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Abstract
In this paper, we introduce some generalized nonlinear contractions via implicit functions and α-admissible pair of map-

pings. We also provide some common fixed point results for above contractions in the class of b-metric-like spaces. We will
derive some consequences and corollaries from our obtained results. Some illustrated examples are presented to make effective
the concepts and results. c©2017 All rights reserved.
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1. Introduction and preliminaries

In 2013, the concept of a b-metric-like space was introduced first by Alghamdi et al. [2] as a general-
ization of a metric-like space [3, 7, 17, 18, 23], a b-metric space [9, 16, 31, 34, 35] and a partial metric space
[1, 6, 15, 25, 30, 32, 33]. For some fixed point results on b-metric-like spaces, see [19] and [13].

The definition of a b-metric-like space is given as follows:

Definition 1.1. Let X be non-empty and s > 1. Let σ : X×X→ [0,∞) be a function which satisfies:

(d1) σ(x,y) = 0 implies that x = y;
(d2) σ(x,y) = σ(y, x);
(d3) σ(x,y) 6 s[σ(x, z) + σ(z,y)].

Then σ is called a b-metric-like and the pair (X,σ) is called a b-metric-like space.

Definition 1.2. A sequence {xn} converges to x ∈ X in the b-metric-like space (X,σ) if and only if

lim
n→∞σ(xn, x) = σ(x, x).
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Remark 1.3. In a b-metric-like space, the limit for a convergent sequence is not unique in general.

Definition 1.4. A sequence {xn} is Cauchy in the b-metric-like space (X,σ) if and only if lim
n,m→∞d(xn, xm)

exists and is finite.

Definition 1.5. The b-metric-like space (X,σ) is complete if and only if each Cauchy sequence in X is
convergent.

Lemma 1.6. Let (X,σ) be a b-metric-like space and {xn} be a sequence that converges to u with σ(u,u) = 0. Then
for each y, z ∈ X

1
s
σ(u, z) 6 lim inf

n→∞ σ(xn, z) 6 sσ(u, z) and σ(z, z) 6 2sσ(z,y).

Definition 1.7. Let (X,σ) be a b-metric-like space. The map T : X → X is continuous at u ∈ X if for all
ε > 0, there exists δ > 0 such that

T(Bσ(u, δ) ⊆ Bσ(Tu, ε).

Definition 1.8. Let (X,σ) be a b-metric-like space and T : X→ X be a given mapping. T is said sequentially
continuous at u ∈ X if for each sequence {xn} in X converging to u, we have Txn → Tu, that is,

lim
n→∞σ(Txn, Tu) = σ(Tu, Tu).

T is said sequentially continuous on X if T is sequentially continuous at each u ∈ X.

A simple consequence of above two definitions is stated as follows.

Lemma 1.9. Let (X,σ) be a b-metric-like space and T : X → X be a given mapping. If T is continuous on X, then
it is sequentially continuous on X.

On the other hand, instead of the standard explicit contractive conditions, Popa [28] used the concept
of an implicit function in the contractive condition. This direction was the source of several (common)
fixed point and coincidence point theorems in various ambient spaces. For more details, see [5, 10–12, 20].

Now, take s > 1 and denote by N the set of positive integers. Let Ψs be the set of functions ψ :
[0,∞)→ [0,∞) satisfying:

(ψ1) ψ is nondecreasing,

(ψ2)
∞∑
n=1

snψn(t) <∞ for each t ∈ R+ where ψn is the nth iterate of ψ.

Remark 1.10. It is easy to see that if ψ ∈ Ψs, then ψ(t) < t for any t > 0 and ψ(0) = 0.

We introduce the following.

Definition 1.11. Consider s > 1. Let Γs be the set of functions F(t1, ..., t6) : R6
+ → R such that

(F1) F is nondecreasing in variable t1 and nonincreasing in variables t5 and t6;
(F2) there exists h1 ∈ Ψs such that for all u, v > 0, F(u, v, v,u, s[u+ v], 2su) 6 0 implies u 6 h1(v), and

F(u, v,u, v, 2su, s[u+ v]) 6 0 implies u 6 h1(v).

We present the following examples.

Example 1.12. F(t1, ..., t6) = t1 − at2 − b(t3 + t4) − c(t5 + t6), where a,b, c > 0 such that as+ b(1 + s) +
cs(s+ 3) < 1.

Example 1.13. F(t1, ..., t6) = t1 − kmax{t2, ..., t6}, where k ∈ [0, 1
s+s2 ).

