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Abstract

We consider two general models for the virus dynamics with virus-to-target and infected-to-target infections. We assume
that the virus-target and infected-target incidences, the production and clearance rates of all compartments are modeled by
general nonlinear functions which satisfy a set of reasonable conditions. We incorporate the latently infected cells in the second
model. For each model we prove the existence of the equilibria and calculate the basic reproduction number Rj. We use suitable
Lyapunov functions and apply LaSalle’s invariance principle to prove the global asymptotic stability of the all equilibria of the
models. We confirm the theoretical results by numerical simulations. (©)2017 All rights reserved.
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1. Introduction

Mathematical models have become one of important helpful tools in understanding the dynamical
behavior of many human viruses such as HIV, HTLV-I, HCV and HBV (see e.g. [1, 2, 6-13, 17-19, 22, 23,
25,27-35, 37, 39, 42]. The basic virus dynamics model has been given in [30] as:

T=p—dT—pTYV,
T =BTV — uT¥,
V=0bT"—¢V,

where, T, T* and V are the concentrations of the uninfected cells, infected cells, and free virus particles,
respectively. The uninfected cells are replenished at rate p, die at rate dT and become infected at rate
BTV, where {3 is the virus-target incidence rate constant. The infected cells are die at rate uT*. The
virus particles are produced at rate bT* and cleared at rate cV. Parameters p,d, 3,1, b and c are all
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positive. In this model, the incidence rate is assumed to be bilinear. Moreover, the production rate of
viruses and the death rate of the uninfected cells, infected cells and free virus particles are given by linear
functions. The basic model may not describe the nonlinear virus dynamics during the infection stages
[18]. Therefore, several works have been done to modify the basic model by considering different factors
such as: immune response, [10, 33], nonlinear forms of the incidence rate [1, 12, 17, 18, 34, 39], nonlinear
production/removal rate of compartments [10, 15, 18], latently infected cells [2, 6], intracellular time delay
[8,9,19,22,23,28,33]. Georgescu and Hsieh [15] have generalized the above model by including the latent
infected cells and representing the incidence rate, the production and death rate of all compartments by
general nonlinear functions as:

T =f(T) —h(V)g(T),
C* =h(V)g(T) — (p+0) ¥ (C), (1.1)
T = oy (C*) — p&(T7),

V =DbE(T*) —co(V),

where, C(t) is the concentration of the latently infected cells. (1.1) describes the population dynamics of
the latently infected cells and shows that they die at rate p\p (C*) and they are converted to productively
infected cells at rate o (C*), where p and o are positive constants. f, g, h,\, £ and ¢ are general nonlinear
functions.

All the above mentioned works assume that the uninfected cells becomes infected due to virus con-
tacts. Recently, it has been reported that the uninfected cells can also become infected due to direct contact
with infected cells (see [3, 4, 14, 16, 20, 21, 24, 26, 36, 38, 40, 41]). The virus dynamics models with virus-
to-cell and cell-to-cell transmissions presented in [3, 4, 14, 16, 20, 21, 24, 26, 36, 38, 40, 41], assume bilinear
form for the virus-target and infected-target incidences which are based on the mass action principle.
Moreover, the production and death rates of the uninfected cells, infected cells and viruses are modeled
by linear functions.

The aim of this paper is propose and analyze two general nonlinear virus dynamics models with both
virus-to-cell and cell-to-cell infections. The virus-target and infected-target incidences, the production
and clearance rates of all compartments are given by general nonlinear functions. The second model
incorporates the latently infected cells as the fourth compartment. For both models we derive basic
reproduction number and establish a set of conditions which are sufficient for the existence and global
stability of the two equilibria of the models.

2. Mathematical model

We consider a general virus dynamics model with both cellular and viral infections as:

T=1(T) = [ (V) + ha (T g(T), (2.1)
T = [ha (V) +ha(T)] g(T) — g (T7), (2.2)
V =b&(T*) —co(V), (2.3)

where f, g, hy, hy, & and ¢ are continuously differentiable functions and satisfy the following conditions:

Assumption 2.1 (Al).

(i) there exists Ty > 0 such that f(Typ) =0 and f(T) > 0for T € [0, Tp);
(ii) f(T)<Oforall T > 0;
(iii) there exist s > 0 and § > 0 such that f(T) <s—5T forall T > 0.
Assumption 2.2 (A2).

(1) hi(uw), &), @(u),g(u) >0 for all w > 0 and hy(0) = &(0) = @(0) =g(0) =0,i=1,2;
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(i) hi(u) >0, &(u)>0and ¢'(u) >0forallu>0,i=1,2, g’(u) >0 forall u > 0;
(iii) there are c1 and ¢y > 0 such that &(u) > cqu and @(u) > cou for all u > 0.

/ *
Assumption 2.3 (A3). (t;l((\\,/))) <0, forall V>0and (Zz((TT* ))) <0, forall T* > 0.

2.1. Basic properties
2.1.1. Properties of solutions

The non-negativity and boundedness of the solutions of system (2.1), (2.2), (2.3) are established in the
following lemma:

Lemma 2.4. Suppose that A1 and A2 are valid. Then there exist ny > 0,1 = 1,2, such that the following set is
positively invariant:
O@={(T,T"V)eR,:0<T, T  <ny,0 <V <y}

Proof. Since
T‘T:O = f(O) > OI
g =m(V)g(T) >0, ¥T,V>0,
Vly_g=be(T) 20, ¥T* >0,

then, ]R3>0 ={(x,y,z) e R,x >0,y > 0,z > 0} is positively invariant for system (2.1)-(2.3).
Let F1(t) = T(t) + T*(t) + ;{)V( ), then

Fi(t) = f(T) —EE(T*) - %@(V) S_ST_EC 1T —%c »V

<s—o (T+T* +2V) =s—afi(t),
where 01 = min{3, ¢y, cco}. Then

S S

Fi(t) <e ot <F1(0) - ) +—.

