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Abstract

In this paper, we find a polynomial-type Jost solution of a self-adjoint matrix-valued discrete Dirac system. Then we
investigate analytical properties and asymptotic behavior of this Jost solution. Using the Weyl compact perturbation theorem,
we prove that matrix-valued discrete Dirac system has continuous spectrum filling the segment [—2, 2]. Finally, we examine the
properties of the eigenvalues of this Dirac system and we prove that it has a finite number of simple real eigenvalues. (©2017
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1. Introduction

Consider the boundary value problem (BVP) consisting of the Sturm-Liouville equation

—y”"+q(x)y =A%y, 0<x<oo, (L.1)
y(0) =0, '

and the boundary condition where q is a real-valued function and A is a spectral parameter. The bounded
solution of (1.1) satisfying the condition

lim yx,Ne ™™ =1, AeCL:={AeC: ImA >0

X—00
will be denoted by e(.,A). The solution e(.,A) is called the Jost solution of (1.1). In [17], the author
presented a condition depending on the function q that guaranteed e(.,A) has an integral representation
as

e(x,\) = et +J K(x,t)et dt < oo,

X
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where the function K is defined in terms of q. Moreover, the author showed that e(.,A) is analytic with
respect to Ain C; :={A € C: ImA > 0}, continuous in C, and satisfies

e(x,A) =e™[1+0(1)], AeC,, x— .

The function e(A) := e(0,A) is called Jost function of the BVP (1.1). The functions e(.,A) and e(A) play
an important role in the solutions of direct and inverse problems of the quantum scattering theory [7,
15, 17, 18]. The Jost solutions are especially useful in the study of the spectral analysis of differential
and difference operators [1, 5, 6, 14]. Therefore Jost solutions of Dirac systems, Schrodinger and discrete
Sturm-Liouville equations have been obtained in [8, 11, 12]. Discrete boundary value problems have
been intensively studied in the last decade. The modeling of certain linear and nonlinear problems from
economics, optimal control theory and other areas of study has led to the rapid development of the
theory of difference equations. Also the spectral analysis of the difference equations has been treated
by various authors in connection with the classical moment problem [2, 4, 13]. The spectral theory of
the difference equations have also been applied to the solution of classes of nonlinear discrete Korteveg-

de Vries equations and Toda lattices [19]. Let us introduce the Hilbert space {,(IN,C?™) consisting of
(1)

all vector sequences y = {yn}, yn = (3}‘2)), where yg) cC™i=12,necN={1,2..}and C™ is

m~—dimensional (m < oo) Euclidean space. In &(IN, C2™), the norm and inner product are defined by

I HZ — - |2 + )2 <
Ylle, == § Yn cm Yn cm oo,
n=1

(Y,2)y, = i [(yg),zg))cm + (yf),zg))cm] ,

n=1

where ||.|[cm and (.,.)cm denote the norm and inner product in C™, respectively. Now consider the
matrix-valued discrete Dirac system

AnUL) | + Byt + Pryn’ = Ayi, 12
1) (1) @ _,@ "EN (12)
An—lyn,1 +Bnyn + Qnyn” =Ayn -,
with the boundary condition
1
yé =0, (1.3)

where A, n € NU{0} and By, Qn, Pn, n € IN are linear operators (matrices) acting in C™. Throughout
the paper, we will assume that detA,, # 0, A, = A}, (n € NU{0}), detB,, # 0, B, = B}, Qn = Q}
and P, = P} (n € N), where * denotes the adjoint operator. Let L denote the operator generated in
> (IN, sz) by the BVP (1.2)-(1.3). The operator L is self-adjoint, i.e., L = L*. In the following, we will
assume that the matrix sequences {An}, {Bn}, {Pn}, and {Qn} (n € IN), satisfy

D nIT=Anll+ T+ Baf +[[Pall + 1Qnl) < oo, (1.4)

n=1

where ||.|| and I denote the matrix norm and the identity matrix in C™, respectively. The setup of this
paper is as follows: In Section 2, we find a polynomial-type Jost solution of (1.2), investigate analytical
properties, and asymptotic behavior of this Jost solution. In Section 3, we show that o.(L) = [-2,2], where
oc (L) denotes the continuous spectrum of L. Also, we prove that under the condition (1.4), the operator
L has a finite number of simple real eigenvalues. To the best of our knowledge, this paper is the first one
that focuses on matrix-valued discrete Dirac system including a polynomial-type Jost solution.



