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Abstract

In this article, we obtain some new bounds for Simpson’s rule via harmonic h-convex functions. We also point out some
new and known special cases which can be deduced from main results of the article. Some applications to special means are
also discussed. (©2017 All rights reserved.
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1. Introduction and preliminaries

Theory of convexity plays a pivotal role in different fields of modern mathematics. Consequently
in recent decades considerable attention has been given to theory of convexity. As a result the classical
concepts of convex sets and convex functions have been extended and generalized in different direction,
see [4]. This paper deals with harmonic convexity, so, we define the class of harmonic convex sets.

Definition 1.1 ([20]). A set K, € IR\ {0} is said to be harmonic convex, if

Xy
—=— €K, Vx, K,te€[0,1].
tx+(1—t)y€ X,y € € [0,1]

Iscan [11] defined the notion of harmonic convex functions as follows.
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Definition 1.2 ([11]). Let K}, be a harmonic convex set. A function f : Ky — R is said to be harmonic
convex function, if

Xy
f <tx—|—(1—t)y> < (1—t)f(x) +tfly), Vx,y €Ky, te[0,1].

VaroSanec in [21] introduced an important class of convex functions, which is called as h-convex
functions.

Definition 1.3 ([21]). Let h: ] € R — R be a nonnegative function. We say that f : I C R — IR is h-convex
function (f € SX(h,I)), if f is nonnegative and

f(tx+ (1—t)y) <h(t)f(x)+h(1—-t)f(y), Vx,yelandte[0,1].
1

For h(t) =t, h(t) =t%, h(t) = %, h(t) =1, and h(t) = ¢, the class of h-convex functions reduces to the
class of convex functions, s-Breckner convex functions [3], Godunova-Levin functions [9], P-functions [8],
and s-Godunova-Levin convex functions [6], respectively. This shows that the class of h-convex functions
are quite general and unifying one.

Motivated and inspired by these new classes of convex functions and by the definition of harmonic
convex functions, Noor et al. [17] introduced and considered a new class of harmonic convex functions,

which is called the harmonic h-convex function.

Definition 1.4 ([17]). A function f : K;, — R is said to be harmonic h-convex if

f (M) < h(t)f(y) + h(1 —t)f(x),¥x,y € I and t € [0, 1].

Noor et al. [17] have shown that by taking suitable choice of function h(.) one can have some other
new and known classes of harmonic convex functions. For some recent studies on harmonic h-convex
functions, see [13, 17] and the references therein.

The strong relationship between theory of convexity and theory of inequalities has attracted many
researchers, as a result number classical inequalities which were obtained for convex functions have also
been extended for other generalizations of convex functions, see [1, 2, 5, 7, 10, 11, 13-19, 22]. Inspired
by the ongoing research, in this paper we consider the class of harmonic h-convex functions and obtain
some new Simpson type inequalities. We discuss some special cases which can be derived from our main
results.

From now onward, we take the notation J;, C R \ {0} be the interval and Joh be the interior of J;, unless
otherwise specified.

2. Results and discussions

In this section, we obtain some new bounds for Simpson’s rule via harmonic h-convex functions. To
derive the main results of this section, we need the following auxiliary result. For the sake of completeness
and to convey the main idea we include the proof of this result.

Lemma 2.1 ([18]). Let f : I, — R be a differentiable function on J% and f € L1[a, b], where a,b € Ty, then

b 1
ab [ f(x) 1 2ab d(t) ., [ab
a 0

where

N[ —

t—l, ifte[O, >
6
¥(t) =
t—§ if te 11
6/ 2/ 7

and Ay = (1 —t)a + tb.



M. U. Awan, et al., J. Nonlinear Sci. Appl., 10 (2017), 1755-1766 1757
Proof. Let
119(’[) ab 1 ab [ t=5 /ab
JA%f/ <At) dt = J A; £/ <At> dt+ J A%6f’ (At> dt = G; + Go. 2.1)
0 0 1/2
Integrating by parts yields
s ¢, (ab 1 1, ( 2ab 1 ab [ f(x)
Gy = l A—%f (/\t) dt:m —3f<a+b>—6f(b)+b_ajb o (2.2)
arb
Similarly
0 t—2  /ab 1 1,/ 2ab 1 ab %f(x)
Gy = J o (At>dt:ab(b_a) —3f<a+b>—6f(a)+b_a J " 2.3)
1/2 a
Summation of (2.1), (2.2), and (2.3) and multiplying both sides by ab(b — a) completes the proof. O

Now, let us recall some special functions. These functions are extensively used in the development of

our coming results. The well-known gamma and beta functions are defined as

o0 1
r(x)zj e *t1dt, B(x,y) = J 11— gu-ige - T

0 0 Fix+y)
respectively. The integral form of the hypergeometric function is
1 1
Fi(x,y;c2) = Blyc—y) JO Y1 =) Y1 —zt)7*dt

for|z| <1l,c >y >0.