01 01

Hence, 0 < F(t) < ny, if F{(0) < nq for t > 0, where n; = Gi. It follows that, 0 < T(t), T*(t) < ny,0 <
1

V(t) < ny, forall t > 0,if T(0) +T*(0) + 55 V(0) < ny, where n, = 25“1- Therefore, T(t), T*(t) and V(t)
are all bounded. O

2.1.2. The equilibria and basic reproduction number
The existence of the equilibria of the model (2.1)-(2.3) will be shown in the next lemma. Let the interior

of the set © be denoted by e.
Lemma 2.5. Suppose that A1 and A2 are valid, then

(i) if Ro < 1, then there exists a single equilibrium Py € ©; and

(ii) if 1 < Ro, then there exist two equilibria Py € © and Py € @,
where Ry is the basic reproduction number.
Proof. Let the R.H.S of system (2.1)-(2.3) be equal zero
0 =f(T) = [h1 (V) + h2(T)] g(T), (2.4)

0 = [ (V) +ho(T*)] g(T) — n&(TY), (2.5)
0= bE(T*) —co(V). (2.6)
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From (2.6), (V) = %E(T*) and from (2.4) and (2.5) we have
g(Mh (V) +g(Tha(T7) _ f(T)

§(TF) = (2.7)
i n
Thus b
e(V) = —f(T). (2.8)
uc
From Assumption A2 we have @1, &1 exist, continuous and strictly increasing. Therefore,
V=¢! (bf(T)> and T* =& ! (‘W) . (2.9)
He B

Substituting (2.9) into (2.4), we get

a1 o (2 o () -0
= (o (o) (e (o eo0

Obviously from Assumptions Al and A2, H(0) = —f(0) < 0 and H(Tp) = 0.
We note that, if T = Ty, then T* = V = 0, which gives the infection-free equilibrium Py = (T, 0, 0).
Now from (2.10), we get

Let

oV oT*
HUT) = (V) + ha(T)) (1) + 9() (W (V)3 + 7 5 ) ') @1
Moreover, from (2.7) and (2.8), we have
oT* /(T oV bf'(T)
oT ~ e ™ AT T e (V) (212

Substituting (2.12) into (2.11), we get

/ o / bf/(TO) / f/(TO) /
H'(To) = g'(To) [h1(0) + h2(0)] + g(To) <h1(0)uc(p,(0) +h,(0) ué’(0)> —f(To).

Assumption A2 implies that

/ el ! bg(T0) / Q(TO) —
H' (Tg) = f'(Tp) (hl(o) wco’(0) (0) ué’(0) 1) .

From Assumption Al, we have f'(Tp) < 0. Therefore, if hﬁ(O bg TO +h2 uri/ > 1, then H'(Ty) < 0
and there exists Ty € (0, Ty) such that H(T;) = 0. From (2. 9) and Assumptlons Al and A2, we have

V) = @} (%f(ﬂ)) > 0and T = g1 ( () ) > 0. It follows that, a chronic-infection equilibrium
Py = (Tq, T{, V1) exists when hﬁ(O) bg TO +h’ (0)-2 &’( > 1. Let us define the basic infection reproduction

number as: (To) /bR/(0) h,(0)
_gllo 1 2
Ro=" <c<p’(0) " 5’(0)> '

The last part of the proof is to show that Py € ©® and P; € ©. From Assumption Al, we have

S
< — =1y,
01

0= f(TQ) S — ST() = T()

cm\cn
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then Py € ©. Now we have T; < Ty, then from Assumption Al
0="1(Ty) < f(T7) <s—5T;.

It follows that

T <=-<ng.

ni | »

From (2.7) and Assumptions Al, A2, we get
per Ty < pé(Ty) = f(Ty) < f(0) <'s
S

S
S0<Tf < —< - <.
HCq 5C1

Similarly, from (2.8) and Assumptions Al, A2, we have

b b b
ccoVr < co(Vh) = —f(Ty) < —f(0) < —s
H H H
b 2b
=0<Vi< S < 5 < no.
Ceop  coop
Thus, P; € ©. O

2.1.3. Global properties

In the following we establish the global stability of the two equilibria of system (2.1)-(2.3) by construct-
ing suitable Lyapunov functionals.

Theorem 2.6. Suppose that Ry < 1 and Assumptions A1-A3 are valid, then Py is globally asymptotically stable
(GAS) in ©.

Proof. Construct the Lyapunov functional

T

c o g(To) . g(To)R (0)
Up(T, T ,V)T—TO—JTO 9() dd+T +7C(p/(0) A\

It is seen that, Up(T, T*,V) > 0 for all T, T*,V > 0, and Uy(Tp,0,0) = 0. Calculating dd—LiO along system
(2.1)-(2.3), we obtain

dulo <1_ 9(To)

) (f(T) = g(Th1 (V) — g(T)h2(T")) + g(Th1 (V)

dt g(T)
+g(Tha(T") — p&(TF) + o (0) (bE(T*) —cop(V))

B 9(To) \ g(To)hy(0) o 9(To)R(0)

= (1= 2 ) )+ gTolma (V) + g(Ta(T) + <b L u) £(1) - LU (v,
Since f(Tp) = 0 then we get

T bg(To)h, (0
= (1= S ) () =R + 9T (V) + gl TolhalT") + (9(“2)(01)() - u) £(T)
~ g(To)hy(0)
©'(0) .
From Assumption A3 we have
hy (V) < i hi(V)  hy(0) and ho(T*) < im ha(T) hZ(O). (2.13)

o(V) SvE0re(V) ~ 9'(0) ET) S0 g1 £(0)
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Then,

o _ <1 B 9(T0)> (HT) — £(Ta)) 1 (g(To)hQ(O) | bg(To)hy(0) 1) £(T)

dt g(T) né' (0) nce’(0)
B g(To) .
= <1— o(T) > (f(T) —1(To)) + 1 (Rog— 1) E(T™). (2.14)

From Assumptions Al and A2, we have

<1 _ ‘;&?;) (£(T) — £(To)) < 0.

duy
Therefore, if Ry < 1, then 3 S <O0forall T,T* > 0. Let Dy = {(T T+ V) 4o — 0} It is clear that Py

dt
is the largest invariant subset of Dy and it follows from (2.14) that % = 0 if and only if T(t) = Tp and

T*(t) =0 for all t. For any element belongs to Dy we have T* = 0. From (2.2) we have
0=T"=g(Mhi(V).