In 2012, Samet et al. [29] introduced a new useful concept, named as α-admissible maps.
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Definition 1.14 ([29]). For a nonempty set X, let T : X→ X and α : X×X→ [0,∞) be given mappings. We
say that T is α-admissible if for all x,y ∈ X, we have

α(x,y) > 1 =⇒ α(Tx, Ty) > 1.

The above concept opens the door to prove many (common) fixed point results, for example see
[4, 21, 22, 24, 26, 27].

Very recently, Aydi [8] generalized Definition 1.14 and introduced the following.

Definition 1.15. For a nonempty set X, let A,B : X→ X and α : X×X→ [0,∞) be mappings. We say that
(A,B) is a generalized α-admissible pair if for all x,y ∈ X, we have

α(x,y) > 1 =⇒ α(Ax,By) > 1 and α(By,Ax) > 1. (1.1)

We can rewrite (1.1) as

α(x,y) > 1 =⇒ min(α(Ax,By),α(By,Ax)) > 1.

Now, we introduce the concept of α-implicit contractive pair of mappings in the setting of b-metric-like
spaces.

Definition 1.16. Let (X,σ) be a b-metric-like space and A,B : X → X be given mappings. We say that
(A,B) is an α-implicit contractive pair of mappings if there exist two functions α : X× X → [0,∞) and
F ∈ Γs such that

F(α(x,y)σ(Ax,By),σ(x,y),σ(x,Ax),σ(y,By),σ(x,By),σ(y,Ax)) 6 0 (1.2)

for all x,y ∈ X.

In this paper, we provide some common fixed point results involving generalized α-implicit contrac-
tions on b-metric-like spaces. As consequences of our obtained results, we prove some existing fixed
point results on b-metric spaces and on metric-like spaces. We also provide some examples illustrating
our obtained results and the new concepts.

2. Fixed point theorems

In this section, we shall state and prove our main results.

Theorem 2.1. Let (X,σ) be a complete b-metric-space and A,B : X→ X be generalized α-implicit contractive pair
of mappings. Suppose that

(i) (A,B) is a generalized α-admissible pair;
(ii) there exists x0 ∈ X such that α(Ax0, x0) > 1 and α(x0,Ax0) > 1;

(iii) A and B are sequentially continuous on (X,σ).

Then there exists u ∈ X such that

1
s
σ(u,Au) 6 σ(Au,Au) 6 sσ(u,Au),

1
s
σ(u,Bu) 6 σ(Bu,Bu) 6 sσ(u,Bu), and σ(u,u) = 0. (2.1)

Assume in addition that

(iv) α(z, z) > 1 for all z verifying (2.1);
(v) F satisfies

(Fγ) if F(u, 0, v,w, 2s2u, 2s2u) 6 0 for all u, v,w > 0, there exists γ ∈ [0, 1
2s2 ) such that u 6 γ max{v,w}.
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Then u is a common fixed point of A and B, that is, u = Au = Bu.

Proof. By assumption (ii), there exists a point x0 ∈ X such that α(x0,Ax0) > 1 and α(Ax0, x0) > 1. Take
x1 = Ax0 and x2 = Bx1. By induction, we arrive to construct a sequence {xn} such that

x2n = Bx2n−1 and x2n+1 = Ax2n ∀ n = 1, 2, . . . . (2.2)

We split the proof into several steps:

Step 1: α(xn, xn+1) > 1 and α(xn+1, xn) > 1 for all n = 0, 1, . . . .
We have α(x0, x1) > 1 and α(x1, x0) > 1. Since (A,B) is a generalized α-admissible pair,

α(x1, x2) = α(Ax0,Bx1) > 1 and α(x2, x1) = α(Bx1,Ax0) > 1.

We also have
α(x3, x2) = α(Ax2,Bx1) > 1 and α(x2, x3) = α(Bx1,Ax2) > 1.

By induction, we obtain

α(xn, xn+1) > 1 and α(xn+1, xn) > 1 for all n = 0, 1, . . . . (2.3)

Step 2: d(xn, xn+1) 6 hn1 (d(x0, x1)) for all n = 0, 1, . . . .
From (1.2), we have

F(α(x2n−2, x2n−1)σ(Ax2n−2,Bx2n−1),σ(x2n−2, x2n−1),
σ(x2n−2,Ax2n−2),σ(x2n−1,Bx2n−1),σ(x2n−2,Bx2n−1),σ(x2n−1,Ax2n−2)) 6 0,

that is,

F(α(x2n−2, x2n−1)σ(x2n−1, x2n),σ(x2n−2, x2n−1),
σ(x2n−2, x2n−1),σ(x2n−1, x2n),σ(x2n−2, x2n),σ(x2n−1, x2n−1)) 6 0.

