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Abstract

We provide sufficient conditions for the existence of solutions to a fractional generalized Gripenberg equation, which arises
in the study of the spread of an infectious disease that does not induce permanent immunity. (©2017 All rights reserved.
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1. Introduction

In [6], Gripenberg studied the qualitative behavior of solutions of the functional equation

t

0 0

t
x(t) =k [p(t) —i—J At —s)x(s) ds] [f(t) +J a(t—s)x(s) ds} , t20, (1.1)
where k > 0 is a constant, p f, A and a are continuous functions. Equation (1.1) arises in the study of
the spread of an infectious disease that does not induce permanent immunity. For more details about the
meanings of the various parameters appearing in (1.1), we refer to [6]. In [3], using the Banach contraction
principle, an existence result was proved for the following generalized Gripenberg’s equation

t t
x(t) = [gl(t) + Jo A1(t—s)x(s) ds] e [gq(t) + .[0 Aqt—s)x(s) ds} , t=0.

In [7, 8], Olaru studied the solvability of the functional equation

q
x(t) = [(A)(1), telabl,

i=1
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where .

(Ax)(t) = gi(t) —i—J Ki(t,s,x(s))ds, i=1,---,q.

a

The used techniques in [7, 8] are based on weakly Picard operators.
In this paper, we deal with the solvability of the fractional functional equation

q t 1/
_ . (Six)(t) [* hils)Kilt, s, x(s), (Tix)(s))
=1l (o0 e L, e ) e e (2

where q > 1,0 < oy <1, gi,hi : [a,b] 2 R, S;,T; : Cla,b];R) — C([a,b];R), 1 <1< q. Here, T is the
gamma function.

2. Notations, definitions, and preliminaries

In this section, we present some auxiliary facts which will be used throughout this work. At first, let
us fix some notations.

Let (E,-) be a Banach algebra over R with respect to a certain norm | - |[g. We denote by O¢ the zero
vector of E. For x € E and r > 0, we denote by B(x, r) the open ball in E of center x and radius , i.e.,

B(x,7) ={y € E: [[x—ylle <1k

We denote by P(E) the set of all nonempty subsets of E. If M € P(E), then the symbol M denotes the
closure of M. The symbol Conv(M) stands for the convex hull of M. For (M,N) € P(E) x P(E) and
« € R, we denote
M+N={x+vy: (x,y) € M x N},
and
aM ={ax: x € M}

We denote by Py (E) the set of all nonempty and bounded subsets of E. For M € Py (E), we denote by
|IM|| the norm of M, i.e.,
M|l = sup{]|x||e : x € M}.

We denote by P (E) the set of all relatively compact subsets of E. For M, N € P(E), we denote by MN
the product set
MN ={x-y: (x,y) € M x NL

In what follows, we recall the axiomatic approach of a measure of noncompactness introduced by
Banas and Goebel [1].

Definition 2.1. Let p: Py (E) — [0, 0c0) be a given mapping. We say that 1 is a measure of noncompactness
in E if it satisfies the following axioms:

(A1) The family kerp = pw=1({0}) is a subset of P (E).

)

(A2) (M,N) € Py(E) x Pp(E), MCN = u(M) < pu(N).

(A3) 1 (M) =u(M), M € Py(E).

(A4) u(Conv(M)) = (M), M € Py (E).

(A5) L(AM + (1 —A)N) < Ap(M) + (1 —A) u(N), for A € [0,1], (M, N) € Py (E) x Py (E).
)

(A6) If {My} is a sequence of closed sets from Py, (E) such that M,,,1 € My, forn = 1,2,--- and if

Iim pu(M,,) =0, then the intersection set My, = ﬂ M, is nonempty.
n—oo 1
n=
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Now, let us recall the following important result, which is called Drabo’s fixed point theorem [1, 4].

Lemma 2.2. Let D be a nonempty, bounded, closed and convex subset of E and let T : D — D be a continuous
mapping. Suppose that there exists a constant k € (0,1) such that

H(TM) < kp(M),

for any nonempty subset M of D, where w is a measure of noncompactness in E. Then T has at least one fixed point
in D.

The following concept introduced by Banas and Olszowy [2] will be useful later.

Definition 2.3. Let pu be a measure of noncompactness in E. We say that p satisfies condition (m) if

HMN) < [M[[u(N) +[[N[[u(M), (M, N] € Pu(E) x Pp(E).