Y. Aygar, E. Bairamov, S. Yardimci, ]J. Nonlinear Sci. Appl., 10 (2017), 1459-1469 1461

2. Jost solution of (1.2)
Assume P, = Qn =0, B, = —Iforalln € N, and A,, = I for all n € NU{0} in (1.2). Then we get

2l k) = [~z— 27y, -
=yl = [z 7yl

for A = —iz— (iz)*l. It is clear that

el (2)
= (0)-(5)en men

is a solution of (2.1). Now, we will find the solution (Eﬁl(é))), n e N of (1.2) for A = —iz— (iz) !, satisfying

the condition

Fn(z
(éﬁJ>::H+OUHeH&L 2l =1, n = oo.
The solution (ETL((;)), n € N is called the Jost solution of (1.2) for A = —iz — (iz) ..

Theorem 2.1. Assume that (1.4) holds. Then for A = —iz— (iz) " and |z| = 1, (1.2) has the solution (Eﬂé)}),
n € N having the representation

<FG:((ZZ))> =Tn (H— Z Knmz2m> ( _Zi ) 22", neN, (2.2)

m=1

o0 [oe)
Folz) =Tg'z+Tgt ) KghZ2™H —iTt y Kgh 2™,
m=1

m=1

Kll K12 Tll T12
where Knm = < K}‘l’“ Kﬁm ) Th = < TT211 TT212 ) and these are expressed in terms of {An}, {Bn}, {Pn}, and
nm nm n n
{Qn}k
Fn(z)

Proof. Substituting (%)) defined by (2.2) into (1.2) and by taking A = —iz — (iz) ! for |z| = 1, we get

T2 =0,

00 —1
T‘rzxz = (H (_1)n7p Apo> ’
p=n
00 —1
T = —B, <H (=)™ P Apo> ,
p=n

i —1 > —1
QA ()7 mee - 3 ),

p=n p=n
S )
1 —1
Ki= 2 (B) BQT’= ) (B) Py,
p=n+1 p=n+l

KL= 3 [—1 + (T 7 (BT + AL T2 +B,QpT2 + B, T2 + PpTyK;Zl)} )
p=n+l

K2 = (T2) 7 [Bu T 4 QuT2 + T2+ Ay o THL KU —T2IK1 ],
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o0

—1
K= D (W) T (K-

p*n+1

+Z (T22)”

p=n+1

o0
+ Y (T2
p=n+1l
o0

Kh= ) [(T#)”

1462
= -1
D+ Y [0 BT+ QTR K
p:n+1

221,22 22 -1 11 12
QpTZK + Z (T2) " Apa T K2
p =n+1

TAZ T2y Z 2 )7 [ApPp T + ALB, T2 KL,
p=n

o
2 K

BpQp (T2K + T2K%) |

P_n+1 p=n+1
11 2111 114,11 21
+ Z T B T K Tp Kpl_APTpH Bpr],
p=n+1l
o0
11 2711411 11 22 21
Kib= 3 (T [BATIKL, + P TR + B, T2KZ + B, T2KI2]
p=n+1
o0 oo
11y ~1 21,11 221021 11
+ Z (To))  [BpQp Ty Kpi + BpQp T oK) — Z Kpi
P*“+1 p=n+l
—1
+ Z (Th) ATEKE 4+ A, TEKE],
p=n+2
o0
K== 3 (T3) 7 [BpTa'Kih — Ta'KE + Qp K, + Qp TRk, + TK]
p=n+1
o0
22\ —1 11 2
+ Z (Tp) [Ap—lpp—lTpflesz+Ap—1Bp 1T p 12]
p=n+1
= T22 *1 T = K22
+ 2: (P ) p 11] E: pl
p=n+1 p=n+1
oo

+ Y 1)

