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Abstract

In this paper, we consider the null surfaces of null Cartan curves in Anti-de Sitter 3-space and making use of singularity
theory, we classify the singularities of the null surfaces and investigate the relationships between singularities of the null surfaces
and differential geometric invariants of null Cartan curves in Anti-de Sitter 3-space. Finally, we give an example to illustrate our
results. c©2017 All rights reserved.

Keywords: Null Cartan curve, ruled null surface, principal normal indicatrix.
2010 MSC: 51B05, 53B50, 53A04.

1. Introduction

The n-dimensional Anti-de Sitter space (AdSn) is a maximally symmetric semi-Riemanian manifold
with constant negative scalar curvature. Particular, AdSn is an n-dimensional solution for the theory of
gravitation with Einstein-Hilbert action with negative cosmological constant. It is very interesting and
important to do some researches on Anti-de Sitter space. So this subject has been studied by many
researchers.

It is well-known that there exist spacelike curves, timelike curves and null curves in semi-Euclidean
space. More generally, from the differential geometric point of view, the study of null curves has its own
geometric interest. Because the other curves (spacelike and timelike curves) of semi-Euclidean space can
be studied by a similar approach to that studied in positive definite Riemannian geometry. Moreover,
null curves have different properties from spacelike and timelike cuvres and the results of null curve
theory are not analogues to Riemannian case. In geometry of null curves difficulties arise because the
arc length vanishes, so that it is impossible to normalize the tangent vector in the usual way. Bonnor
[1] gave a method for the general study of the geometry of null curves in Lorentz manifolds and more
generally, in semi-Riemannian manifolds. Ferrandez et al. [6–8] have generalized the Cartan frame to
semi-Riemannian space forms. They proved the fundamental existence and uniqueness theorems and
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obtained values of the Cartan curvatures in higher dimensions. Duggle [3–5] gave the existence of a
canonical representation of null curves of Lorentzian manifolds.

In this paper, we consider the properties associated with the contacts of a given submanifold with null
surfaces have a special relevance. By constructing extended spacelike height functions and using classical
unfolding theory, Sun [9, 10] and Wang and the second author [11, 12] have classified the singularities
of lightlike surface (null surface) of spacelike curve and null curve in de Sitter 3-space and investigated
the geometric meanings of the singularities of such surfaces. However, to the best of author’s knowledge,
no literature can be found for the research of the singularity of null surfaces of null curves in Anti-de
Sitter 3-space. The second author and Sun [9, 10] defined the binormal indicatrix of a non-lightlike curve
and gave the relationships between singularities of such curves and geometric invariants in Minkowski
3-space. Inspired by [2, 9–11], we define a ruled null surface whose base curve is the principal normal
indicatrix of a null Cartan curve. We construct the binormal indicatrix height function of a null Cartan
curve, it would be quite useful to study the generic singularities of ruled null surfaces.

The main results in the present paper are stated in Theorem 2.1 and Theorem 6.3. The geometric
meaning of Theorem 2.1 is described in Section 4. The proof of Theorem 2.1 is given in Section 5. Then,
we consider generic properties of null Cartan curves in Section 6. In the last section, we give an example
and the graphics to illustrate the singularities of null surfaces of null curves in Anti-de sitter space.

All maps and manifolds considered here are differential of class C∞.

2. Preliminaries

Let R4 be a 4-dimensional vector space. For any two vectors x = (x1, x2, x3, x4) and y = (y1,y2,y3,y4)
in R4, their pseudo scalar product is defined by

〈x, y〉 = −x1y1 − x2y2 + x3y3 + x4y4.

The space (R4, 〈, 〉) is called the 4-dimensional semi-Euclidean space-time of index 2 and denoted by R4
2.

For three vectors x = (x1, x2, x3, x4), y = (y1,y2,y3,y4) and z = (z1, z2, z3, z4) in R4
2, we define a vector

x ∧ y ∧ z by

x ∧ y ∧ z =

∣∣∣∣∣∣∣∣
−e1 −e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ ,
where (e1, e2, e3, e4) is the canonical basis of R4

2. We have 〈x0, x ∧ y ∧ z〉 = det(x0, x, y, z), so x ∧ y ∧ z is
pseudoorthogonal to x, y and z. A nonzero vector x ∈ R4

2 is called spacelike, null or timelike, if 〈x, x〉 > 0,
〈x, x〉 = 0 or 〈x, x〉 < 0, respectively. The norm of x ∈ R4

2 is defined by ‖x‖ = (sign(x)〈x, x〉) 1
2 , where

sign(x) denotes the signature of x which is given by sign(x) =1, 0 or -1, if x is a spacelike, null or timelike
vector, respectively.