3. A fixed point result via a measure of noncompactness satisfying condition (m)

In this section, we establish a fixed point theorem, which will be used for the proof of our main result.
At first, we need the following lemma.

Lemma 3.1. Let yw be a measure of noncompactness in E satisfying condition (m). Let {Mi}i—1,... q be a finite
sequence in Py (E), q > 2. Then

q q q
n (H Mi> <> I IMjlle0my). (3.1)
i=1 i=1j=1j#i

Proof. We shall use the induction principle. For q = 2, (3.1) follows immediately from Definition 2.3.
Suppose now that (3.1) is satisfied for some q > 2. We have to prove that

q+1 q+1 q+1
n (H Mi> <> IT IMjllevy). (32)
i=1

i=1j=1j#i

Using (3.1) and Definition 2.3, we have

() (1)

q
< <H Mi) Mgyl +r(Mg1)

q
i=

[I™m
1
q
<u (H Mi) HMq+1H + H(Mq+1) H ”M) H

j=1

q q
<> TT IMyIeMO Mgl + w(Mg ) [TIM

i=1j=1,j#i j=1
q q+l q
=> IM; (M) Mgl + wMge1) T T I
i=1j=1,j#i j=1
q+1 q+1
=> T1 IMjlluivy)
i=1j=1,j#i

Thus we proved (3.2). Finally, by the induction principle, (3.1) follows. O
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Let D € P(E). We are interested in the fixed point problem:

Find x € D such that

q
X = H Aix,
i=1

where A;:D — E,1=1,---,q, q > 1, are given operators.
We have the following fixed point result.

(3.3)

Theorem 3.2. Assume that D is nonempty, bounded, closed, and convex subset of the Banach algebra E. Assume
also that all the following conditions are satisfied:

(i) Ay is continuous,i=1,---,q.

(i) Ai{D is bounded,i=1,---,q.

q
(iii) AD C D, where Ax = H Ajix.

i=1
(iv) There exist a finite sequence {ki}{]:l C (0, 00) such that
H(A‘LM) < le(M)/ i - 1/ Tty q/
for any nonempty subset M of D, where W is a measure of noncompactness in E satisfying condition (m).

q

q
™ Y & [[ IaD] <1

i=1  j=lj#Ai
Then Problem (3.3) has at least one solution in D.

Proof. Let M be nonempty subset of D. Using Lemma 3.1 and the considered assumptions, we obtain

q
HAM) = u (H AM)

i=1
q q
<> 11 1IAaMluAM)
i=1j=1,j#i
q q
<> % [T 1AM
i=1 j=1,j#1
q
<D % IT 1A4D]] um.

i=1  j=1j#Ai

Thus we proved that
H(AM) < ku(M),

for every nonempty subset M of D, where

q q

k=Y k ] IADI<1.

i=1  j=lj#i
Applying Lemma 2.2, the result follows. O

Remark 3.3. For q = 2, Theorem 3.2 recduces to a fixed point theroem established in [2].
Remark 3.4. For ¢ =1, Theorem 3.2 recduces to Lemma 2.2.
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4. A solvability result

In this section, we state and prove our main result concerning the existence of solutions to the fractional
functional equation (1.2).
We take E = C([a, b]; R) the Banach space of all real-valued and continuous functions in [a, b] equipped
with the norm
[ulle = max{lu(t)|: t € [a,b]}, uecE.

Clearly E is a Banach algebra with respect to the operation ” - ” defined by
(u-v)(t) =u(t)v(t), tela,bl, (u,v)eExE.
Let M € Py (E). For x € M and ¢ > 0, set

w(x, ) =supflx(t) —x(s)|: t,s € [a,b], [t —s| < e},
w(M, ¢) =sup{w(x, e) : x € M}

It was proved in [1] that the mapping p: Py (E) — [0, 00) defined by
uM) = Iim w(M,e), M e Py(E), 4.1)

e—0t

is a measure of noncompactness in E. Moreover, p satisfies condition (m) (see [2]).
Equation (1.2) is investigated under the following conditions:

(C1) gieE i=1,---,q.

(C2) TL:E—Ei=1-,q and
[Tix|le < cillx|[¥, x€E,

where c¢; > 0 and y; > 0 are constants.