Now using Lemma 2.1, we derive some Simpson type inequalities for differentiable harmonic h-convex

functions.

Theorem 2.2. Let f : I, — R be a differentiable function on J% and f € Lyla,bl, where a,b € In. If [f'|" is

harmonic h-convex function, then, for v > 1, we have

b
ab Jf(x)dx—l [f(a) +4f< 2ab ) +f(b)}

a+b

1
=

1=

(a,b) (If'(a)["d1(a, b;h) +[f'(b)["d2(a, b;h))

P} 7 (a,b) (If'(a) ds(a, bsh) + I (0] da(a, b?h))ﬂ ’

where
~ (b—3a) 1 18a(a +b)
Pi(a,b) = 6a(b2—a2) ' (b—a)? “( (5a+b)? >
_ (b—3a) 1 18b(a + b)
P2(a,b) = 6b(b2 — a?) + (b—a)? n( (a+5b)2 )'

(2.4)

(2.5)
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1/2 1
r t_7
¢1(a,b;h) = 26‘h(t)dt,
0 M
1/2
r t_l’
$2(a,b;h) = S (1 —t)dt,
0 At
(=2
Ps(a,bih) = | —ath(t)dt,
1?2 ¢
and
(=
$s(a,b;h) = J Azﬁ h(1—t)dt.
12 ¢

(2.6)

(2.7)

(2.8)

2.9)

Proof. Using Lemma 2.1, property of modulus, power mean inequality, and the fact that |[f’|" is harmonic

h-convex function, we have
b

b—a) %2
a

ab J@dx—% {f(a)+4f (azib > +f(b)]‘

a?—ad) " o—aZ ™

< (b—3a) 1 18a(a+Db
6 ( (5a+b)2

/
| B i@ + ni - oie o ae
0 t

(b—3a) 1 18b(a+b)\ !~
+ <6b(b2—a2) T h_a2 1“( (a+5b)2 ))

1

5
J |t 6‘{h(t)|f’(a)|r+h(1—t)\f’(bﬂr}dt
/

T

/\2
1/2 t
(b—23a) 1 18a(a+Db
= ab(b—
ab(b—a) <6a(b2—a2)+(b—a)2 " Garop2
1/2 1 1/2 1
/ T ‘t-_-g‘ / T ‘t _-8’
x | 1f(a)l s—h(t)dt +[f'(b)| 5
0 /\t 0 /\t

)

)

h(1—t)dt

==
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(b—3a) 1 18b(a+1b)\\ !~
+ (6b(b2—a2) T b_ar h‘( (a+5b)2 ))

i
At

<=

==

1
h(t)dt +|f'(b)[" J h(1—1t)dt
/2

2 1

This completes the proof. O

Corollary 2.3. Under the assumptions of Theorem 2.2 if v =1, then, we have

b
ab [ f(x) 1 2ab
b—aszdX_6 {f(a)—i—4f (a—l—b) +f(b)]

< ab(b—a) [[f'(a)l{¢p1(a,b;h) + d3(a, b;h)}

+[f'(b)[{d2(a, b;h) + dsla, b;h)}] ,
where ¢1(a,b;h), d2(a, b, h), d3(a,b;h), and da(a, b; h) are given by (2.6), (2.7), (2.8), and (2.9) respectively.
We now discuss some special cases of Theorem 2.2.

I. If h(t) =t in Theorem 2.2, then, we have Corollary 10 in [10].
IL If h(t) = t® in Theorem 2.2, then, we have the following.