-1
[ApTIKES + Ap P TIKL, + Ap B TAKIL |

A2 TRIKE, 4+ A2 TR 4 B, THKIS

2 221,12 2 214,12
[Ap_lTp K +AL T, Kpll],

P p2

o
- K

p=n+l

P

where n € IN. Furthermore, for m > 3 and n € IN, we obtain that

o0

G- >

p*n+1

by

p=n+1

p1n

[P, T“Kpm . B%Tglkgm 1+BPT§1K};m ]
ad —1
2= Kpmo) + D () [BpQiT Kl o]
p=n+1
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oo
-1
o z: 0%5 [AﬁTathp+1m,2%_A'1Q11Kp+1m ﬂ
p=n+1
- 11\ ~1 11
+ Z (M) BpQpAp 1T LKy 1 +BpQp T Ky o]
p=n+l
o0
—1
+ Z (T BpQrTK 2+ BpQp 'K 5+ BpQpTKE 5],
p=n+1l
o
Kim= > (Tg,l) P T K BT +BpQpTK ]
p=n+1l
= 1
Z K} pm—1T Z TH PQPTZZKPm 1]
p—n+1 p=n+1l
+ Z () [A T22+1Kp+1m 1+Aprl+1K1loz+1,m71]
p=n+1
= -1
+ > (T BT, 4 +BpTEKE ],
p=n+l
K2 =K2 0+ (T2) 7 A T KL — T2+ B THKE ]
+(T22) 1[Q TZlKllm ]+QnT22Knm 1+T21Knm ]]
Kzl _K21m71+(T22) 1[ T 1Kn 1,m+1 " nT‘rlth}Em]
+ (Trzlz) ' [ T21K12 TZlKnm 1 QnT‘rztzK%LZm _T1211K}11m] :

By the condition (1.4), the infinite p];oducts a_md the series in the definition of TTiLj and Kﬂ'm (i,j =1,2) are
absolutely convergent. Therefore, Ty and Ky (i,j = 1,2) can uniquely be defined by {A,,}, n € N U{0},
{Bn}, {Pn}, and {Qn}, n € N, i.e., the system (1.2) for A = —iz — (iz) ! has the solution (FG‘;((ZJ) given by

(2.2). n
Theorem 2.2. If the condition (1.4) holds, then
[Kiml[<C D> (I=Apl+IT+Bpl +Qpl +Ppll), 1i=12 (2.3)
p=nt| 7]

where | 3| is the integer part of 3 and C > 0 is a constant.

Proof. We will use the method of induction to prove the theorem. For m = 1, we get that

o0 1 o0
Kl =1 2= (T) [BpQeT?=PeTpl]| <A 3 [[BpQpT? —PpTy||
p=n+1l p=n+l1l
<A Z 1Qp I+ Z [Ppll < Z QeI +1Ppl)
p=n+1l p=n+1 p=n+l

CY (IT=Ap|+IT+Bpl+[1Qpl +IIPpll)
p=n

=C Z T =Apll + 1T+ Bpll + 1Qpl + [IPp 1),
p=nt|s]
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where A = H T11 -

KL K%  and K21 Now, if we suppose that (2.3) is correct for m = k, then we can write

nls “nl’/
00
Kol <| X K- Y K,
p=n+1 p=n+1

{1, A } Similar to this inequality, we can get (2.3) for

+ Z (T];l)_1 {—P THkaJrBzTHK TleHk 1}
p=n+1

[e.¢]

+ 2: Ugl) { A’ p+1Kp+1k 1 Tf+l +1k 1}
p=n-+1

[o.¢]

1
+ Z (1) {BpQpAp 1Tl Kylpk + BpQpBp TRl K1}
p=n+1

(0.¢]