(C3) Foralli=1,---,q,
ITix— Tylle < Lillx—yllg, (xy) €ExE,

where L; > 0 and {; > 0 are constants.
(C4) Si:E—E,i=1,---,q,is continuous, and
r(SiM) < vip(M), M € Py(E),
where v; > 0 is a constant and p is given by (4.1).
(C5) Foralli=1,---,q, there exist constants 0; > 0, ki > 0 and ¢; > 0 such that

ISix[e < 6+ killx[[ ¥, x€E.

(C6) Ki:la,b] x[a,b]x RxR—R,i=1,---,q, is continuous.

(C7) There exists @; : [0,00) x [0,00) = [0,00),1=1,-- -, q, a nondecreasing function with respect to each
variable, such that

|Ki(t/ Slulv)| < (pl(‘u|/ |V|)1 (t/ slulv) S [Cl, b] X [a/ b] x R x R.

(C8) h; € ENCY((a,b];R) is nondecreasing, i=1,---,q.
(C9) There exists R > 0 such that

(05 + kiR®)) @i (R, ciRYY) (hi(b) — hi(a))™
Moy +1)

lgille + <RVA, i=1,---,q.
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Fori=1,---,qand x € E, let

(Six)(t) Jt h{(s)Ki(t, s, x(s), (Tix)(s))

M) (hi(t)—hi(sa)l « ds, telabl

(Aix)(t) = gi(t) +

We have the following result.
Lemma 4.1. Foreveryi=1,---,q, the operator A; : E — E is well-defined.

Proof. Leti e {1,---,q} be fixed, and let x € E. We have to prove that A;x € E. In view of assumptions
(C1) and (C4), it is sufficient to prove that Bix € E, where

Y h(s)Ki(t, s, x(s), (Tix)(s))
(Bix)(t):L O (o A8 telabl 4.2)

At first, observe that (Bix)(t) < oo, for every t € [a, b]. Indeed, using the considered assumptions, for all
€ [a, b], we have

| R (s)IKs (4 5, x(s), (Tox) (5))]
|(le)(t)|<ua e e s
R (s) e (s, I(Tux) (s)))
Sl ) —mse ®
h!(s)os ([ [le, [ Tex]le) 15
gua((t) ha(s)ie ¢ ®3)
Nk hi{(s)
<ol el | et S s
 pullxlle e Xl (ha () — s (@)
— < 0.

i
Now, we check that Bix is continuous at typ = a. Let {t,} C [a, b] be a sequence such that
th - a, asn — oo.
Using the estimate (4.3), we obtain

@illlxlle, cillx[[£) (hi(tn) —hi(a))™

(%41

|(Bix)(tn)| <
Since h; € E, we have
hi(tn) —hi(a) = 0, asn — oo.

Therefore, from the above inequality,
(Bix)(tn) — 0= (Bix)(a), asn — oo,

which proves the continuity of Bix at tg = a.

Now, suppose that t € (a,b], and let {t,} C [a, b] be a sequence such that t,, — t, as n — co. Without
restriction of the generality, we may assume that t,, > t, for every n. Under the considered assumptions,
we have

(Bux)(tn) — (Brx)(0) < || h{(s)Ki(tn, s, X(s)

a (hi(tn) —hi(s)
Jt“ h{(s)Ki(tn,s,x(s),
a (hi(tn) —hi(s)

~
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h(s)Ka(t,5,x(s), (To)(s)) . [* hA(s)Ke(t, 5, x(s), (Tox)(s)) ’
* J (hiltn) () J (hiltn) —ha(s)
H$)Kalt s, x(s), (Tod(s)) . [t Rl (s)Ke(t, 5, x(s), (Tix) (s))
* J (Mi(tn) — a(s)) - dS_L (ha(t) —m(s)o
J {(5) Kt 5,X(5), (Tox)(5)) —Kilt, 5, x(5), (T (s))]
. (Mt (tn) — e ()1
IK t,s,x(s), (Tix)(s))]
*J (s O
) n/(s) | |
J < he(s)T % (Retn) —m(s))l—“i> Kalt, 8, x(s), (Tux)(e) ds
) A Yi
< On (1) - hl(an“w@1("X||E;F‘||X|'E i) e
3 3 Yi
Lo ”X”E;.Cl”"”‘i D[l (6) = e (@))% + (ha(bn) — ()% — (ha(tn) —Re(@)) ],

where
Wy =Ssup { IKi(t1,s,91,92) — Ki(ta, s,y1,y2)l : t1,t2, s € [a,b], [t] —to < [tn — 1,

il < [Ixle, ly2l < CiIIXHF}-

Since Kj is uniformly continuous on the compact set

[a,b] x [a,b] x [—[x[[e, Ix]|e] x [=eqllx[| ", cillx[[{],

we have
lim wn =0. (4.4)

Now, we have

[(Bix) (tn) — (Bix) (1)) < X, (4.5)
where

. . Yi
Xn = =" (hi(tn) —hs(@))* + @1(|!><\IE;1!X‘|E g t) — e
. . Yi
4 2ller NIE 3 ) — ) ) = e (0)% = () = he(a)) 0.