Corollary 2.4. Let f : Jy, — R be a differentiable function on j% and f € Li[a,bl, where a,b € In. If [f'|" is
harmonic s-convex function, then, for s € (0,1], v > 1, we have

b
ab [ f(x) 1 2ab
o asz dx — c [f(a) +4f (a+b> +f(b)]

a

1

"(a,b) (If'(a)["di(a,b;s) + [f'(b)["d3(a, b;s))

|

=

< ab(b—a) [P}

==

P} 7 (a,b) (I (a) 9 a, b ) + I (b)" ¢4 a, b))

where P1(a,b), P2(a, b) are given by (2.4), (2.5), respectively and
1/2

Ry = l ‘t;%é}tsdt: 2S+12a2 [3S+2(2$+1) 2F1 <2,s+1;s+2;é <12>)
35+2(15—|—2)2F1 <2,s+2;s+3;2 (12)) 210
+5—1k22F1 <2,s+2;s+3;;<1—z>>
_3(51sz1 <2,s+1;s+2;; (1—2))} :Cbi(a,b;s),
1/2 o
ko= J (A—tarr — vt

0

1 1 1 b 1 1 b 2.11)
== [zzFl (2,2,3,2 (1— a)) -5 <2,1,2,2 <1_a>)]
1 1 b 1 1 b
+ 418(12 |:2F1 <2; 1,2,6 <1— a>> — §2F1 (2,2,3,6 (1 — a>>:| = d)/z(a,b}S),
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R = J [t tsdt
3 ((1—t)a+tb)?
1/2
4 2 2(a— b)> 1 ( 2(a—b)> (2.12)
<—|=2K(21;2,—— | —=0F (2,23, ————
(a+D)> {9“( 3(a+b)) 92! 3(a+b)
1 a—>b 1 a—>b
—5F Z,F e — .
+82 1(223 +b> 62 1(2/1/2/a+b>:| d)S(alb/S)/
and
R :J =&l (1—t)5dt
4 ((1—t)a+tb)?
1/2
(2.13)

4 2 2(a—b)\ 1 2(a—b)

< —|=2Kh(2,1,2,—— | —=72F | 2,2,3, ———

(a+m2L21< Ma+m> 921< 3(a+b)
1 a—>b 1 a—>b

ZLF (2,2:3; — LR (2,12 — dl(a,b;s).

rgan (223057 ) - gan (212257 )| = eita o

IIL If h(t) = t° in Theorem 2.2, then, we have the following.

Corollary 2.5. Let f : I, — R be a differentiable function on Joh and f € Li[a,b], where a,b € Tn. If |f'|" is

harmonic s-Godunova-Levin convex function, then, for s € [0,1], v > 1, we have

b
ab [ f(x) 1 2ab
(a,b) (If'(a)]"d (@, b;—s) + [f'(b)["d5 (a, b; —s))

E

==

P (@, b) (I (@) 04 (o, bi—s) + [F'(b) "} (o, b;—s))

where P1(a,b), P2(a,b) are given by (2.4), (2.5), respectively and

1/2

t 1

S$1 = J 72 t3dt
At

0

1 2 a—D>
- Fi(21-s2—s;
ZZ*az{ﬁ—ﬂl—s)21< SETS e )

1 a—>b 1 a—D>
e F 3 Fi(2,2—s3—s
y%2—921( oy 6a :>+2—521< S0

1 —b
R (2,1-52— = ¢/ (a,b;—
3(1—3)2 ! < ’ S S’ 2a )] 1(a,b;=s),

2 [1 a—b\ 1 —b
< ooF (2,235 2) — 2 oF (2,12, 2
4a2[22 1( 2a > 32 1< 2a >}

21=s a—>b 1 a—>b
T 3622 [2F1 <2,1;2; % ) - EZFl (2 2;3; a )] = 3 (a,b;—s),

<=
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t—2| _
Ss = J | A26|t sdt

t

1/2
252 2 L 2(a—b)\ 1 2(a—b)
<Taror o (292507 ) o (22950 )

1 a—>b 1 a—>b
SR (2,2 ~oR (212 — ¢Y(a,b;—
+82 1< 3; +b> G2 1< —I—b>] ¢3(a,b;—s),

and

1/2

5651 [5 5(a—b)\ 1 a—b
a2 |:6 2F1 (2/ 1/2/ 6(1> - EZFI <2/ 1/2/ 2(1 >:|

65 |25 5(a—b) 1 a—>
O 2 R (223,297 2 (2,23
az |:72 PANY < Y /3/ 6a ) 8 2 < ’ 13/ 2a >:|

1 a—b 5 a—b
+(4—5)(3—3)(122F1 <2'2'3_S' a >_6(2—s)a22F1<2'1'2_s' a )

25 5(a—b) 25 5(a—b)
B MZFl <2' 23 6a > + 362 2F1 (2/ 1;2; ~ea = (I)A/L,(a, b; —s).

IV.If h(t) =1 in Theorem 2.2, then, we have the following.