Let γ : I → R4
2 be a smooth regular curve in R4

2 (i.e., γ̇(t) 6= 0, for any t ∈ I), where I is an open
interval. For any t ∈ I, the curve γ is called spacelike curve, null (lightlike) curve or timelike curve, if
all its velocity are 〈γ̇(t), γ̇(t)〉 > 0, 〈γ̇(t), γ̇(t)〉 = 0 or 〈γ̇(t), γ̇(t)〉 < 0, respectively. We call γ the non-null
curve, if γ is a timelike curve or a spacelike curve.

The Anti-de Sitter space is defined by

H3
1 = {x ∈ R4

2|〈x, x〉 = −1},

and the lightlike cone by

LCp = {x ∈ R4
2|〈x−p, x−p〉 = 0}.
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Let γ : I → R4
2 be a non-geodesic null curve in R4

2 (i.e., 〈γ̇(t), γ̇(t)〉 = 0 for any t ∈ I). Without loss of
generality, we assume a special parameter s such that 〈γ ′′(s),γ ′′(s)〉 = 1. One can set up the null frame
F = {γ(s), t(s),n(s),w(s)} of R4

2 which is a positively oriented tetrad of vector satisfying

〈γ(s),γ(s)〉 = −1, 〈w(s),w(s)〉 = 1,
〈t(s), t(s)〉 = 〈n(s),n(s)〉 = 0, 〈t(s),n(s)〉 = 1,
〈γ(s), t(s)〉 = 〈γ(s),n(s)〉 = 〈γ(s),w(s)〉 = 〈t(s),w(s)〉 = 〈n(s),w(s)〉 = 0.

Since 〈t ′(s), t ′(s)〉 = κ2
1(s) > 0 and 〈w,w〉 = 1, then κ1(s) =

√
〈γ ′′(s),γ ′′(s)〉 = 1. The Frenet formula of γ

with respect to the frame F is given by [3]
γ ′(s) = t(s),
t ′(s) = w(s),
n ′(s) = γ(s) + κ2(s)w(s),
w ′(s) = −κ2(s)t(s) −n(s).

(2.1)

We call (2.1) the Cartan Frenet equations and γ(s) the null Cartan curve, where

t(s) = γ ′(s),

n(s) = −κ2γ
′(s) − γ(3)(s),

w(s) = γ ′′(s),

κ2 = 〈n ′(s),w(s)〉 = 1
2
〈γ(3)(s),γ(3)(s)〉.

The functions κ2 is called the curvature function of γ [1]. Employing the usual terminology, the unit
vector fields γ and w of F will be called 1st and 2nd principal normal vector fields, respectively. The null
vector field n is called the binormal vector field or the transversal null vector field.

Let γ : I → H3
1 be a smooth null Cartan curve with |κ2(s)| > 1. We define the principal normal

indicatrix of γ as the map ρ : I→ H3
1 given by

ρ(s) =
κ2√

(κ2
2 − 1)

γ(s) +
1√

(κ2
2 − 1)

w(s).

We also let binormal indicatrix of γ be the map n : I→ NC3.
Now we define ruled surfaces of which base curve is ±ρ(s) as follows

NS± : I×R −→ H3
1, NS±(s,ω) = ±ρ(s) + λn(s),

we call each of NS±(s,ω) the ruled null surface of principal normal indicatrix of γ.
We also define two new invariants of a null Cartan curve in H3

1 by

σ(s) =
κ ′2(s)

(κ2
2(s) − 1)

3
2

, and K(s) = σ ′(s) −
1√

κ2
2(s) − 1

,

which be related to geometric meanings of the singularities of the ruled null surface.
Let F : R4

2 → R be a submersion and γ : I → R4
2 be a null Cartan curve. We say that γ and F−1(0)

have k-point contact for t = t0, if the function g(t) = F ◦ γ(t) satisfies g(t0) = g
′(t0) = · · · = g(k−1)(t0) =

0, g(k)(t0) 6= 0. We also say that γ and F−1(0) have at least k-point contact for t = t0, if the function
g(t) = F ◦ γ(t) satisfies g(t0) = g

′(t0) = · · · = g(k−1)(t0) = 0.
In this paper, we shall assume throughout the whole paper that all the maps and manifolds are C∞

and |κ2(s)| > 1 unless the contrary is explicitly stated. The main result in this paper is as follows:
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Theorem 2.1. Let γ : I −→ H3
1 be a null Cartan curve, n(s) be the binormal indicatrix of γ. For v0 = NS±(s0,ω0)

and H2
1(v0) = {u ∈ NC3|〈u, v0〉 = 0}, we have the followings:

(1) n(s) and H2
1(v0) have at least 2-point contact for s0.