Using (2.3), (d3) in the fifth variable and (F1) in the first, fifth and sixth variables

F(σ(x2n−1, x2n),σ(x2n−2, x2n−1),σ(x2n−2, x2n−1),
σ(x2n−1, x2n), s[σ(x2n−2, x2n−1) + σ(x2n−1, x2n)], 2sσ(x2n−1, x2n)) 6 0.

By (F2), we obtain
σ(x2n−1, x2n) 6 h1(σ(x2n−2, x2n−1)). (2.4)

Similarly, from (1.2), we have

F(α(x2n, x2n−1)σ(Ax2n,Bx2n−1),σ(x2n, x2n−1),
σ(x2n,Ax2n),σ(x2n−1,Bx2n−1),σ(x2n,Bx2n−1),σ(x2n−1,Ax2n)) 6 0,

that is,

F(α(x2n, x2n−1)σ(x2n+1, x2n),σ(x2n, x2n−1),
σ(x2n, x2n+1),σ(x2n−1, x2n),σ(x2n, x2n),σ(x2n−1, x2n+1)) 6 0.

Again, by (2.3), we apply (F1) in the first variable to get

F(σ(x2n+1, x2n),σ(x2n, x2n−1),σ(x2n, x2n+1),σ(x2n−1, x2n),σ(x2n, x2n),σ(x2n−1, x2n+1)) 6 0.

Applying again (F1) in the fifth and sixth variables,

F(σ(x2n+1, x2n),σ(x2n, x2n−1),σ(x2n, x2n+1),
σ(x2n−1, x2n), 2sσ(x2n, x2n+1), s[σ(x2n−1, x2n) + σ(x2n, x2n+1)]) 6 0.
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By (F2),
σ(x2n, x2n+1) 6 h1(σ(x2n−1, x2n)). (2.5)

Combining (2.4) and (2.5), we obtain

σ(xn, xn+1) 6 h1(σ(xn−1, xn)) for all n = 1, 2, . . . .

We deduce
σ(xn, xn+1) 6 h

n
1 (σ(x0, x1)) for all n = 0, 1, 2, . . . . (2.6)

Step 3: {xn} is a Cauchy sequence.
Now, we shall prove that {xn} is a Cauchy sequence in the b-metric-like space (X,σ).
Using (d3) and (2.6), we have for all n,k ∈N

σ(xn, xn+k) 6 sσ(xn, xn+1) + s
2σ(xn+1, xn+2) + ... + sk−1σ(xn+k−1, xn+k)

6 (shn1 + s2hn+1
1 + ... + sk−1hn+k−1

1 )[σ(x0, x1)]

6
n+k−1∑
i=n

sihi1[σ(x0, x1)] 6
∞∑
i=n

sihi1[σ(x0, x1)].

Since h1 ∈ Ψs,
σ(xn, xn+k)→ 0 as n→∞, for all k. (2.7)

It follows that {xn} is a Cauchy sequence in the b-metric-like space (X,σ).

Step 4: Existence of a common fixed point.
Since (X,σ) is complete, the sequence {xn} converges to some u ∈ X, that is,

σ(u,u) = lim
n→∞σ(xn,u) = lim

m,n→∞σ(xn, xm).

By (2.7), we get
σ(u,u) = lim

n−→∞σ(xn,u) = lim
m,n−→∞σ(xn, xm) = 0. (2.8)

This implies that
lim
n→∞σ(x2n+1,u) = lim

n→∞σ(x2n+2,u) = 0.

By (2.2),
lim
n→∞σ(Ax2n,u) = lim

n→∞σ(Bx2n+1,u) = 0.

We shall prove that u = Au = Bu, that is, u is a common fixed point of A and B.
Using the sequentially continuity of A and the fact that x2n → u in (X,σ),

lim
n→∞σ(x2n+1,Au) = lim

n→∞σ(Ax2n,Au) = σ(Au,Au).

Using now the sequentially continuity of B and the fact that x2n+1 → u in (X,σ),

lim
n→∞σ(x2n+2,Bu) = lim

n→∞σ(Bx2n+1,Bu) = σ(Bu,Bu).

On the other side, having lim
n→∞σ(xn,u) = 0 = σ(u,u) together with Lemma 1.6,

1
s
σ(u,Au) 6 lim

n→∞σ(x2n+1,Au) 6 sσ(u,Au).