Assumption A2 implies that V = 0. Hence du“ =0if and only if T =Ty, T* = V = 0. LaSalle’s invariance
principle implies that Py is GAS when Ry < O

Remark 2.7. From Assumptions A1-A3 we have

(V)  hi (V)
<<P(V) a q)(Vl)) (h1 (V) —h1 (V1)) <0,

na(T*) 2 (T7) -
( E,(T*) E(Tl*) ) (h—Z(T ) hZ(Tl )) < 0,

and this leads to

(hl(V) eV ) <1_ hy (V1)> <0
hi(Vi)  e(V1) h(v)) =
ha(T*) _ E(T%) (1 . hz(Tl*)> <o
hy (T7)  &(T7) hy(T*)
Theorem 2.8. Let Assumptions A1-A3 hold true and Ry > 1, then the chronic-infection equilibrium Py is GAS in
0.

Proof. Construct a Lyapunov functional

.
.
Uy (T, T%, V) :T—Tl—J 9(Tu)

T, 9(9)

(AT T (o, (Y e
i L i) P o) (V vi-l, cp(a)‘w)'

It is seen that, Uy (T, T*,V) > 0 for all T, T*,V > 0, and U;(Ty, T, V1) = 0. Calculating % along system
(2.1)-(2.3), we obtain

duy _ 9( *
G = (1= 4 () = oM v) — gTha(T)

T*
<1_§,ET1*)>(9(T)M(V) O(T)a(T) — E(T)) +

g(T1)hi(V1) < ~e(V1)

comiy (1= vy ) (el —eov)
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T T
:<1—z((;)))(f(n—f(m)+( ‘;&;ﬁ)f(m+g(T1)h1(V)+g(T1)hz( ) — ()

_EMg(M(V)  ETg(Mha(T) oM (Vi) . .
E(T7) e PRI b ey e
g(T)hi (V1) . o(V)
- Wb‘i” ) —9g(T1)h1(V1) A +g(T)h1(V1).

Using the equilibrium conditions for P;:

f(Ty) = g(T)he (V1) + g(Th)ha(T7),
nE(TT) = g(T)he (Vi) + g(Ty)ha(T7)
b&(T) =co(Vi)

we obtain

au, /o g(T) _ g9(T) *
dh_ (1 1L ) (F(T) — £(Ty)) + (1 gm) (g(TH)ha(Va) + g(Ty)ha(TH))

V) (V) ha(T5) (%)
T (V) [m(vn MJ g(T)hz(Tl)[ T~ BT J .
[Q(Tl)hz(T{")_ bg(mmvn]m*) ET)gMh (V) E(T7)g(Mha(T") '
§1) N cev) E(T) E(T)
+ 9T (Vi) + (T ha(T7) — P2 B e 1) 4 gmma va)
Collecting terms of (2.15), we get
T T
= (1 S ) () ) + 9T (Vi) + gITi (1) — gl Ti (V) £
B . 9(T) (V) cpm] ) [hz(T*)_a(T*)}
o(ThalTr 3]+ oM a(Vi) | g — 20 alTomalTy) | 200~ Eo .
) STgMh(V) o T )g(T)ha(T) '
9NV gy mme vy~ 9T g ey (g (1)

E(T") (V1)

+9(T)h1 (V1) + g(Ti)ha(T7) — Q(Tl)hl(Vl)W
1

+g(T1)h1(V1).

Equation (2.16) can be simplified as:

du; 9(T1)> B [ Cg(Mm)  &(M)g(Mh(V) E,(T*)(P(Vl)]
t (l o) ) D =T eV 3= @y = F g mimm) e e(v)
+g(Tha(T?) 2= g(T1)  &(T7)g(T)ha(T™)

MV) (V)
T a(T*)g(Tl)hz(Tl*)] (TR (V) [hl(vl) - @(vl)]

g
+g(T1)h2(T1) EB égm
_ _9(T1)> _ [hl(v)_@(v)_ (V)hl(vl)]
(l o) ) MW=+ 9V |55 = 6 ~ 1 v v)
M) ETDeMY)  ETeV) mm(vl)}
oMM 4=~ F (V) e oY) e(Vom (V)
Do) E(TGMRa(TY)  E(T*ha(TH)
ToMIna(T) |3 =0 — Ty g ha(T7) E(Tl*)hz(T*)]
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B
= (1= 258 ) erm e + gmma v () - 208 (1- )
comnry) (B0 €00 ()
B
o(Mha(Tr) [3 o o )) ((Tl))?fz((TT?) B iglihig]” e

Using Assumptions A1-A3, we get that, the first three terms of (2.17) are less than or equal to zero. The
relationship between geometrical and arithmetical means implies that the last two terms of (2.17) are also
less than or equal to zero. It follows that, dul < Oforall T, T,V > 0. The solutions of system (2.1)-

(2.3) limited to Dy, the largest invariant subset of {(T, T,V): by 0} We have Ttl = 0 if and only

dt
if T(t) =Ty, T*(t) = T{ and V(t) = Vi. Therefore, D1 = {P1} and the global asymptotic stability of the
chronic-infection equilibrium P; follows from LaSalle’s invariance principle. O

3. Model with latently infected cells

In Section 2, we have assumed that all the infected cells are producer cells. In this section, we consider
two types of infected cells, latently infected cells and productively infected cells. The model can be
formulated as:

T=1(T) = g(T (V) — g(T)ha(T*), (3.1)
C* = (1-m) (g(Mh1(V) +g(Tha(T*)) = (p+ ) (C), (3.2)
T = (g(T (V) + g(T)ha(T*)) + o (C*) — n&(TY), (3.3)
V =bE(T*) —co(V), (3.4)

where, C* and T* represent the concentrations of the latently infected and productively infected cells,
respectively. The fractions (1 —7) and 7 with 0 < 7t < 1 are the probabilities that upon infection, an
uninfected cell will become either latently infected or productively infected.
Assumption 3.1 (A4).