(2) n(s) and H2
1(v0) have 3-point contact for s0, iff v0 = ±(ρ(s0) + σ(s0)n(s0)) and K(s0) 6= 0. Under the

condition, the ruled null surface NS± at NS±(s0,ω0) is locally diffeomorphic to the cuspidal edge.

(3) n(s) and H2
1(v0) have 4-point contact for s0, iff v0 = ±(ρ(s0) + σ(s0)n(s0)) and K(s0) = 0, K ′(s0) 6= 0.

Under the condition, the ruled null surface NS± at NS±(s0,ω0) is locally diffeomorphic to the swallow tail
(Figure 1).

Figure 1: Cuspidal edge and swallow tail.

3. Geometric invariants of null Cartan curves in Anti-de Sitter 3-space

The purpose of this section is to obtain two geometric invariants of null Cartan curves by introducing
a family of functions on a null Cartan curve.

Let γ : I → H3
1 be a null Cartan curve and n(s) be the binormal indicatrix of γ(s), we define the

function H : I×H3
1 → R by H(s, v) = 〈n(s), v〉. It be called the binormal indicatrix height functions of null

Cartan curve γ(s) ∈ H3
1. For any fixed vector v in H3

1, denote hv(s) = H(s, v). Then we have the following
proposition.

Proposition 3.1. Let γ : I→ H3
1 be a regular null Cartan curve. Then

(1) hv(s) = 0, iff there exist real numbers µ,ν, λ such that v = µγ(s) + νw(s) + λn(s) and µ2 − ν2 = 1.

(2) hv(s) = h ′v(s) = 0, iff v = ±ρ(s) + λn(s).

(3) hv(s) = h ′v(s) = h ′′v (s) = 0, iff v = ±(ρ(s) + σ(s)n(s)).

(4) h ′v(s) = h ′′v (s) = h
(3)
v (s) = 0, iff v = ±(ρ(s) + σ(s)n(s)) and K(s) = 0.

(5) h ′v(s) = h ′′v (s) = h
(3)
v (s) = h

(4)
v (s) = 0, iff v = ±(ρ(s) + σ(s)n(s)) and K(s) = K ′(s) = 0.

4. Null Cartan curve and its principal normal indicatrix in Anti-de Sitter 3-space

The purpose of this section is to study the geometric properties of the ruled null surface of principal
normal indicatrix to a null Cartan curve in H3

1. By these properties, one can recognize the functions σ(s)
and K(s) = σ ′(s) − 1√

κ2
2−1

have special meanings, one also obtain the relationship between a null Cartan

curve and its principal normal indicatrix. These properties will be stated in the following.
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Proposition 4.1. Let γ : I→ H3
1 be a regular null Cartan curve. Then

(1) The singular set of NS± is {(s,ω)| ω = ±σ(s), s ∈ I}.

(2) If NS±(s,±σ(s)) = v±0 is a constant vector, then ±ρ(s) is in NC2(v±0 ) ⊂ H3
1 and n(s) is in

H2
1(v
±
0 ) ⊂ NC3 for any s in I and K(s) = σ ′(s) − 1√

κ2
2−1
≡ 0. Then image NS± ⊂ NC2(v±0 ).

Proof. (1). By the straightforward calculations, we have

∂NS±/∂s =

λ± κ ′2

(κ2
2 − 1)

√
κ2

2 − 1

γ(s)
+

λκ2 ±
κ2κ
′
2

(κ2
2 − 1)

√
κ2

2 − 1

w(s)± 1√
κ2

2 − 1
n(s),

∂NS±/∂λ = n(s).

The two equalities above imply that ∂NS±/∂s and ∂NS±/∂λ are linearly dependent, if and only if
λ = ± κ ′2

(κ2
2−1)
√
κ2

2−1
. This completes the proof of the assertion (1).