This yields that
1
s
σ(u,Au) 6 σ(Au,Au) 6 sσ(u,Au). (2.9)
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Similarly
1
s
σ(u,Bu) 6 σ(Bu,Bu) 6 sσ(u,Bu). (2.10)

By (2.8), (2.9), and (2.10), the assertion (2.1) holds. So by condition (iv), we have

α(u,u) > 1.

Now, applying (1.2) for x = y = u

F(α(u,u)σ(Au,Bu),σ(u,u),σ(u,Au),σ(u,Bu),σ(u,Bu),σ(u,Au)) 6 0,

i.e,
F(α(u,u)σ(Au,Bu), 0,σ(u,Au),σ(u,Bu),σ(u,Bu),σ(u,Au)) 6 0.

Since α(u,u) > 1, applying (F1) for the first variable, we get

F(σ(Au,Bu), 0,σ(u,Au),σ(u,Bu),σ(u,Bu),σ(u,Au)) 6 0.

Remember that

σ(u,Bu) 6 sσ(Bu,Bu) 6 2s2σ(Au,Bu), (2.11)

so applying (F1) in the fifth and sixth variables, we obtain

F(σ(Au,Bu), 0,σ(u,Au),σ(u,Bu), 2s2σ(Au,Bu), 2s2σ(Au,Bu)) 6 0.

Recall that F satisfies property (Fγ), so there exists γ ∈ [0, 1
2s2 ) such that

σ(Au,Bu) 6 γmax{σ(u,Au),σ(u,Bu)} 6 2γs2σ(Au,Bu),

which holds unless σ(Au,Bu) = 0. Thus, Au = Bu. We deduce from (2.11) that σ(u,Au) = 0 = σ(u,Bu).
Hence

u = Au = Bu.

This completes the proof.

If we take A = B in Theorem 2.1, we get the following result.

Corollary 2.2. Let (X,σ) be a complete b-metric-like space and A : X → X be a given mapping. Assume there
exists F ∈ Γs such that

F(α(x,y)σ(Ax,Ay),σ(x,y),σ(x,Ax),σ(y,Ay),σ(x,Ay),σ(y,Ax)) 6 0

for all x,y ∈ X. Suppose that

(i) (A,A) is an α-admissible;
(ii) there exists x0 ∈ X such that α(Ax0, x0) > 1 and α(x0,Ax0) > 1;

(iii) A is sequentially continuous on (X,σ).

Then there exists u ∈ X such that

1
s
σ(u,Au) 6 σ(Au,Au) 6 sσ(u,Au). (2.12)

Assume in addition that

(iv) α(z, z) > 1 for all z verifying (2.12);
(v) F satisfies
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(Fγ) if F(u, 0, v,w, 2s2u, 2s2u) 6 0 for all u, v,w > 0, there exists γ ∈ [0, 1
2s2 ) such that u 6 γ max{v,w}.

Then u is a fixed point of A, that is, u = Au.

Proof. The proof follows from the lines in the proof of Theorem 2.1.

Considering the b-metric case in Theorem 2.1, we have the following.

Corollary 2.3. Let (X,σ) be a complete b-metric space and A,B : X→ X be given mappings. Suppose there exists
F ∈ Γs such that

F(α(x,y)σ(Ax,By),σ(x,y),σ(x,Ax),σ(y,By),σ(x,By),σ(y,Ax)) 6 0

for all x,y ∈ X. Assume that

(i) (A,B) is an α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0,Ax0) > 1 and α(Ax0, x0) > 1;

(iii) A and B are sequentially continuous on (X,σ).

Then there exists u ∈ X such that u = Au = Bu.

Proof. Due to conditions (i)-(iii), there exists u ∈ X such that from Theorem 2.1, (2.1) becomes

u = Au = Bu,

that is, u is a common fixed point of A and B. Here, we do not need conditions (iv) and (v) given in
Theorem 2.1.

Corollary 2.4. Let (X,σ) be a complete b-metric space and A : X → X a given mapping. Assume there exists
F ∈ Γs such that

F(α(x,y)σ(Ax,Ay),σ(x,y),σ(x,Ax),σ(y,Ay),σ(x,Ay),σ(y,Ax)) 6 0

for all x,y ∈ X. Suppose that

(i) (A,A) is an α-admissible mapping;
(ii) there exists x0 ∈ X such that α(Ax0, x0) > 1 and α(x0,Ax0) > 1;

(iii) A is sequentially continuous on (X,σ).

Then there exists u ∈ X such that u = Au.

Now, consider in Theorem 2.1 the operator F presented by Example 1.13. We state the following.