Xq
Passing to the limit as n — oo, using the continuity of h; and (4.4), we infer that

lim xn, =0,

n—oo

which implies from (4.5) that
lim [(Bix)(tn) — (Bix)(t)[ = 0.

n—oo

This proves the continuity of Bix on [a, b]. Therefore, A; : E — E is well-defined. O

Lemma 4.2. Foreveryi=1,---,q, A; :B(Og, R) is bounded.
Proof. Letie{1,---,q}be fixed, and let x € B(0g, R). Under the considered assumptions, for all t € [a, b],

we have
[(Six)(t)]

|(A X H91HE+ F(OCI)

[(Bix)(t)].
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From (4.3), we have ‘
@i(R, ¢iRYH) (hi(b) —hi(a))™
Xi

[(Bix)(t)] <
On the other hand, by (C5), we have
(Six) (1) < 03 + <R, t € [a,bl.
Therefore, we obtain

(0; + kiR?1) @i (R, ciRY) (hi(b) — hi(a))“i'

A < lgs
[Aix|le < [lgille + Mo +1)

Using assumption (C9), we get
[Aix|[e < RYA.

Therefore, we have
AlB(OE/ R) C B(OE/Rl/q)/ (46)

which yields the desired result.

Lemma 4.3. Foreveryi=1,---,q, Ai:B(0g,R) — E is continuous.

Proof. Leti € {1,---,q} be fixed. We have just to prove that B; : B(0g,R) — E is continuous, where Bj; is
defined by (4.2). Fix ¢ > 0 and take x,y € B(0g, R) such that ||[x —y||g < €. Then, for any t € [a, b], we
have

ds

|(le)(t) _(Bly)(t” — Jt h{(S)Kl(t S, X( ) (T X)( )) dS—Jt h{(S)K'(t,S, (S) (le)(S))

i ylis),
(hi(t) —hi(s))t— (hi(t) —hi(s))l-

t h!(s)
J ()~ hy (s il s x(s), (T (s) = Kilt s,y (s), (Tuy)(s))] ds
Jt h!(s)

SXe | 0 - hi(s)io &
X

(hi(b) —hi(a))™,
oG
where
Xe =Sup { IKi(t,s,uy,v1) — Ki(t,s,up,vo)|: t,s € [a,b], u;,ur € [—R,R],
vi,v2 € [—ciRYE, ¢iRY], g —up| < g, vi —vof < Liiei}-

Therefore, we have

X2 (hi(b) — hy(a))™.
(08

i

[Bix —Biylle <
By the uniform continuity of K; on the compact set
[a/ b] X [a/ b] X [_R/ R] X [_CiR‘Yi/ CiR‘Yi]/

it follows that
Xe = 0, as e — 0.

This proves that B; is continuous on B(0g, R). O
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Now, fori =1,---,q, we estimate u(A;M), where M is a nonempty subset of B(0g,R) and n is the
measure of noncompactness in E given by (4.1). Fix ¢ > 0, x € M, and take t;,t; € [a,b] such that

[t1 — t2| < e. Without loss of the generality, we may assume that t, > t;. Then, taking into account our
assumptions, we get

(A~ (Aoe) (1) = |gr(2)+ O (Box) 1) — gifen) — S0 W (B 1)

[(Six) (t2) (Bix)(t2) — (Six) (1) (Bax) (1) (4.7)

<lgu(t2) ~ gt + o

w(gi, &) + F(i@) [(Six)(t2) (Bix)(t2) — (Six)(t1)(Bix)(t1)],

where
w(gi, &) = sup{lgi(t2) — gi(t)l: 71,72 € [, b], |11 — T2 < €}
But using (4.3), we have

[(Six) (t2) (Bix) (t2) — (Six)(t1) (Bix)(t1)]
<(Six)(t2) (Bix) (t2) — (Six) (t2) (Bix)(t1)]