(2). For a smooth function λ : I→ R, define

f±λ : I→ H3
1, f±λ (s) = ±ρ(s) + λ(s)n(s).

If f±λ (s) = v
±
0 is a constant, then

df±λ (s)

ds
=

λ(s)± κ ′2

(κ2
2 − 1)

√
κ2

2 − 1

γ(s)
+

κ2λ(s)±
κ2κ
′
2

(κ2
2 − 1)

√
κ2

2 − 1

w(s)

+

λ ′(s)± 1√
κ2

2 − 1

n(s)

= 0.

Since the singularities of NS± are λ(s) = ± κ ′2
(κ2

2−1)
√
κ2

2−1
= ±σ(s),µ ′(s) = ±σ ′(s), substituting these

relations into the above equality, we have K(s) = σ ′(s) + 1√
κ2

2−1
= 0. Under the assumption that

± 1√
κ2

2−1
[κ2γ(s) −w(s) +

κ ′2
κ2

2−1n(s)] = v
±
0 is constant, ρ(s) satisfies

〈±ρ(s) − v±0 ,±ρ(s) − v±0 〉 = 〈±
1√
κ2

2 − 1
(κ2γ(s) +w(s)) − v±0 ,

± 1√
κ2

2 − 1
(κ2γ(s) +w(s)) − v±0 〉

= 0,

and n(s) satisfies
〈n(s) − v±0 ,n(s) − v±0 〉 = −1.
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Then we also have

〈NS±(s,u) − v±0 ,NS±(s,u) − v±0 〉 =〈(λ±
κ ′2

(κ2
2 − 1)

√
κ2

2 − 1
)n(s), (λ±

κ ′2

(κ2
2 − 1)

√
κ2

2 − 1
)n(s)〉

=0.

It is well-known in semi-Euclidean 4-space of index 2 that null Cartan curves which have constant k1
and k2 (not both zero) are called null Cartan helices.

Proposition 4.2. Let γ : I→ H3
1 be a null Cartan curve. Then

(1) ρ(s) is a spacelike or null curve.

(2) ρ(s) is a null curve if and only if γ(s) is a null Cartan helix.

(3) If γ(s) is a null Cartan helix, then singular locus of ρ(s) + λn(s) is ρ(s).

Proof. (1) By (2.1), we have

ρ ′(s) = σ(s)(−γ(s) − κ2w(s) −
1√
κ2 − 1

)n(s).

Then
〈ρ ′(s), ρ ′(s)〉 = σ2(s)(κ2

2 − 1).

This means that 〈ρ ′(s), ρ ′(s)〉 is non-negative and hence the desired result.
(2) It is easy to see from (1) that ρ(s) is a null curve if and only if σ2(s) = 0, which is equivalent to

κ ′2 = 0, that is κ2 is equal to a constant, the assertion (2) follows.
(3) Let γ : I → H3

1 be a null Cartan helix, the Cartan curvature k2 are constants. Then by Proposition
4.1, the singular locus of ρ(s) + λn(s) is ρ(s) + κ ′2

(κ2−1)
√
κ2

2−1
n(s), hence the assertion follows from κ ′2 = 0.

5. Versal unfolding of binormal indicatrix height function

In this section we use some general results on the singularity theory for families of function germs.
Let F : (R×Rr, (s0, x0)) → R be a function germ. We call F an r-parameter unfolding of f, where

f(s) = Fx0(s, x0). We say that f(s) has Ak-singularity at s0, if f(p)(s0) = 0 for all 1 6 p 6 k and f(k+1)(s0) 6=
0. We also say that f(s) has A>k-singularity at s0, if f(p)(s0) = 0 for all 1 6 p 6 k. Let F be an unfolding
of f and f(s) has Ak-singularity (k > 1) at s0. We denote the (k− 1)-jet of the partial derivative ∂F

∂xi
at s0

by j(k−1)( ∂F∂xi (s, x0))(s0) =
k−1∑
j=1

αji(s− s0)
j, for i = 1, · · · , r. Then F is called a (p) versal unfolding, if the

(k− 1)× r matrix of coefficients (αji) has rank k− 1 (k− 1 6 r). Under the same as the above, F is called
a versal unfolding, if the k× r matrix of coefficients (α0i,αji) has rank k (k 6 r), where α0i =