Corollary 2.5. Let (X,σ) be a complete b-metric like metric space and A,B : X→ X satisfying

α(x,y)σ(Ax,By) 6 k max{σ(x,y),σ(x,Ax),σ(y,By),σ(x,By),σ(y,Ax)}, (2.13)

where k ∈ [0, 1
2s2 ). Suppose that

(i) (A,B) is an α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0,Ax0) > 1 and α(Ax0, x0) > 1;

(iii) A and B are sequentially continuous on (X,σ).

Then, there exists u ∈ X such that u is a common fixed point of A and B, that is, u = Au = Bu.

For A = B, we have the following result.

Corollary 2.6. Let (X,σ) be a complete b-metric-like space and A : X→ X be a mapping such that

α(x,y)σ(Ax,Ay) 6 k max{σ(x,y),σ(x,Ax),σ(y,Ay),σ(x,Ay),σ(y,Ax)},

where k ∈ [0, 1
2s2 ). Suppose that
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(i) (A,A) is an α-admissible mapping;
(ii) there exists x0 ∈ X such that α(x0,Ax0) > 1 and α(Ax0, x0) > 1;

(iii) A is continuous on (X,σ).

Then there exists u ∈ X such that u is a fixed point of A, that is, u = Au.

In the next result, we drop the sequentially continuity hypothesis of A and B and we replace it by the
following.

(H) If {xn} is a sequence in X such that α(xn, xn+1) > 1 and α(xn+1, xn) > 1 for all n and xn → x ∈ X as
n→∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) > 1 and α(x, xn(k)) > 1
for all k.

We also replace Definition 1.11 by the following.

Definition 2.7. Consider s > 1. Let Gs be the set of continuous functions F(t1, ..., t6) : R6
+ → R such that

(G1) F is nondecreasing in variable t1 and nonincreasing in variables t5 and t6;
(G2) there exists h1 ∈ Ψs such that for all u, v > 0, F(us , v, v,u, s[u+ v], 2su) 6 0 implies u 6 h1(v), and

F(us , v,u, v, 2su, s[u+ v]) 6 0 implies u 6 h1(v).

Remark 2.8. If F ∈ Γs, the continuity of F is not required. But, in Definition 2.7, the continuity is essential.
Also, the property (G2) implies (F2). The converse sense is not true. Therefore, the sets Γs and Gs are
different to each other.

Theorem 2.9. Let (X,σ) be a complete b-metric-like space and A,B : X→ X be generalized α-implicit contractive
pair of mappings (with F ∈ Gs). Suppose that

(i) (A,B) is an α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0,Ax0) > 1 and α(Ax0, x0) > 1;

(iii) (H) holds.

Then there exists u ∈ X such that u = Au = Bu. We also have σ(u,u) = 0.

Proof. Following the proof of Theorem 2.1, the sequence {xn} defined by (2.2) is Cauchy and converges to
some u ∈ X in (X,σ). Remember that (2.3) holds, so from condition (iv), there exists a subsequence {xn(k)}

of {xn} such that α(x2n(k),u) > 1 and α(u, x2n(k)−1) > 1 for all k. We shall show that u = Au = Bu.
Taking x = x2n(k) and y = u in (1.2)

lim sup
k→∞ F(α(x2n(k),u)σ(Ax2n(k),Bu),σ(x2n(k),u),σ(x2n(k),Ax2n(k)),

σ(u,Bu),σ(x2n(k),Bu),σ(u,Ax2n(k))) 6 0.

Having α(x2n(k),u) > 1, so applying (G1) in the first variable, we have

F(σ(x2n(k)+1,Bu),σ(x2n(k),u),σ(x2n(k), x2n(k)+1),σ(u,Bu),σ(x2n(k),Bu),σ(u, x2n(k)+1)) 6 0.

We know that lim
n→∞σ(xn,u) = 0 = σ(u,u), so Lemma 1.6 implies that

1
s
σ(u,Bu) 6 lim sup

n→∞ σ(x2n(k)+1,Bu) 6 sσ(u,Bu).

Letting k to infinity and using continuity of F, we have

F(
1
s
σ(u,Bu), 0, 0,σ(u,Bu), sσ(u,Bu), 0) 6 0.
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Using (G1) in the fifth and sixth variables,

F(
1
s
σ(u,Bu), 0, 0,σ(u,Bu), sσ(u,Bu), 2sσ(u,Bu)) 6 0.