-1
+ D (MY {BpQaTAK  +BpQpTEKE, 4}
p=n+1

o0

1
+ Z (To)  {BpQpTa' K 1 +BpQp T K 1}
p=n+1

If we use T 1 =ApTp 1! for last inequality, we find

o0
1
K2l < 3 Ik —Khaal+ 3 ) a-A2) TR
pfn+1 p=n+1l
0
Py [ By -+ S ) T A TR
p=n+1l p=n+1
+ Z H Tll TZlek 1~ TplelKivlJrl,kfl)H
p=n+1l
o0 o0 o0 o0
+C Y B Il Y NG+ D PRl D IING
e T = R
o0 o0 (o0} o0
+B Y IQpll > INI+D Y IQull D> IING,
PR spi ] PR s

where ||Ng| = ||[I— Ag| + [T+ Bs|| + [|Qs|| + ||Ps]| and C”, B, D are constants. It follows from that

o0 o0 o o
K]l < KRl +D Z IT—Apll Z INs[|+D Z IBp + 1] Z [N
p=n-+1 s=p+1+| 5] p=n+l s=p+| 51|
" o0 (ee] o0 o0
+D IT=Apll 3 INSI+ TR el +C7 3 By +11 3 NS
p=n+1 s= p+l+L%rJ p=n+l s=p+|%]
oo (o) o0 o

Pl > Ile!\+BZ IQpll 3>~ INsI+D D> IQpll > IINs]l,

s=p+| %] p=ntl s=p+|*3*] p=ntl s=p+[ 7]
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where D', D", D" and T are also constants. Using last inequality, we obtain

Kzl < > INI+TC Y NI (D D) Y =AY N
p_n+1+L%J p=n+1+| 51| p=n+1 s=p+| ]|
+max{D",D} 3 (Bp+1+IQl) Y IN

p=n+l s=p+[ 5]
+max {C 1} 3 (Bp 1+ Pl Y INSIHB Y NG Y ING]
p=n+1 s=p+| 5] Pl e 2
and
K2l <2 32 INGll+Y D NGl D NG|l
v—nﬂ%J Pl e 2]
<Z Y INGIEYS D INGI > IING]
p=n+| 5! p=n+1 s=p+| %]
<Z Y INpII+Y >INyl
p=n+[*] p=n+|5]
<22 Y INpl+Y Y INGI<G Y INL
p:n+|_ﬂj p:n—i—\_ﬂj p:n—O—L@J

where C+TC=2,Y=D +D' +B+max{c 1}+max{D D} Y =Y Z INp|l, and 2Z+Y = G.
p=n-+1

Similar to K}ﬁk 41, We can easily obtain (2.3) for K}'Ll,k 1 K21 and K*? ok O

n,k+1/
It follows from (2.2) and (2.3) that (Fcrﬁ(é))) n € INU{0} has analytic continuation from
Do:={z€C:|zl=1} to {z e C:|z] < 1}\{0}.
Theorem 2.3. Assume that (1.4) holds. Then the Jost solution satisfies

<FG’1 f?) = [I+0(1)] (_ZJ 2", n = oo (2.4)
forze D:={z€ C:lzl < 1}\{0}
Proof. It follows from (2.2) that

Fa(z) _ (T T2 10Y i KL, K20\ o | (22
Gulz) ) ~\ T2 T2 0 1 UKL KZ2L )T i)
m=

then using (1.4), (2.3), and the definition of TV for 1,j=1,2, we get

( T TR

_I_Tzll _I_Tzlz > — I, n — oo, (2.5)

and
Kll K12 )
<K?1m K?{“)zm:o(l),zeD,n%oo. (2.6)
m:1 nm nm

From (2.2), (2.5), and (2.6), we find (2.4). O
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3. Continuous and discrete spectrum of L
Theorem 3.1. Under the condition (1.4), o. (L) = [-2,2].

Proof. Let Ly denote the operator generated in {;(IN, C2™) by the difference expression

2 @
. Ynt1—Yn
yn,1 _yn 7

with the boundary condition y(()l) = 0. We also define the operator ] in &(IN,C>™) by
(2)

()= (% 0 ) Ca) s (5 b ) E) (M a0 )
= 2
ne 0 Qn /) \yW 0 I+Bn /) \yl 0 Ana—1) W
( (An =Dy, + (I+Ba)yid) +Pryt) )
(An_1— Dy + 1+ Byl + Quu?)”
It is clear that Lj = L} and L = Ly + J. Since L is self-adjoint, its spectrum contains its eigenvalues and
0 J p g

continuous spectrum, but the operator Ly has no eigenvalues. Moreover, we easily prove that o (Ly) =
[—2,2], where o (L) shows the spectrum of the operator Ly. So we can write that

0 (Lo) = oc (Lo) = [-2,2].