∂F
∂xi

(s0, x0).
We now introduce several important sets concerning the unfolding.
In this section we shall apply Ak-singularity and the unfolding theory of function germ to prove

Theorem 2.1.
Let function germ F : (R×Rr, (s0, x0)) → R be an unfolding of f, where f(s) = Fx0(s, x0). We now

introduce an important set concerning the unfolding. The discriminant set of F is given by

DF = {x ∈ Rr| there exists s with F =
∂F

∂s
= 0 at (s, x)}.
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By Proposition 3.1, the discriminant set of the binormal indicatrix height function H(s, v) is given as
follows

DH = {v = ±ρ+ λn(s)|s, λ ∈ R}.

For the binormal indicatrix height function H(s, v) = 〈n(s), v〉, one can prove the following interesting
result.

Theorem 5.1. Suppose that H : I×H3
1 → R is the binormal indicatrix height function on a null Cartan curve γ(s)

and v is in DH. If hv has Ak-singularity at s0 (k = 1, 2, 3), then H is a versal unfolding of hv.

Proof. Let
N(s) = (N1(s),N2(s),N3(s),N4(s)),

and
v = (±

√
−v2

2 + v
2
3 + v

2
4 + 1, v2, v3, v4) ∈ H3

1.

Then
H(s, v) = ∓N1(s)

√
−v2

2 + v
2
3 + v

2
4 + 1 −N2(s)v2 +N3(s)v3 +N4(s)v4,

∂H

∂vi
(s, v) = ∓ N1(s)vi√

−v2
2 + v

2
3 + v

2
4 + 1

+ ηiNi(s),

∂

∂s

∂H

∂vi
(s, v) = ∓

N ′1(s)vi√
−v2

2 + v
2
3 + v

2
4 + 1

+ ηiN
′
i(s),

∂

∂s2
∂H

∂vi
(s, v) = ∓

N ′′1 (s)vi√
−v2

2 + v
2
3 + v

2
4 + 1

+ ηiN
′′
i (s),

where η2 = 1, η3 = η4 = −1, i = 2, 3, 4.
Let jk−1 ∂H

∂vi
(s, v0)(s0) be the (k− 1)-jet of ∂H∂vi (s, v) (i = 2, 3, 4) at s0, then one can show that

∂H

∂vi
(s0, v0) + j

2(
∂H

∂vi
(s, v0))(s0) =

∂H

∂vi
(s0, v0) +

∂

∂s

∂H

∂vi
(s0, v0)(s− s0) +

1
2
∂2

∂s2
∂H

∂vi
(s0, v0)(s− s0)

2

= α0,i +α1,i(s− s0) +
1
2
α2,i(s− s0)

2.

We denote that

A =

 α0,2 α0,3 α0,4
α1,2 α1,3 α1,4
α2,2 α2,3 α2,4

 ,

A(i, j,k) = det

 Ni(s) Nj(s) Nk(s)
N ′i(s) N

′
j(s) N

′
k(s)

N ′′i (s) N
′′
j (s) N

′′
k(s)

 .

Then
detA = A(2, 3, 4)∓ v2√

−v2
2 + v

2
3 + v

2
4 + 1

A(1, 3, 4)

∓ v3√
−v2

2 + v
2
3 + v

2
4 + 1

A(2, 1, 4)∓ v4√
−v2

2 + v
2
3 + v

2
4 + 1

A(2, 3, 1)

= ± 1√
−v2

2 + v
2
3 + v

2
4 + 1

〈v,n(s)∧n ′(s)∧n ′′(s)〉.
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Since v ∈ DH is a singular point,

v = ±(ρ(s) +
κ ′2

(κ2
2 − 1)

√
κ2

2 − 1
n(s))

= ± 1√
(κ2

2 − 1)
((κ2γ(s) +w(s)) +

κ ′2
κ2

2 − 1
n(s)),

and
n(s)∧n ′(s)∧n ′′(s) = (1 − κ2

2)w(s) + κ ′2t(s) + κ2(1 − κ2
2)γ(s).

Therefore

detA = ±
(κ2

2 − 1)2

(−v2
2 + v

2
3 + v

2
4 + 1)

√
κ2

2 − 1
6= 0,

which implies the rank A is 3 and desired results.