(i) W is continuously differentiable, \ (C*) > 0 for C* > 0, (0) =

(i) P'(C*) > 0 for C* > 0; and

(iii) there is c3 > 0 such that { (C*) > ¢3C* for C* > 0.

3.1. Basic properties

3.1.1. Properties of solutions
Lemma 3.2. Suppose that Assumptions Al, A2 and A4 are valid. Then there exist Ny > 0,1 = 1,2, such that the
following set is positively invariant:

@L:{(T,C*,T*,V)ER >0 - 0 T/C*/T*<N1/0<V<N2}
Proof. We have

T|;_, =f(0) >0,
C* ey = (1= (g(M1(V) +g(Tha(T*)) =0, VT, T5,V >0,
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T*| g = mg(Ti (V) + o (C*) >0, VT,C*V >0,
V]y_o =b&(T) 20, VT*>0.
Hence, 1R4>0 is positively invariant for system (3.1), (3.2), (3.3), (3.4). Let
Falt) = T(t) + C*(1) + T (8) + - V(b).
Then
Fa(t) = £(T) = p(C7) = BE(T") — o

<s—op <T+C*+T*+%V> =s—ooh(t),

(V) < s—5T — pcsC* — gclT* . %sz

where, 02 = min(3, pcs, ¢1, cco). Then

Fﬂwgeﬁﬂ(amw—s>+s.
02 02

Hence, 0 < Fp(t) < Ny if F(0) < Nq for t > 0 where N = Gi. It follows that, 0 < T(t), C*(t), T*(t) < Ny,
2

2b
0 < V(t) < Ny, forall t > 0, if T(0) + C*(0) + T*(0) + 55 V(0) < Ny, where Ny = H—GS. Therefore,
2
T(t), C*(t), T*(t) and V(t) are all bounded. O

3.1.2. The equilibria and bifurcation parameter
The existence of the equilibria of model (3.1)-(3.4) will be shown in the next lemma.

Lemma 3.3. Suppose that Assumptions Al, A2 and A4 are satisfied, then

i) if R(% < 1, then there exists a single equilibrium Py € Oy ; and

e]
(i) if1 < fR(%, then there exist two positive equilibria Py € O and P; € O,
where R is the basic reproduction number.

Proof. Let the R.H.S of system (3.1)-(3.4) be equal zero

0 = f(T) = [ (V) +ha (T g(T), (3.5)
0=(1—-m)hi(V)+ha(T)]g(T) = (p+ o) (CT), (3.6)
0 =7 (V) +h2(TH)] g(T) + o (C*) — n&(T7), (3.7)
0=Db&(T") —co(V). (3.8)

From (3.8), @(V) = %E,(T*) and from (3.5), (3.6), (3.7) we have

pien 2 Lm0 (e o) (T

b (mtp + o) f(T)
p+o w(ip+o) '

olV)= cu(p+o)

(3.9)

It follows that

e o1 ((A=m)f(T) « o ((mp+o)f(T) 4 (b(mp+o0)f(T)
= ( p+o ) = (u(p+0) ) V=e < cu(p+o) ) (310

Substituting (3.10) into (3.5) we get

_1 (b(mp+ o) f(T) _1 [ (mp+ o) f(T) B
o (o7 (o)) remne (4 (e ) -m o
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and let

_ 1 b(mr+cr)f(T)>> <1<(ﬂp+o)f(T)>>}_ -
HL(T) = g(T) {hl (cp <Cu(p+0) +hy (& “hlotol f(T) =0. (3.11)

Obviously from Assumptions Al and A2, Hy (0) = —f(0) < 0 and Hg (Tp) =0.

We note that, if T = Ty then from (3.10) we have C* = 0, T* = V = 0 which gives the infection-free
equilibrium Py = (To,0,0,0).

Now from (3.11) we get

HL(T) = 9 (T) (V) + Rl )1+ o() (W (VI + ) 5 ) = ) 61

From (3.9) we have

oT*  (mp+0)f(T) oV _ b(mp+0)f(T)

= —~, and —— = v 3.13
T ~ 1ot o) E(T) oT ~ cilp+ o) o' (V) G139
Substituting (3.13) into (3.12), we get
b (mp + o) f'(To) (tp + o) f'(To)
H/T:/T[hO—i-hO]-FT(h/O +h(0)————= | — f'(To).
Assumption A2 implies that h{(0), h2(0) =0, g(To), h7(0),h5(0), ¢’(0) and &'(0) > O then
/ b (mp + o) g(To) (tp + o) g(To) )
H; (To) = /(T (h/O +h(0)—— T —
From Assumption Al, we have '(Tp) < 0. Therefore, if h{(O)% + h’z(O)% > 1, then

H{ (To) < 0 and there exists T; € (0, To) such that Hy (T;) = 0, moreover,

v -1 (=m0 f(Ty) « o1 ((mp+0)f(Ty) 4 (b(mp+o0)f(Tq)
Ci=1v <p+6 >>O, =& <u(p+6) )>O, Vi=o ( it o) >>0.

It follows that a chronic-infection equilibrium Py = (Ty, CJ, T{, Vi) exists when

b(mp+0)g(To) .,

(mp + o) g(To)
cnipr o) o) 20

u(p+o) & (0)

h1(0) > 1.

We define the basic infection reproduction number

RL _ (mp + o) g(To) (bh’l(O) N h§(0)>
0 kpto) \co'(0) €0/

Clearly Py € ©1. Now we show that P; € ©r. We have Ty < T, then from Assumption Al

0= f(To) < f(T1) < s —5Ty

S
:>T1<:<N1.
S

From (3.9) and Assumptions Al, A4, we get

(1—7)f(Tq) _ (1—m)
p+o (p+0)

S
:>0<CT<7§N1.
pPcC3

e3Ci < W (CY) =
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In addition, from (3.9) and Assumptions Al, A2, we have

* _ TP+O mp+0o mp+0
gl € T) = f(Tq) < f(0) < s<s
neq iy Ha(l) p—i—O‘(l) p—i-(Y( oto
:>T1*<i<%<N1.
peq 5C1

Similarly, from (3.9) and Assumptions Al, A2, we have

b (T b f0) b b
oV < co(vy) = 2ol (mp +0)f(0) _ blmptols b
wip+o) nip+o) nip+o) o
bs 2bs
=>0<Vi< < < No.
ccoit  ceop

Thus, P; € O1.. O

3.1.3. Global properties of the model with latently infected cells
In the following we establish the global stability of the two equilibria of model (3.1)-(3.4) by construct-
ing suitable Lyapunov functionals.