+1(Six) (t2) (Bix) (t1) — (Six) (t1) (Bix) (1)l
<(Sx) (82)M1(Bix) (t2) — (Bix) (t1)] + |(Bix) (t)I1(Six) (t2) — (Six)(t1)]
< (0 + ki RPY)[(Bix) (t2) — (Bix) (t1)| + |(Bix) (t1)lw(Six, €)
< (0 + ki R®V)[(Bix) (t2) — (Bix) (1)

@i(R,ciRY1)(hi(b) —hi(a))* w(Six, €)

Xq

+

Therefore, we have

(Six) (t2) (Bix) (t2) — (Six) (t1) (Bix) (t1)] < (01 + kiR®H)[(Bix)(t2) — (Bix)(t1)]
@i(R, ciRY1)(hi(b) —hi(a)) ¥ w(Six, €) (4.8)

i

_l’_

Let us estimate now
|(Bix)(t2) — (Bix)(t1)l-

Under the considered assumptions, we have

Tix)(s))

(B (t2) — (Bx) (11)] < J”‘i(s) i(ta,5,x(s),

( (
a  (hi(t2) —hi(s))—= a  (hilt1) —hi(s))tx
Jtz hi(s)Ki(to, s, x(s), (T1X)( D34 _r hi(s)Ki(t1, s, x(s), (Tix)(s))
o (hilt) —hi(s)~ a  (hilt2) —hi(s))~
Jtz hi(s)Kq(t, s, x(s)
S
)

() [ Rl ) i

~X

ds

Tix )( )

(Tl )( ) 4 _Jtl h!(s)Ki(ty, s, x(s),
e o (hilt2) —hi(s)
(Tq )( ) ds—Jtl h!(s)Ki(ty, s, x(s)
)=

e T (hu(t) —Tuls) ds

(

)1

(Tix )( )
)

Jtl h{(s)Ki(ty, s, x(s), , ds
a (hi(t2) = hi(s) a (hi(tr) —hi(s)t-

o Jtz hi(s) [Ki(ta,s,x(s), (Tq X)( )) — Ki(ty, s,x(s), (Tix)(s))] ds

A (hi(t2) —hi(s))l-x

+Jt2 h{(s)“(l(tl/ S/X(S)/ (;I—IX)(S))‘ ds

t (hi(t2) —hi(s))t—



K. Sadarangani, B. Samet, J. Nonlinear Sci. Appl., 10 (2017), 1767-1785 1776

t hi(s) B hi(s) . ;
+Lx<ﬁdh)—hdﬂpm wﬂb)—hdﬂﬂM)“Q“L&X“L(EMBD|M
. I~ 1Y
< e (1) — ot PURTECTIED ) o
. . Yi
(pl(”X‘Eo,(.CIHXHE ) [(hi(t1) —hi(a))® + (hi(t2) — hi(t))* — (hi(t2) — hi(a))*]

20 (x|, cillx[1 )

< & (hy (k) — (@) + (ha(t2) — R ()

(053 Xi
u 2¢:(R,ciRY .
< Y2 () sy 4 2ORERTD e,
(053 Xi
where
U, =sup { Ki(T1,8,91,92) — Ki(t2, 8,91, Y2)l : T1, 72,8 € [a,b], [11 — T2 < ¢,
mngwmyﬂ<wwy}
and
w(hy, e) = sup{lhi(t2) —hi(ti)|: 11,2 € [a,b], |11 — T2 < €}
Therefore,

(Box)(t2) — (Box) ()] < & (hy (b) — hy(a)) 4 221 RERT)

0 . [w(hi, e)]™. (4.9)

Now, combining (4.8) and (4.9), we obtain the estimate

I(Six)(t2)(Bix)(t2) — (Six)(t1)(Bix)(t1)]

. . Rbi . -RYi)(0: R
< U, (0; 1.K1R ) (hi(b) —hi(a))™ + 2¢i(R, ciR 02.(61 + kiR%1) [w(hy, €)™
N ©i(R,ciRYH)(hi(b) —hi(a))*w(Six,€)
X '

Therefore, by (4.7), we obtain

[(Aix)(t2) — (Aix)(t1)]

U (0; + kiR®1) 2¢:(R, c¢{RY1)(0; + k{RP1)