Proof of Theorem 2.1. Let γ : I → H3
1 be a null Cartan curve. For v±0 = NS±(s0,u0), we define a function

H : NC3∗ → R by H(u) = 〈u, v±0 〉. Thus we have hv±0 (s) = H(n(s)). By Proposition 3.1, the discriminant

set of H is DH = {v = ±ρ(s) + λn(s)| s,ω ∈ R}. Since NC3∗ ⊃ H2
1(v
±
0 ) = H−1(0) and 0 is a regular value

of H, hv±0 has the Ak-singularity at s0, if and only if N(s) and H2
1(v
±
0 ) have (k+ 1)-point contact for s0,

using the results of the singularity theory for families of function germs [10] and combining Proposition
3.1, Theorem 5.1 and so we have desired results.

6. Generic properties of null Cartan curves in Anti-de Sitter 3-space

In this section we consider generic properties of null Cartan curves in H3
1. The main tool is a kind

of transversality theorems. Let Embsp(I,H3
1) be the space of null embedding γ : I → H3

1 with equipped
with Whitney C∞-topology. We also consider the function H : H3

1 × H3
1 → R defined by H(u, v) =

〈u(3)(s) + 1
2〈u

(3)(s),u(3)(s)〉u ′(s), v〉. We claim that Hv is a submersion for any v in H3
1, where Hv(u) =

〈u(3)(s)+ 1
2〈u

(3)(s),u(3)(s)〉u ′(s), v〉. For any γ in Embsp(I,H3
1), we have H = H ◦ (γ× idH3

1
). We also have

the l-jet extension
jl1H : I×H3

1 → Jl(I, R),

defined by jl1 H(s, v) = jlhv(s, v). We consider the trivialization Jl(I, R) ≡ I × R × Jl(1, 1). For any
submanifold O ⊂ Jl(1, 1), we denote that Õ = I× {0}×O. It is evident that jl1H is submersion and Õ is an
immersed submanifold of Jl(I, R). Then Jl1H is transversal to Õ. We have the following proposition as a
corollary of Lemma 6 in Wassermann [13].

Proposition 6.1. Let O be submanifolds of Jl(1, 1). Then the set

TO = {γ ∈ Embsp(I,H3
1)| j

l
1H is transversal to Õ},

is residual subset of Embsp(I,H3
1). If O is a closed subset, then TO is open .

Let f : (R, 0)→ (R, 0) be a function germ which has an Ak−singularity at 0. It is well-known that there
exists a diffeomorphism germ φ : (R, 0) → (R, 0) such that f ◦φ(s) = ±sk+1. This is the classification of
Ak-singularities. For any z = jlf(0) in Jl(1, 1), we have the orbit Ll(z) given by the action of the Lie group
of l-jet diffeomorphism germs. If f has an Ak-singularity, then the codimension of the orbit is k. There is
another characterization of versal unfoldings as follows.

Proposition 6.2. Let F : (R×Rr, 0) → (R, 0) be an r-parameter unfolding of f : (R, 0) → (R, 0) which has an

Ak-singularity at 0. Then F is a versal unfolding if and only if jl1F is transversal to the orbit Ll ˜(jlf(0)) for l > k+ 1.
Here, jl1F : (R×Rr, 0)→ Jl(R, R) is the l-jet extension of F given by jl1F(s, x) = j

lFx(s).
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The generic classification theorem is given as follows.

Theorem 6.3. There exists an open and dense subset TLlk ⊂ Embsp(I,H
3
1) such that for any γ ∈ TLlk , the ruled

null surface of principal normal indicatrix of γ is locally diffeomorphic to the cuspidal edge or the swallowtail at any
singular point.

Proof. (1). For l > 4, we consider the decomposition of the jet space Jl(1, 1) into Ll(1) orbits. We now
define a semi-algebraic set by

Σl = {z = jlf(0) ∈ Jl(1, 1)| f has an A>4-singularity}.

Then the codimension of Σl is 4. Therefore, the codimension of Σ̃l0 = I× {0}× Σl is 5. We have the orbit
decomposition of Jl(1, 1) − Σl into

Jl(1, 1) − Σl = Ll0 ∪ Ll1 ∪ Ll2 ∪ Ll3,

where Llk is the orbit through an Ak-singularity. Thus, the codimension of L̃lk is k + 1. We consider
the l- jet extension jl1H of the binormal indicatrix height function H. By Proposition 6.2, there exists an

open and dense subset TLlk ⊂ Emb(I,H3
1) such that jl1H is transversal to L̃lk(k = 0, 1, 2, 3) and the orbit

decomposition of Σ̃l. This means that jl1H(I× S3
1)
⋂
Σ̃l = ∅ and H is a versal unfolding of h at any point

(s0, v0). By Theorem 5.1, the discriminant set ofH (i.e., the ruled null surface of principal normal indicatrix
of γ) is locally diffeomorphic to cuspidal edge or the swallowtail if the point is singular.