N

Corollary 2.6. Let f : I, — R be a differentiable function on jqu and f € Li[a,b], where a,b € Tn. If |f'|" is
harmonic P-function, then, for v > 1, we have

b 1 2ab Lo v L
ba_aJ iz)d _6 [ (a)+4f<aib> +f(b)} < ab(b—a) [(Pl(a,b)—i—Pz(a,b)) (\f (a)" +1f'(b)] )T] ,

where P1(a, b) and Py(a, b) are given by (2.4) and (2.5), respectively.

Theorem 2.7. Let f : J, — R be a differentiable function on j% and f € Lyla, bl, where a,b € Ty. If [f'[" is
harmonic h-convex function, then, for v > 1, % +1 =1, we have

ab J”")dx—é [ (a)+4f<azf’b> +f(b)} < ab(b— a)P?(a, b;p)

1
% [(1£'(@)781(a, b ) + I (0)"0a(a, b))
1

J

+(If'(a)l"83(a, b; 1) + If'(b)["04(a, b; 1))

where
V2P ! 5|7 1 1
P(a,b;p) = t——| dt= t— | dt= 1 2.14
(a,b;p) JO c d L/z c d (1) <2p+1+ >, (2.14)
1/2 1
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rl/2 1

02(a,b;7) = ——h(1—t)dt,
Jo A
rl 1

93((1, br T) = oy h(t)dt/
Ji2 AZT

and
L |

04(a,b;r) = ——h(1—1t)dt.

Ji2 AT

Proof. Using Lemma 2.1, property of modulus, Holder inequality, and the fact that |[f’|" is harmonic h-
convex function, we have

b
ab [ f(x) 1 2ab

a

1/2
[ [t—al | ab t—2
A% ! (((1t)a+tb)>‘dt+J (1—t)a+1tb)2

0 172

< ab(b—a)

, ab
! (((1t)a+tb)>‘dt

- =

=i

1/2
< ab(b—a)P7(a, b;p) x J Alh{h(t)lf’(a)lr+h(1t)lf’(b)l*}dt
t

1
1
| [ s I @+ - vl )7 at
12 "
This completes the proof. .

We now discuss some special cases of Theorem 2.7.
I. If h(t) =t in Theorem 2.7, then, we have Corollary 18 of [10].
IL If h(t) = t® in Theorem 2.7, then, we have the following result.

Corollary 2.8. Let f : I, — R be a differentiable function on Joh and f € Li[a,bl, where a,b € Tn. If |f'|" is
harmonic s-convex function, then, for s € (0,1], v > 1, % +1 =1, we have

b
ab Jf:;)dx—l [f(a) +4f (f“b > +f(b)]

+b

2=

< ab(b—a)P?(a,b;p) |(IF' ()"0 (a, b;s) + If'(b)["83(a, b;s))

+ (If'(a)["05(a, b;s) + lf’(b)l*%(a,b;s))%] /
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where P(a, b; p) is given by (2.14) and

1/2

1
T, = J 5 t5dt =
A"
0

1 a—>b ,
mz]:l <2T/S+1/S+2/> :9

2a 1(a,b;s), (2.15)
1/2
1 1 a—b
T J AZT (1—-t)°dt < zaﬁzFl <2T,1;2,‘ 2a> = 05(a,b;s), (2.16)
0
1 . )
a_
T3 = t5dt= ——— |oF{ (21, s+ ;s +2; ——
3 JA%r a2 (s +1) [21<TS+ S+ )
1/2 (2.17)
a—b
_F 2F1 <2T‘,S+1}S +2; 2(1>:| = eé(a,b;s),
and
1 1 a—Db 1 a—b ,
Ty = J AT (1—-t)°dt < oy [21:1 <2r,1;2;a> — §2F1 <2r,1;2; 7a )} = 04(a,b;s). (2.18)
1/2

IIL If h(t) = t~° in Theorem 2.7, then, we have the following result.