Theorem 3.4. Suppose that RE < 1 and A1-A4 are valid, then for system (3.1)-(3.4), Py is GAS in ©.
Proof. Constructing a Lyapunov functional U&(T, C*,T*,V) as

T /

T To)h, (0

U(IJ‘(T,C*,T*,V) :T_TO_J g( 0)d19+ o C*+ p+o T 4 g( 0), 1(0)
To 9(‘9) TP+ 0 P+ O co (O)

Calculating %Y along system (3.1)-(3.4), we obtain
40 = (1= 50 (5m) — gmv) — gTa()
oo (1= V)4 ha(T))g(T) — (04 0) b (C)
2T (el (V) 4T o)+ 0 (€7) i (T)) + S0 ) ey
= (1= 9500 ) )+ Tl (V) + gl Tola(T) + <bg$%(m - “;gj_?) £(T)
- SO o v,

Since f(Tp) = 0 then we get

dug (1 ~g(To)

dt 9(T)

- L o v)
Applying (2.13), we get

o, (b9(T)hy(0)  p+o )
)(f(T)—f(To))+9(To)h1(V)+9(To)h2(T )+< ) _7tp+c7u> &(TY)

aug _ (. g(To) B 9(T))h5(0)  bg(To)h;(0) p(p+0) Y, -
< (1- 900 f(To))+< Oal0) 2ol _po+o )a(T)
= (1= 9500 trm o + 2109 (g 1) )
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dug
Therefore, if SR(I)- < 1, then d—to < O0forall T, T* > 0. Similar to the previous section, one can show that Py

is GAS. O
Theorem 3.5. Suppose that R5 > 1 and A1-A3 are valid, then for system (3.1)-(3.4), Py is GAS in ©r

Proof. Construct a Lyapunov functional UlL(T, C*,T*,V) as follows:

U{_(T, C*, T*,V) =T— Tl — JT E;(({}l)) dd + T[p(:_ 5 (C* _ CT - JC* lll)l)((al)) d{})

p+o [ o [T ET) gMhiVi) ([, , [V eV
+7’tp+0‘<T h JT* &(9) d19>+ cp (V1) (V i Jvl (P(S)d{})'

1

It is seen that, UlL(T, C*,T*,V) >0forall T,C*, T*,V > 0, while UlL(T, C*,T*,V) reaches its global mini-

L
mum at P;. Calculate d;il

L
= (1720 (0= gTa(v) - (T ()
" $ D) 10 QT (V) + glTIha(T) o+ @) (€°))
# 2 (1o H ) (RO (V) 4 g(ThalT) 4+ 0w (€) - E(T)
g9(T1)h1(V1) <P(V1)> . _
C(p(vl) o) ) (PET) —colV) (3.14)
= (195 ) trn st (1= S £+ T V)4 9T ha(T)
o(l— )11)( 1) g oeFo) P+O
T MY + g ha(T) + T () — p 1)
m(p+0) &(T7) ey 9p+0) E(T7) PO
~oto 2 IMMV) +9(Mha(T") = = == (CF) + o e(T7)
9(M)N1(V1) ; vy 9(MJu (V1) o 9(Mh(Va)
L e (1) - SL D (V) b L (1) + (T (Vo)

Collecting terms of (3.14) and applying the conditions of P; :

f(T1) = g(Ty)he (V1) + g(Th)ha(T7),
bE(T) = co(V1),

e (17) = T2 (grm iy () + (T (7)),
o (Vi) = 2T (T () + 9(Ti a(T7),
WICH) = oo g(Ti (Vi) + (T)Ra(T7)),
we get
= (1= e - sm + (1 20 fgmmvn + gtTnarty)
o(1-m) P(CHg(T (V)

+ g(T ) (V) + g(Ti)ha(T*) — g(Ti)hi (V1)

T+ 0o P(C*)g(Ti)h1(V1)
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o(1—m) o W(CHg(Mha(T*) | o(1—mn) .
- g(Tl)hZ(Tl)w(C*)g(Tl)hz(Tl*) —— (g(T1)h1(V1) + g(T1)ha(T7))
)g(Mhy (V)

+[ 9T (V) "w]é(T*)—”(p”)g(Tl)hl(V” T

C(P(Vl) H?‘[p + o0 P+ 0 1
E(T{)g(T)ha(T*) LELIRIE E ;—i—g Tohy (Vi)
h

E(Tg(Mha(Ty)  mp+o
1 (V1)

% (V) (P(Vl)i(T*)
+9(T1)h2(T1)—Q(Tl)hl(vl)m—Q(Tl)hl(vl)m g(T

= (1= 20 trry = sem)+ (1= S fgmm v+ gCFmacry )
+ (TR (VA) [:11((\\//1)) - ;f)((\\//l))] + (T ha(T7) [QEEH _ ;gﬂ (3.15)

o STV e~ e o 9Tl )u?((ccf))st(TTl))}é((;))

o (G (Vi) (T (1)) + | S22 o 200G P gy

e ST G e et ST ) e

+o
1— T C*
(1-m) (g(T)hy (Vi) + g(T1)ha(T7)) W +g(T)hy (Vi) + g(T1)ha(T7)

T*)g
( 1*)
T )