7. Example

In this section, we give an example to illustrate the idea of Theorem 2.1.

Example 7.1. Let γ(s) be a null Cartan curve (Figure 2) of R4
2 defined by

γ(s) =

(√
2 cosh(

1
4
√

2
s), sinh( 4

√
2s),
√

2 sinh(
1
4
√

2
s), cosh( 4

√
2s)
)

,

with respect to a distinguished parameter s.
The Cartan Frenet frame is

F = {γ(s), t(s),n(s),w(s)},

where

γ(s) =

(√
2 cosh(

1
4
√

2
s), sinh( 4

√
2s),
√

2 sinh(
1
4
√

2
s), cosh( 4

√
2s)
)

,

t(s) =

(
4
√

2 sinh(
1
4
√

2
s), 4
√

2 cosh( 4
√

2s), 4
√

2 cosh(
1
4
√

2
s), 4
√

2 sinh( 4
√

2s)
)

,

n(s) =

(
1

2 4
√

2
sinh(

1
4
√

2
s),−

1
2 4
√

2
cosh( 4

√
2s),

1
2 4
√

2
cosh(

1
4
√

2
s),−

1
2 4
√

2
4
√

2 sinh( 4
√

2s)
)

,

w(s) =

(
cosh(

1
4
√

2
s),
√

2 sinh( 4
√

2s), sinh(
1
4
√

2
s),
√

2 cosh( 4
√

2s)
)

.

Then we can calculate

κ2(s) = −
3
√

2
4

.
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(a) Null Cartan curve projection on
x1x2x3-space.

(b) Null Cartan curve projection on
x1x2x4-space.

(c) Null Cartan curve projection on
x1x3x4-space.

(d) Null Cartan curve projection on
x2x3x4-space.

Figure 2: Null Cartan curve projection on x1x2x3-space, x1x2x4-space,x1x3x4-space, x2x3x4-space respectively.

(a) Ruled null surface projection on
x1x2x3-space.

(b) Ruled null surface projection on
x1x2x4-space.
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(c) Ruled null surface projection on
x1x3x4-space.

(d) Ruled null surface projection on
x2x3x4-space.

Figure 3: Ruled null surface projection on x1x2x3-space, x1x2x4-space, x1x3x4-space, x2x3x4-space respectively.

The principal normal indicatrix of γ(s) is

ρ(s) = {−3
√

2 cosh(
1
4
√

2
s) +

4
4
√

2
(s) sinh(

1
4
√

2
s),−3

√
2 sinh( 4

√
2s) +

4
4
√

2
(s) cosh( 4

√
2s),

−3
√

2 sinh(
1

4
√

2s
) +

4
4
√

2(s)
cosh(

1
4
√

2
s),−3

√
2 cosh( 4

√
2s) +

4
4
√

2
(s) sinh( 4

√
2s)},

and the null surface (Figure 3) of principal normal indicatrix of γ(s) is

NS(s, λ) = {NS1,NS2,NS3,NS4},

where

NS1 =
1

2 4
√

2
sinh(

1
4
√

2
s)λ− 3

√
2 cosh(

1
4
√

2
s) +

4
4
√

2
sinh(

1
4
√

2
s),

NS2 = −
1

2 4
√

2
cosh( 4

√
2s)λ− 3

√
2 sinh( 4

√
2s) +

4
4
√

2
cosh( 4

√
2s),

NS3 =
1

2 4
√

2
cosh(

1
4
√

2
s)λ− 3

√
2 sinh(

1
4
√

2
s) +

4
4
√

2
cosh(

1
4
√

2
s),

NS4 = −
1

2 4
√

2
sinh( 4

√
2s)λ− 3

√
2 cosh( 4

√
2s) +

4
4
√

2
sinh( 4

√
2s).

On the other hand, we can calculate the geometric invariant σ(s) = 0. By Theorem 2.1 and Theorem
6.3, we have the null surface is locally diffeomorphic to cuspidal edge at singularity points.
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