< w(gi &)+ Mo+ 1) (hi(b) —hi(a))* + Mo 1) [w(hy, e)]*
@i(R,ciRY1)(hi(b) —hi(a))*w(Six, €)
+ Moo+ 1) '

Then

U, (0; + ki RP1) 29 (R, ciRY1)(0; + k;{RP1)

w(AiM, e) < w(gi, &) + Mot 1) (hi(b) —hi(a))* + Mo 4 1] [w(hy, )]
@i(R,ciRYt)(hi(b) —hi(a))*w(SiM, €)
+ .
F(oq—l—l)

Passing to the limit as ¢ — 0, we obtain

©1(R, ciRY1)(hi(b) —hi(a))*1u(SiM)
r((Xi + 1)

mAM) <
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In view of assumption (C4), it follows that

vi@i(R,ciRY)(hi(b) —hi(a))™*
F(O(i + 1)

wWAM) < n(M).

Therefore, we proved the following result.

Lemma 4.4. For every () # M C B(0g, R), we have

vi@i(R,ciRY)(hi(b) —h;(a))*

wAM) < Mo+ 1)

Next, let us define the operator A : B(0g,R) — E by

q
(AX)(t) = J(Ax)(t), te€la,bl. (4.10)

i=1

Lemma 4.5. The operator A : B(0g,R) — B(Og, R) is well-defined.
Proof. The result follows immediately from (4.6). O
Now, we are able to state and prove the main result in this paper.

Theorem 4.6. Suppose that all conditions (C1)-(C9) are satisfied. Moreover, suppose that

Rimh 3 ViR eRT(hi(b) — (@)

ot T <1. (4.11)

i=1

Then Equation (1.2) has at least one solution x* € B(0g, R).

Proof. Observe that x € B(0g, R) is a solution to Equation (1.2) if and only if x is a solution to (3.3), where
D = B(0g, R) and A is given by (4.10). From Lemmas 4.1, 4.2, 4.3, and 4.5, assumptions (i)-(iii) of Theorem
3.2 are satisfied. From Lemma 4.4, assumption (iv) of Theorem 3.2 is satisfied with

_ Vi@i(R ciRY)(hi(b) —hy(a))*

K; i—=1... q.
1 r((xl + 1) 7 1 7 Vi q
On the other hand, using (4.6) and (4.11), we have
q q q q
S x IT 1ABOeRI<d> & [T rVS
i=1  j=1j#i i=1  j=1j#i
9 4.0 RYi) (h. _h. oG
— Rl—% Z VI(PL(R/ CIR )(hl(b) hl(a))
£ Moy +1)
i=1
<1

Therefore, assumption (v) of Theorem 3.2 is satisfied. Finally, an application of Theorem 3.2 yields the
desired result. O

5. Particular cases

In this section, we present existence results for some special cases of equation (1.2).
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5.1. A functional equation with supremum in the kernel
Fori=1,---,q, define the operator T; : E — E by

(Tix)(t) = max{|x(t)]: a<t<t}, telab], xekE.

Clearly, we have
ITix|[e < |Ix[[e, x€E.

Now, let us consider a pair of elements (x,y) € E x E, and let t € [a, b]. We have
I(Tix) (t) = (Tiy) (1)] = max{[x(7)[ : a < T < t}—max{ly(7)]: a < T< LY.
On the other hand, by Heine-Borel theorem, there exist 11, T2 € [a, t] such that
max{|x(T)]: a <t <t} =x(11)],

and
max{ly(1t)[: a < T <t} = y(12)l.
Therefore, we obtain

[(Tx) () — (Tiy) (B)] =

Ix(t1) — ly(T2)]
Without loss of the generality, we may suppose that |x(t1)| > [y(T2)|. Thus, we obtain
[(Tix) (1) — (Tiy) ()] = Ix()l = ly ()l < ()l =y (Tl < Ix(T1) =y ()l < [x —ylle-

Then
[Tix—Tiylle < [x—ylle, (xy) €EXE

Hence, T; satisfies assumptions (C2) and (C3) with

Consider now the following assumptions:
(i) gieEi=1,---,q.
(i) Si:E—E,i=1,---,q,is continuous, and
w(SiM) < vip(M), M € Py(E),
where v; > 0 is a constant and p is given by (4.1).
(iii) Foralli=1,---,q, there exist constants 0; > 0, k; > 0 and ¢; > 0 such that

ISxlle <0+ xifx|[#, x€E.