By (G2), it follows that p(u,Bu) 6 h1(0) = 0, which implies that u = Bu.
Similarly, by taking x = u and y = x2n(k)−1 in (1.2), we have

F(α(u, x2n(k)−1)σ(Au,Bx2n(k)−1),σ(u, x2n(k)−1),σ(u,Au),σ(x2n(k)−1,Bx2n(k)−1),

σ(u,Bx2n(k)−1),σ(x2n(k)−1,Au)) 6 0.

By (G1) and α(u, x2n(k)−1) > 1, we get

F(σ(Au, x2n(k)),σ(u, x2n(k)−1),σ(u,Au),σ(x2n(k)−1, x2n(k)),σ(u, x2n(k)),σ(x2n(k)−1,Au)) 6 0.

Again, in view of Lemma 1.6 and lim
n→∞σ(xn(k),u) = 0 = σ(u,u), we have

1
s
σ(u,Au) 6 lim sup

n→∞ σ(x2n(k),Au) 6 sσ(u,Au).

Letting k→∞ and using the continuity of F, we have

F(
1
s
σ(Au,u), 0,σ(u,Au), 0, 0, sσ(u,Au)) 6 0.

Using (G1) in the fifth and sixth variables

F(
1
s
σ(Au,u), 0,σ(u,Au), 0, 2sσ(u,Au), sσ(u,Au)) 6 0.

By (G2), we obtain σ(u,Au) 6 h1(0) = 0, that is, u = Au.

We state the following corollaries.

Corollary 2.10. Let (X,σ) be a complete b-metric-like space and A : X→ X a given mapping. Assume there exists
F ∈ Gs such that

F(α(x,y)σ(Ax,Ay),σ(x,y),σ(x,Ax),σ(y,Ay),σ(x,Ay),σ(y,Ax)) 6 0

for all x,y ∈ X. Suppose that

(i) (A,A) is an α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0,Ax0) > 1 and α(Ax0, x0) > 1;

(iii) (H) is satisfied.

Then there exists u ∈ X such that u = Au. We also have σ(u,u) = 0.

Proof. Taking B = A in Theorem 2.9, we get the above result.

Corollary 2.11. Let (X,σ) be a complete b-metric-like space and A,B : X→ X satisfying

α(x,y)σ(Ax,By) 6 k max{σ(x,y),σ(x,Ax),σ(y,By),σ(x,By),σ(y,Ax)},

where k ∈ [0, 1
s3+s2 ). Suppose that

(i) (A,B) is an α-admissible pair;
(ii) there exists x0 ∈ X such that α(Ax0, x0) > 1 and α(x0,Ax0) > 1;

(iii) (H) is satisfied.
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Then there exists u ∈ X such that u = Au = Bu.

Proof. It suffices to consider in Theorem 2.9 the operator F given by Example 1.13 with k ∈ [0, 1
s3+s2 ).

Mention that F is continuous.

Corollary 2.12. Let (X,σ) be a complete b-metric-like space and A : X→ X be a mapping such that

α(x,y)σ(Ax,Ay) 6 k max{σ(x,y),σ(x,Ax),σ(y,Ay),σ(x,Ay),σ(y,Ax)}

for all x,y ∈ X, where k ∈ [0, 1
s3+s2 ). Suppose that

(i) (A,A) is an α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0,Ax0) > 1 and α(Ax0, x0) > 1;

(iii) (H) is satisfied.

Then there exists u ∈ X such that u = Au.

Proof. Consider in Corollary 2.10 the operator F given by Example 1.13 with k ∈ [0, 1
s3+s2 ).

The following two corollaries are Ćirić [14] type results in the setting of b-metric-like spaces.

Corollary 2.13. Let (X,σ) be a complete b-metric-like space and A,B : X→ X satisfying

σ(Ax,By) 6 k max{σ(x,y),σ(x,Ax),σ(y,By),σ(x,By),σ(y,Ax)},

where k ∈ [0, 1
s3+s2 ). Then there exists u ∈ X such that u = Au = Bu.

Proof. It suffices to take α(x,y) = 1 in Corollary 2.11.

Corollary 2.14. Let (X,σ) be a complete b-metric-like space and A : X→ X be a mapping such that

σ(Ax,Ay) 6 k max{σ(x,y),σ(x,Ax),σ(y,Ay),σ(x,Ay),σ(y,Ax)},

where k ∈ [0, 1
s3+s2 ). Then there exists u ∈ X such that u = Au.

Proof. The proof follows easily when taking α(x,y) = 1 in Corollary 2.12.

To prove uniqueness of the common fixed point given in Theorem 2.1 (resp. Theorem 2.9), we need to
take the following additional hypotheses.