Corollary 2.9. Let f : Iy, — R be a differentiable function on J?L and f € Li[a,bl, where a,b € In. If [f'|" is
harmonic s-Godunova-Levin convex function, then, for s € [0,1], v > 1, % + % =1, we have

b
ab [ f(x) 1 2ab
b_aszdx— ’ [f(a) T af (a+b) +f(b)}

< ab(b—a)P¥(a,b;p) [(If’(a)lrei’(a, b,;t;—s) +[f'(b)["67 (a,b,; t; —s))

+ (If"(a)]"05 (a, b, ; t; —s) 4+ [f'(b)|"04 (a, b, ; t; —S))ﬂ
where P(a, b;p) is given by (2.14), and

<=

7

1/2
1 - 1 . . a—b " .
U.l ] A%Tt Sdt:mzl:l <2T,1_S,2_S,2a> :el (a,b,_s)’
0
1/2
(1
U= | —

1 —b
o (1=t °dt < S anof <2r,1;2;“2a> =07 (a,b;—s),
t

s i a—>b
d A%Tt dt_ia”(l—s) |:2F1 <2r,1 s;2—s; m )
1/2

and

Uy =

1 —-b 1 —-b
J' ﬁ (1—t)7sdt < ZQT |:2F1 (21‘,1;2, aa> _EZFl <2T11;2/ a>:| = eﬁll(a b S)
t
1/2
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IV.If h(t) =1 in Theorem 2.7, then, we have the following corollary.

Corollary 2.10. Let f : Iy, — R be a differentiable function on U(})l and f € Lyla, bl, where a,b € Iy. If [f'|" is
harmonic P-convex function, then, for, v > 1, % + % =1, we have

b
b o(f), 1 2ab
ba_aJ X’Z‘ dx— = [f(a)+4f(aa )Jrf(b)}

X2 6 +b

1
:

<awb—awémmnn(ﬁunmﬂ+ehmbn0(H%mr+w%mr),

where P(a, b; p) is given by (2.14), and

1/2

1 1 a—b
01(a,b;1) = J A%Tdtz 52 2h (ZT,l;Z; 7a )
0
0 1 1 b b
a— a—
GZ(G,b}T) = J Aigcrdt = ZCIT [ZFl <2T‘,1;2,‘ 0 > —2 Fl <2T,1,‘2; 2(1>:| .
1/2

3. Applications

Let us recall means for arbitrary real numbers o, 3 where « # 3. These means are frequently used in
numerical approximation.

1. Arithmetic mean:

A, B) = %ﬁ, o, B eR".
2. Harmonic mean: 2
o
H(e, B) := , , R™.
(0,B) = gy @BE
3. Logarithmic mean:
— P— +
L(e, B) Y o, B eR .
4. Generalized logarithmic mean:
Bn+1 _ oanrl n N
Ln(a, B) = ((n—kl)(b—a)) , ne{-1,0,«p R,

It is known that H(x, B) < L(, B) < A(, B) and also it is known ([12]) that a function f : (0,1] — (0,1],
f(x) = x* is harmonically s-convex function.

Proposition 3.1. Let 0 < a < band s € (0,1), then

1
=

1
able 1(a,b) — % [AS(a,b) +2Hs(a,b)]’ < Islab(b — a) [P} (a,b) (|a5*1|f¢g(a, b;s) + \bsflwg(a,b;s)) "

1—1 1 / 1 / %
+P, "(a,b) (Ias_ I"d3(a, b;s) + (b5~ |T<b4(a,b;8)> ]

_1
r

where P}_%(a,b), P; (a,b), d1(a,b;s), d5(a,b;s), d5(a,b;s), and d)(a,b;s) are given by (2.4), (2.5), (2.10),
(2.11), (2.12), and (2.13), respectively.
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Proof. The assertion follows directly from Corollary 2.4 applied to the harmonically s-convex function
f:(0,1] — (0,1], f(x) = x5. a

Proposition 3.2. Let 0 < a < band s € (0,1), we have

1
abls_1(a,b) — 3 [A%(a,b) +2Hs(a,b)]’ < Islab(b — a)P¥ (a, b; p)

1

x[@d”s”6umb»r+wwrlmﬂmbmo*

|

where P(a,b;p), 61(a,b;s), 05(a,b;s), 05(a,b;s), and 0(a, b;s) are given by (2.14), (2.15), (2.16), (2.17), and
(2.18), respectively.

B

+ (la =105 (a, b;s) + b0} (a, bjs) )

Proof. The assertion follows directly from Corollary 2.8 applied to the harmonically s-convex function
f:(0,1] — (0,1], f(x) = x5. O

4. Conclusion

In this article, we have obtained several new bounds for Simpson’s rule via harmonic h-convex func-
tions. We have also discussed numerous special cases which are naturally included in our main results.
In the last section, we have given some applications to special means of real numbers. These new results
can be used where bounds for natural phenomena described by integrals such as mechanical work are
frequently required. These results are also helpful in the field of numerical analysis where error analysis
is required. Thus it is expected that the results obtained in this article may stimulate further research in
this field.
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