− 1
2BA− 1

2 )α. Apply A1 > B1 to Koizumi-Watanabe inequality, then

A
α(2n)
1 > {A

t2n
2

1 [A
−
t2n−1

2
1 · · · [A

t2
2

1 (A
−
t1
2

1 B
p1
1 A

−
t1
2

1 )p2A
t2
2

1 ]p3 · · ·A−
t2n−1

2
1 ]p2nA

t2n
2

1 }β.

Replacing A1 by A−1 and B1 by (A− 1
2BA− 1

2 )α above, respectively, then we can obtain (2.3).
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Remark 2.2. If t1 = t2 = · · · = t2n−1 = t, then Theorem 2.1 is just Theorem 1.5, which is the main result of
[3].

From the proof of Theorem 2.1, we can notice that (2.1) is derived from Koizumi-Watanabe inequality.
The next theorem shows that (2.1) and Koizumi-Watanabe inequality are equivalent.

Theorem 2.3. For A > 0 and B > 0, Theorem 2.1 and Koizumi-Watanabe inequality are equivalent each other
under the conditions of Theorem 2.1.

Proof. We only need to prove that Koizumi-Watanabe inequality can be derived from Theorem 2.1.
For A > 0 and B > 0, (2.1) means that I > A]αB ensures (2.2). It follows that A−1 > (A− 1

2BA− 1
2 )α

ensures (2.3).

Replacing A by A−1
1 and B by A− 1

2
1 B1A

− 1
2

1 in (2.3), then A1 > B1 > 0 with A1 > 0 ensure

A
α(2n)
1 > {A

t2n
2

1 [A
−
t2n−1

2
1 · · · [A

t2
2

1 (A
−
t1
2

1 B
p1
1 A

−
t1
2

1 )p2A
t2
2

1 ]p3 · · ·A−
t2n−1

2
1 ]p2nA

t2n
2

1 }β.

The inequality above is just Koizumi-Watanabe inequality.
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