7 (p+0)
—WQ(T Dha(T7)

g(T)

dt

mp+o
o(Vi) £(T*)
—g(T)hy (V1) ET) o(V) (Ty)hy(V1).
Equation (3.15) can be simplified as:
aut o(T:) MOV . eV R(Vi)e(V)
e <1_ g(T)>”(T)_“T””g””hl( ”[ nVD) L eVl T VeV
* T*
+9(Tha(T7) M%_ _EE ; EE EEEH
o(1—m) 9T mOelV)  (CHgMmV) (Vi) E(T)
T o dMWmVL) [5 o) mMe(V)  B(CgMIm(Ve) (1) o(V)
Y1) w(C)
P (C]) &1
7 (p+0) o) mVelV)  ETe(Mh (V) cp(vl)a(T*)]
roro JIMMVI) 4= S eV T BT gV &) (V)
o (1—m) CgT) TOET)  W(CHeMma(T)  ET)0(CY)
o SR A ) T e T (el ET (c;)]
7 (p+0) L om) ha(TET) T )g(T)hz(T*)]
mp+o SN 3= oy = e T T e g (T ha ()
Then, we obtain:
dur g(T) h(V) (V) hy (V1)
= (1 5m ) s - ammen (2 - 55) (- )
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o(l1—m)
TP+ 0o

&(Ty) w(c*)]

M) m(VdelV)  W(CgM(V)  @Vi) £T%)
9(hm(Vi) {5 oM mMVeVy)  B(CgMmM) &1 o(V)

VY (Cy) &(T%)

7(p + o) gM) m(Ve(V)  ETPg(MR(V) _cp(vl)a(T*)]
T et o SV [ T Ve V) T BT e MMM E(TF) @(V)
o(1=m oo [ 900 RalTIETY)  w(CHaMma(T)  E(T7(C7)
mpto ST M) T R (TOET) T (C)g(Mha(Ty) — &(T b ()
7(p + o) oL o) Ma(TET)  E(Ty)g(Mha(T* ]
T et TN 3= = T e T T BT (T (1) |

From Assumptions Al, A2 and A3, and the relation between the geometrical and the arithmetical means

we obtain that if R(% > 1, then d(ﬁlL <0, forall T,C*, T*,V > 0, where the equality occurs at the equilibrium
P;. LaSalle’s invariance principle implies the global stability of P;. O

4. Numerical simulations

In this section, we consider two examples where Assumptions Al-A4 can be satisfied.

4.1. Example 1
We consider the model

. T 1TV B TMT
T=p—dT+oT(1- >— - - , 4.1
P ( Tow) AT V) T (R +77) @D
. BTV BTN R
T = + — — 1T +¢T%), 4.2
AT V) T T maery  HeT et 42
V=b (1T +&T?) —c(cV+eV?). (4.3)

We assume that o < d (see e.g. [5]) and p, d, o, B1, B2, 1, M1, M2, T2, 1, €1, €1, €2, 2 > 0. In this example we
consider the following:

f(T)zp—dT—i—GT(l— T ), g(T) L

max - n1 + ™’
1V . B T*
h V — , h T = ,
1V m+V 2(T) o+ T*
E(T*) = T* +¢,T%, o(V) =,V + V2

2
Now, we verify Assumptions A1-A3. We have f(Ty) = 0, where Ty = (G_d)TmaX+\/(02_cyd) o t40PTmax ()

and f(0) = p > 0. Since o < d, then

20T

Tmax

It follows that, f(T) > 0 for all T € [0, Tp). Moreover, f(T) < p—(d—0)T = p—5T for all T > 0 where
§ =d—o0 > 0. Thus, Assumption Al is satisfied.

We have ¢(T), hi(V), ha(T*),&(T*), (V) > 0 for all T,T*,V > 0 and g(0) = h1(0) = hp(0) = £(0) =
@(0) = 0. We have also

f(T)=—d+o— <0.

nannfl

/
(T) = >0, VT>0,
J (1 + T)2
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MV =P oo yvso,
(M2 +V)
* BZﬁZ %
hy(T*) = —=>—- >0, VT*>0,
(i +T%)?
E(T)=c14+26T >0, VT*>0,
@' (V)=cr+25V >0, YVV=>0.

Moreover,

LT =T +aT? >qT, VT >0,
(V) =cV+ CzV oV, YV =0

Then, Assumption A2 is satisfied. Now we verify Assumption A3. We have

/ = =
(hl(V)> :_51(02+202V+Czn2)<0/ YV >0,

(V) (M2 4+ V)? (c2 + 62 V)?
<h2(T*)>/ _ Bafe1 +26 T + i)
£(T%) (i +T)% (e + &1 T%)?

<0, VT*>=0.

Thus, Assumption A3 is also satisfied.
The parameters Ry will be as follows:

™ b
Ro= 0 < B, Bf), (4.4)
w(m+Te) \eema  crfi

and then global stability results which are given by Theorems 2.6, 2.8 are compatible with our choices of
the functions.

In the following we discuss the effect of the parameter n on the parameter Ry. We consider the
following conditions

bBicifia+Brceomn
(Cl) peccycanafz < 1

— bBicifia+Pocern .
(C2) To=1and uCCllézTizﬁz(zm-ZHzJ sm+l

bpRicifx+Baceom .
(C3) Tp>1land 1< ucglézészmjf) <m+1

(C4) Tp<1land bpicifp+PBaceomy m+1.

pccycanatz

One can easily prove the following corollary:
Corollary 4.1. Let Rq be given by (4.4).
(i) if (C1) or (C2) is satisfied, then Ry < 1 for alln > 0;

(ii) if (C3) or (C4) is satisfied, then there exists N > 0 such that Ry < 1 for all 0 <n < N and Ry > 1 for all
n > N.

In order to illustrate our theoretical results, we perform numerical simulations for system (4.1), (4.2),
(4.3) with parameters values given in Table 1. In the figures we show the evolution of the three states T, T*
and V. We have used MATLAB for all computations. To show the global stability results we consider
three different initial conditions as

IC1: T(0) =500, T*(0) = 30, V(0) = 15,
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IC2: T(0) = 200, T*(0) = 3,V(0) = 1.5,
IC3: T(0) =30, T*(0) = 15, V(0) = 9.

Table 1: The data of system (4.1)-(4.3).
Parameter Value Parameter Value Parameter Value Parameter Value

) 10 B1 varied o 110 b 1.2

d 0.01 n,mng varied u 0.15 c 3.2

o 0.001 2 140 c1 0.9 C 1
Tinax 1200 2 0.001 C1 0.001 C2 0.002

We investigate the stability of equilibria by varying three parameters 31, 11 and n, while the other
parameters are fixed.