(U) For all x,y ∈ CF(A,B), we have α(x,y) > 1, where CF(A,B) denotes the set of common fixed points
of A and B, and

(F3) For all t > 0, we have F(t, t, 0, 0, t, t) > 0.

Theorem 2.15. Adding conditions (U) and (F3) to the hypotheses of Theorem 2.1 (resp. Theorem 2.9), we obtain
that u is the unique common fixed point of A and B.

Proof. We argue by contradiction, that is, there exist u, v ∈ X such that u = Au = Bu and v = Av = Bv

with u 6= v. By Theorem 2.1 (resp. Theorem 2.9), such u and v satisfy σ(u,u) = σ(v, v) = 0. From (1.2),
we get

F(α(u, v)σ(Au,Av),σ(u, v),σ(u,Au),σ(v,Bv),σ(u,Bv),σ(v,Au)) 6 0,

i.e,
F(α(u, v)σ(u, v),σ(u, v),σ(u,u),σ(v, v),σ(u, v),σ(v,u)) 6 0.

Since α(u, v) > 1, by (F1)=(G1) in the first variable, we get

F(σ(u, v),σ(u, v), 0, 0,σ(u, v),σ(u, v)) 6 0.

Again F satisfies property (F3), so it is a contradiction. Hence u = v.
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Theorem 2.16. Adding conditions(U) and (F3) to the hypotheses of Corollary 2.2 (resp. Corollary 2.10), we obtain
that u is the unique fixed point of A.

The following examples illustrate Theorem 2.15 where the considered mappings A and B have a
unique common fixed point.

Example 2.17. Take X = [0,∞) endowed with the complete b-metric-like σ(x,y) = (x+ y)2 with s = 2.
Consider the mappings A,B : X→ X given by

Ax =

{
x
9 , if x ∈ [0, 1],
(x− 1)2 + 1

9 , if x > 1,
and Bx =

{
x
9 , if x ∈ [0, 1],
2x2−1

9 , if x > 1.

Define the mapping α : X×X→ [0,∞) by

α(x,y) =

{
1, if x,y ∈ [0, 1],
0, otherwise.

Let F(t1, t2, t3, t4, t5, t6) = t1 −
1

10(t5 + t6). It is obvious that

(i) (A,B) is an α-admissible pair;
(ii) there exists x0 ∈ X such that α(x0,Ax0) > 1 and α(Ax0, x0) > 1;

(iii) F(u, 0, v,w, 2s2u, 2s2u) 6 0 for all u, v,w > 0.

Moreover, A and B are sequentially continuous on (X,σ). Indeed, let {xn} be a sequence in X such that
xn → x in (X,σ) as n→∞. It follows that

σ(xn, x) = (xn + x)2 → σ(x, x) = 4x2 ⇔ xn + x→ 2x⇔ |xn − x|→ 0.

A is continuous on (X, |.|), so |Axn −Ax|→ 0 as n→∞. Then

σ(Axn,Ax)→ σ(Ax,Ax).

Thus A is sequentially continuous on (X,σ). Similarly, B is sequentially continuous on (X,σ).
Now, we shall show that (A,B) is an α-implicit contractive pair. Let x,y ∈ X such that α(x,y) = 1. So,

x,y ∈ [0, 1]. We have

F(α(x,y)σ(Ax,By),σ(x,y),σ(x,Ax),σ(y,By),σ(x,By),σ(y,Ax)) = σ(Ax,By) −
1
9
(σ(x,By) + σ(y,Ax))

= (
x

9
+
y

9
)2 −

1
10

(
(x+

y

9
)2 + (y+

x

9
)2
)

= −
1

810
(71x2 + 71y2 + 16xy) 6 0.

Also, if x,y ∈ X such that α(x,y) = 0, then

F(α(x,y)σ(Ax,By),σ(x,y),σ(x,Ax),σ(y,By),σ(x,By),σ(y,Ax))

= F(0,σ(x,y),σ(x,Ax),σ(y,By),σ(x,By),σ(y,Ax)) = −
1
9
(σ(x,By) + σ(y,Ax)) 6 0.

All hypotheses of Theorem 2.1 hold and 0 is the unique common fixed point of A and B.

Example 2.18. Take X = [0, 2] endowed with the b-metric-like σ(x,y) = x2 + y2 + (x− y)2. Consider the
mappings A,B : X→ X given by

Ax =

{
x2

10(1+x) , if x ∈ [0, 1],
1

20 + ln x, if x ∈ (1, 2],
and Bx =

{
x2

10(1+x) , if x ∈ [0, 1],

1, if x ∈ (1, 2].
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Define the mapping α : X×X→ [0,∞) by

α(x,y) =

{
1, if x,y ∈ [0, 1],
0, otherwise.