Using (1.4), we also get that the operator ] is compact in ¢,(IN, C>™) [16]. By the Weyl theorem [9, p. 13]
of a compact perturbation, we obtain

oc(L) = oc(Lo) = [-2,2].
This completes the proof. O

Since the operator L is self-adjoint, the eigenvalues of L are real. From the definition of the eigenvalues,
we can write

oq (L) = {7\ ER:A=—iz—(iz) %, iz e (=1,0)0U(0,1), detFy(z) = 0},

where 04 (L) denotes the set of all eigenvalues of L.

Definition 3.2. The multiplicity of a zero of the function det Fy(z) is called the multiplicity of the corre-
sponding eigenvalue of L.

Theorem 3.3. Assume that (1.4) holds. Then the operator L has a finite number of simple real eigenvalues.

Proof. To prove the theorem, we have to show that the function detFy (z) has a finite number of simple

zeros. Let zg be one of the zeros of detFy (z). Hence det Fy (z9) = 0, there is a non-zero vector u such that

Fo (zo) w =0 [3]. As we know, (E*T‘L(Z))) is the Jost solution of (1.2) for A = —iz — (iz) 7}, ie.,

(z

AnGri1 (2) + BnGr (2) + PuFn (2) = [~z — (i2) '] Fu (2),
(3.1)
An-1Fn1(2) + BnFn (2) + QuGn (z) = iz — (i2) "] Gn (2).
Differentiating (3.1) with respect to z, we have
d d d _ ..a1d R
An 3G+ (2) + Ba G (2) + PaFn (2) = [iz— (27| SR @ —i(1-2) Fa(2),
An_léFn_l (2) + Bn ; 2)+ Quy- d )= |-iz—(i2)7] ;ZG“ (2)—i(1—272) Gy (2).
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Using (3.1) and (3.2), we obtain

@Fn (z)> AnGris (z)+<in (z)) Bn G (2)

- (;ZGHH (z)) AnFn (2) — (;ZGn (z)) BuFn (2)

- [rie— ] <§ZFn (z)) Fu (2)

(3.3)

~[z—tia] ((szn (Z)> P () + TT 2D, () Fa (2

and
d d

<C12Gn (Z)> Anlenfl (Z) + <dZGn (Z)> BnFn (Z)

_ (dFM (z)> A 1Gn (2) - (an (z)) " BnGn (2)
z z (3.4)

From (3.3) and (3.4), we get

d

(£6:) Aho@-($R@) MG @
z

(3.5)

If we write (3.5) for z = zj, we obtain
<;Gl (Zo)> AoFo (z0) — (;Fo (Zo)) A0G1 (20)
z z
= (3.6)
=—i(1-2.%) }_ [Fx (z0) Fu (20) + G, (z0) G (20)]

n=1

using izg € (—1,0) U (0,1). Then if we multiply (3.6) with the vector u on the right side (u € {>(IN, c2m)),
(u#0), we get

<AOGl (zo) u, ;Fo (zo) u> = (i
v

) {Z [Fn (zo)ul>+ > [Gn (ZO)uH2}-
n=1 n=1

# 0. Also we can write ||Fn (zo) u|| # 0 and || Gy, (z0) u|| #

i
(iz0)?

Since izg # 0 and izy # 1, we can write i — e )2
izg
0 for all n € IN, so

<A0G1 (zo)u, éFo (zo) u> £ 0.
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This shows that d%Fo (zo) u # 0, that is, all zeros of det Fy (z) are simple. To complete the proof of theorem,
we have to show that the function det Fj (z) has a finite number of zeros. Let us take the function

M(z) =z (TI) ' Folz) =1+A(z),

(0.0} o0
where A (z) = Z K(l)}nzZm — iZ K(l)fnzszl. Since A (z) is matrix-valued analytic function on D, the
=1 =1

m m=
function M has inverse on the boundary of D [10, Theorem 5.1], i.e., the set of limit points of the set of
zeros of

detFy(z) =0 (3.7)
is empty. Therefore, the set of zeros of (3.7) in D is finite, i.e., the operator L has a finite number of
eigenvalues. O
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