Case (1). n1 = 1.01,n = 1.003 and 34 is varied as:

(i) B1 = 20, then we compute Ry = 0.3569 < 1. From Lemma 2.5 we have that the system has one
equilibrium Py. From Figures 1, 2, 3 we can see that, the concentration of uninfected CD4" T cells is
increasing and tends its normal value Tp = 1015.6060, while the concentrations of infected cells and free
virus particles are decaying and approaching zero for all the three initial conditions IC1-IC3. It means
that, Py is globally asymptotically stable and the virus will be removed. This result supports the result of
Theorem 2.6.

(ii) B1 = 70, and then, Ry = 1.2489 > 1. Lemma 2.5 states that the system has two positive equilibria
Pp and P;. It is clear from Figures 4, 5, 6 that, both the numerical results and the theoretical results given
in Theorem 2.8 are consistent. It is seen that, the solutions of the system converge to the equilibrium
P1(38.5939, 66.5683,23.0646) for all the three initial conditions IC1-IC3.

Case (2). 1 = 70, 11 = 350 and n is varied. In this case, we consider the initial condition IC1. The
values of Ry and the equilibria of system (4.1)-(4.3) with different values of n are presented in Table 2.

Table 2: The values of equilibria and R for model (4.1)-(4.3) with different values of n.

n The equilibria Ro
1 Py = (1015.6060, 0, 0) 0.9297
1.01 Po = (1015.6060, 0, 0) 0.9459
1.02 Py = (1015.6060, 0, 0) 0.9615
1.046324759 Po = (1015.6060, 0, 0) 1
1.5 P; = (287.9589,51.4264,17.7202) 1.2367
2 P; = (98.2145,63.0499,21.8180)  1.2496
3 P = (24.5957,67.38531,23.3545) 1.2501

From Table 2 we can see that, the values of R is increased as n is increased and the asymptotic
properties of the equilibria are changed. Using the values of the parameters given in Table 1, we obtain
that: Ty = 1015.6060 > 1 and 2Pi&iN2tBacemnz _ 5507 < 1, 4 1, then Corollary 4.1 (ii) is satisfied and

Hcc1Camn2f2

N = 1.046324759, thus as shown in Table 2, we have
(i) if 0 <n < N, then Py is GAS;

(ii) if N < n, then P; exists and it is GAS.

Figures 7, 8, 9 and Table 2 show that, when n < N, the trajectory of the system tends to the equilibrium
Po. Conversely, when n > N, then the trajectory will converge to P; as shown in the figures.

Case (3). 1 =70, n =1 and n; is varied.

In this case, we consider the initial condition IC1. We take the values 31 = 70 and n = 1. The values
of Rp and the equilibrium of system (4.1)-(4.3) with different values of n; are presented in Table 3.
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Table 3: The values of equilibria and R( for model (4.1)-(4.3) with different values of 1.

m The equilibria Ro
1 P1 = (38.5939,66.5682,23.0646)  1.2488
15 P1 = (240.3507,54.4053,18.7673)  1.2319
70 Py = (550.4372,34.2078,11.7097) 1.1695
253.9698850 Py = (1015.6060, 0, 0) 1
270 Po = (1015.6060, 0,0) 0.9875
300 Py = (1015.6060, 0, 0) 0.9650

From Table 3 we can see that, the values of R( is decreased as m; is increased. Using the values of the
parameters given in Table 1, we obtain that the following:

(1) if 1 <171 < 253.9698850, then P; exists and it is GAS;

(ii) if 11 > 253.9698850, then Py is GAS. Figures 10, 11, 12 show that the numerical results are also
compatible with the results of Theorems 2.6, 2.8.

4.2. Example 2
We consider the following model:

_— TN BTV BT

T=p—dl+ol (1 Tmax> MY M tV)  ma T @1 *5)
- BTV BT B R

¢ =a “)<(n1+Tn)(nz+V) T @ 2+T*)> (p+0) (e3C" +C™5), (4.6)
= BlTnV BZT“T* * = *2\ * = T2

= <(n1+T“)(n2+V) (T 2+T*))+“(C3C F&CH) —u(aT+at™), @)
V=b (T +&T?) —c(cV+eV?). (4.8)

In this example the function 1 is chosen as:
P (C) = c3C* +23C™%,

which satisfies Assumption A4. The basic reproduction number R(% for model (4.5), (4.6), (4.7), (4.8) is
given by

AL _ (7tp + o) Tg* ( b . B2 ) 4.9)

T ilp+0) m+T) \cemn | e
We note that all the conditions of Theorems 3.4, 3.5 are satisfied.

In the following we discuss the effect of the parameter n on R. Consider the following conditions:

(tp+0)(bBicifa+Paccons) 1.
G pecicomnafz(p+o) =

(C5)
(C6) Ty =1 and (meFo)(bBiciatBacems) )y 4,
(C7)
(C8)

peciconefiz (p+o)
(mp+0)(bBicifia+PBaccony) .
C7) To > 1 with1 < pcciconafz(p+o) <m+L
(tp+0) (bBrcifiz+Baceamns)
C8) To < 1 with ucciconofz(p+o) >m+1

Corollary 4.2. Let R} be given by (4.9).
(i) if (C5) or (C6) is satisfied, then RE < 1 for alln > 0;

(i) if (C7) or (C8) is satisfied, then there exists NV > 0 such that R} < 1 for all 0 < n < N and R§ > 1 for all
n > NL
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In order to illustrate our theoretical results, we perform numerical simulations for the model (4.5)-(4.8)
with parameters values given in Table 4. In the figures we show the evolution of the three states T, C*, T*
and V. We discuss the effect of the parameters, 3; and 7t on the dynamical behavior of the system in
detail to investigate the theoretical results involved in Theorems 3.4, 3.5.

Table 4: The data of system (4.5)-(4.8).
Parameter Value Parameter Value Parameter Value Parameter Value

p 10 T varied c1 0.9 Co 0.002

d 0.01 up 140 C1 0.001 o) 0.05

o 0.001 B2 0.001 b 1.2 c3 1
Tmax 1200 M2 110 c 3.2 Cs 0.001

B1 varied u 0.15 p 0.1

n 1 1 1 C2 1

To show the global stability of the equilibria we consider three different initial conditions:
IC4: T(0) =500,C*(0) =5, T*(0) =40,V(0) =13,
IC5: T(0) =200, C*(0) =30,T*(0) =3,V(0) =15,
ICé: T(0) =30, C*(0) =50,T*(0) =15,V(0) =9.