Note that (X,σ) is a complete b-metric-like space. Also, (A,B) is an α-admissible pair. In fact, let x,y ∈ X
such that α(x,y) > 1, so x,y ∈ [0, 1]. In this case

α(Ax,By) = α(
x2

10(1 + x)
,

y2

10(1 + y)
) = 1 and α(By,Ax) = α(

y2

10(1 + y)
,

x2

10(1 + x)
) = 1.

Then (A,B) is an α-admissible pair.
Now, we shall show that (A,B) is an α-implicit contractive pair. Let x,y ∈ X such that α(x,y) = 1. So

x,y ∈ [0, 1]. We have

α(x,y)σ(Ax,By) = σ(Ax,By) = (Ax)2 + (By)2 + (Ax−By)2

= (
x2

10(1 + x)
)2 + (

y2

10(1 + y)
)2 + (

x2

10(1 + x)
−

y2

10(1 + y)
))2

6 (
1

20
)2(x2 + y2) + (

9
100

)2(x− y)2

6 (
9

100
)2σ(x,y).

Also, if x,y ∈ X such that α(x,y) = 0, then

α(x,y)σ(Ax,By) = 0 6 (
9

100
)2σ(x,y).

Now, we show that (H) is verified. Let {xn} be a sequence in X such that α(xn, xn+1) > 1, α(xn+1, xn+) > 1
for all n and xn → u ∈ (X,σ) as n → ∞. Then, {xn} ⊂ [0, 1] and it is easy to see that xn → u ∈ (X, |.|) as
n→∞. Consequently, u ∈ [0, 1] and so α(xn,u) = α(u, xn) = 1 for all n. Thus, all hypotheses of corollary
2.11 are verified and 0 is the unique common fixed point of A and B.

Example 2.19. Let X = {0, 1, 2} and σ : X×X→ [0,∞) be defined by

σ(0, 0) = 0,σ(1, 1) = 4, σ(2, 2) = 64, σ(0, 1) = σ(1, 0) = 1,σ(0, 2) = σ(2, 0) = 16 and σ(1, 2) = σ(2, 1) = 25.

Then, (X,σ) is a complete b-metric-like space with coefficient s = 2, but neither a b-metric, nor a metric-
like since σ(1, 2) = 25 > 17 = σ(1, 0) + σ(0, 2).

Define A,B : X→ X such that

A0 = 0, A1 = A2 = 1, B0 = B1 = 0, and B2 = 1.

Take α : X×X→ [0,∞) defined by {
α(0, 0) = α(0, 1) = 1,
0 otherwise.

Note that (A,B) is an α-admissible pair. Indeed, let x,y ∈ X such that α(x,y) > 1, then (x = y = 0) or
(x = 0,y = 1). It follows that

α(A0,B0) = α(B0,A0) = α(0, 0) = 1 and α(A0,B1) = α(B1,A0) = α(0, 0) = 1.

Now, we shall show that the contraction condition (2.13) of Corollary 2.4 is verified for all k ∈ [0, 1
8). Let

x,y ∈ X such that α(x,y) = 1, then (x = y = 0) or (x = 0,y = 1). We have

α(0, 0)σ(A0,B0) = σ(A0,B0) = σ(0, 0) = 0 6 kσ(0, 0).
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Also,
α(0, 1)σ(A0,B1) = σ(0, 0) = 0 6 kσ(0, 1).

Moreover, for all x,y ∈ X such that α(x,y) = 0, we have

α(x,y)σ(Ax,By) = 0 6 kσ(x,y).

The condition contraction (2.13) holds.
For x0 = 0, we have α(Ax0, x0) > 1 and α(x0,Ax0) > 1. On the other hand, A and B are sequentially

continuous on (X,σ). In fact, if {xn} is a sequence such that xn → x in (X,σ), it is easy to see that
there exists N ∈ N such that xn = x for all n > N and so Axn = Ax for all n > N. It follows that
σ(Axn,Ax) = σ(Ax,Ax) for all n > N. Thus Axn → Ax in (X,σ), so A is sequentially continuous on
(X,σ). Similarly, B is sequentially continuous on (X,σ). Therefore, all the hypothesis of Corollary 2.4 are
satisfied. Here, 0 is the unique common fixed point of A and B.
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