Case (1). m= 0.7 and 31 is varied as:

(i) p1 = 20, then ROL = 0.2855 < 1. From Lemma 3.3 we have that the system has one equilibrium Py.
From Figures 13, 14, 15, 16 we can see that, the concentration of uninfected cells is increasing and tends
its normal value Ty = 1015.6060, while the concentrations of latently infected cells, productively infected
cells and free virus particles are decaying and approaching zero for all the three initial conditions IC4-ICé6.
It means that, Py is globally asymptotically stable and the virus will be removed. This result supports the
result of Theorem 3.4.

(ii) B1 = 80, then 3%5 = 1.1418 > 1. Lemma 3.3 states that the system has two positive equilibria Py and
P1. It is clear from Figures 17, 18, 19, 20 that both the numerical results and the theoretical results given
in Theorem 3.5 are consistent. It is seen that, the solutions of the system converge to the equilibrium
P1(258.1068,15.0175,43.1005,14.8047), for all the three initial conditions IC4-1Cé.

Case (2). 31 = 80 and 7t is varied.

In this case, we consider the initial condition IC4. The values of R} and the equilibria of system
(4.5)-(4.8) with different values of 7t are presented in Table 5.

Table 5: The values of steady states and 32(])- for model (4.5)-(4.8) with different values of 7.

] The equilibria R§
0.1 Ep = (1015.6060,0,0,0) 0.5709
0.3 Ep = (1015.6060,0,0, 0) 0.7612
0.5509843243 Ep = (1015.6060,0,0,0) 1
0.7 E; = (258.1068,15.0175,43.1005, 14.8047) 1.1418
0.8 Eq = (25.7432,12.8583,58.8575,20.3363)  1.2369
0.9 E1 = (9.7632,6.5649,63.9796,22.1471)  1.3321

From Table 5 we can see that, the values of R} is increased as 7 is increased. That is, the trajectory of
system will converge to Py for small values of t and they will converge to P for larger values of 7. Using
the values of the parameters given in Table 4, we obtain the following;:
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(i) if 0 < 7t < 0.5509843243,then Pj is GAS;
(i) if 7t > 0.5509843243, then P; exists and it is GAS.

We note that, when 7t is very small, most of the infected cells will be latent and surely the converse
is equally true. In this case, the virus particles will be extremely decayed and the population of the
uninfected cells will be increased. This gives us some indications on suggesting new drugs to increase
the latent part of the infected cells.

Figures 21, 22, 23, 24 show that the numerical results are also compatible with the results of Theorems
3.4,3.5.

1200 ‘ 35
—Ic1 —Ic1
1000 ---IC2H 30 ---1C2|
s | g e IC3 D R 1C3
3 800 g 2
b S 20 .
£ 600 : 5]
S " 2 15¢ .
£ a0l ] g
S E = 10} :
200 1 5 i
0 i L L L L L 0 L
0 200 400 600 800 1000 1200 100 150
Time Time
Figure 1: Evolution of uninfected cells for system (4.1)-(4.3) Figure 2: Evolution of infected cells for system (4.1)-(4.3)
with initial IC1-IC3 in case of Ry < 1. with initial IC1-IC3 in case of Ry < 1.
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Figure 3: Evolution of free viruses for system (4.1)-(4.3) Figure 4: Evolution of uninfected cells for system (4.1)-(4.3)
with initial IC1-IC3 in case of Ry < 1. with initial IC1-IC3 in case of Ry > 1.
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Figure 5: Evolution of infected cells for system (4.1)-(4.3) Figure 6: Evolution of free viruses for system (4.1)-(4.3)

with initial IC1-IC3 in case of Ry > 1. with initial IC1-IC3 in case of Ry > 1.
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Figure 7: Evolution of uninfected cells for system (4.1)-(4.3)

1200 : : ‘ ‘
n=1.
1000 - = -n=1.1H
““““ n=1.2
800 n=1.5
e n=J.
6001 L7 1
400 4
200 4
0
0 200 400 600 800 1000

Time

with different values of the parameter n.

Figure 9: Evolution of free viruses for system (4.1)-(4.3)
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Figure 11: Evolution of infected cells for system (4.1)-(4.3)
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Figure 13: Evolution of uninfected cells for system (4.5)-
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Figure 8: Evolution of infected cells for system (4.1)-(4.3)
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Figure 12: Evolution of free viruses for system (4.1)-(4.3)
with different values of the parameter 1.
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Figure 14: Evolution of latently infected cells for system
(4.5)-(4.8) with initial IC1-IC3 in case of UQ(I)- <1
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Figure 15: Evolution of productively infected cells for sys-
tem (4.5)-(4.8) with initial IC1-IC3 in case of R} < 1.
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Figure 17: Evolution of uninfected cells for system (4.5)-
(4.8) with initial IC1-IC3 in case of R} > 1.
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Figure 19: Evolution of productively infected cells for sys-
tem (4.5)-(4.8) with initial IC1-IC3 in case of UQ(I)- > 1.

Uninfected Cells

1200 T
©=0.1
1000 - ==-1=0.6 [i
““““ n=0.7
L U 7=0.95 |]
600 1
400" 1
200 q
0 ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200

Time

Figure 21: Evolution of uninfected cells for system (4.5)-
(4.8) with different values of the parameter 7.
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Figure 16: Evolution of free viruses for system (4.5)-(4.8)
with initial IC1-IC3 in case of R} < 1.
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Figure 18: Evolution of latently infected cells for system
(4.5)-(4.8) with initial IC1-IC3 in case of iR(% > 1.
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Figure 20: Evolution of free viruses for system (4.5)-(4.8)
with initial IC1-IC3 in case of R} > 1.
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Figure 22: Evolution of latently infected cells for system
(4.5)-(4.8) with different values of the parameter .
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