(iv) Ki:la,b] x[a,b] x RxR—R,i=1,---,q, is continuous.

(v) There exists @; : [0,00) x [0,00) — [0,00),1 =1, -, g, a nondecreasing function with respect to each
variable, such that

IKi(t,s,u,v)| < @i(lul,vl), (t,s,u,v) € [a, bl x[a,b] xR xR.

(vi) hy € ENCY((a,b];R) is nondecreasing, i=1,---,q.
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(vii) There exists R > 0 such that

(6i + kiR®1) @i (R,R) (hi(b) — hi(a))™
Moy +1)

llgille + <RY4, i=1,.--,q.

(viii) We suppose that

3 YRR (b))

)
Mo+ 1) <1

i=1
From Theorem 4.6, we deduce the following existence result.

Corollary 5.1. Suppose that assumptions (i)-(viii) are satisfied. Then the functional equation

a<T<s

¢ hi(s)Kq (t, s,x(s), max |x(’t)|>
ds

ix)(t) J t € la,b], (5.1)

_ . (S
=11 a0+ S0y | e ’

i=1

has at least one solution x* € B(0g, R).

5.2. A functional equation involving Riemann-Liouville frational integrals

In what follows, as a particular case of (1.2), we consider a functional equation involving Riemann-
Liouville frational integrals. More precisely, we deal with the functional equation

q t . .
xt) =] <gi(,ﬁ)Jr (Six)(t)J Ki (t,s,x(s), (Tix)(s)) ds> telabl, (52)

11 M) Jo (s

where 0 < o5 < 1.
Clearly, (5.2) is a special case of (1.2) with

hi(t)=t, i=1,---q.
We consider the following assumptions:
(i gi€eki=1,---,q.

(i) T:E—Ei=1,---,q,and
ITix[le < cillx[[{, x€E,

where ¢; > 0 and y; > 0 are constants.

(iii) Foralli=1,---,q,
ITix —Tiylle < Lilx—yllg, (xy) € ExE,

where L; > 0 and {; > 0 are constants.
(iv) Si:E—E,i=1,---,q,is continuous, and
H(SiM) < vip(M), M € Pp(E),
where v; > 0 is a constant and p is given by (4.1).

(v) Foralli=1,---,q, there exist constants 0; > 0, k; > 0 and ¢; > 0 such that

ISxlle < 0+ xilx[[Pt, xeE
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(vi) Ki:la, bl x[a,b] x RxR —-R,i=1,---,q, is continuous.

(vii) There exists @; : [0,00) x [0,00) = [0,00),1=1,- -, q, a nondecreasing function with respect to each
variable, such that

|Ki(t/ Slulv)| < (Pl(‘u|/ |V|), (t/ Slulv) € [al b] X [(1, b] x R x RR.

(viii) There exists R > 0 such that

0: + kiR®) @i (R, ciRYH) (b —a)™

gRl/q, ‘:1/"'/ .
Mo +1) ' q

(
lgille +

(ix) We suppose that

q . _
_1 i9i(R,ciRYi)(b—a)™
Rl y vi@i(R, cq

< 1.
F(O(i + 1)

i=1
From Theorem 4.6, we deduce the following existence result.

Corollary 5.2. Suppose that assumptions (i)-(ix) are satisfied. Then (5.2) has at least one solution x* € B(0g, R).

5.3. A functional equation involving Hadamard frational integrals

In what follows, as a particular case of (1.2), we consider a functional equation involving Hadamard
frational integrals. More precisely, we deal with the functional equation

q t xi—1
x(t) =[] (gi(t) L By J ! <ln t) Ki (1,5, %(s), (Tix)(s)) ds> , telab, (53

= Mai) Jaos s

where0 < oy <land 0 < a < b.
Clearly, (5.2) is a special case of (1.2) with

hi(t)=Int, i=1,---q.
Equation (5.3) is investigated under the following assumptions:

(i) gieEi=1,---,q.

(11) Ti:E—>E,i:1,... ,q,and
[Tix|le < cillx|[¥, x€E,

where c; > 0 and y; > 0 are constants.

(iii) Foralli=1,---,q,
ITox —Tiylle < Lillx—yllg, (xy) € ExE,

where L; > 0 and {; > 0 are constants.
(iv) Si:E—=E,i=1,---,q,is continuous, and
r(SiM) < vip(M), M e Py(E),
where v;{ > 0 is a constant and p is given by (4.1).
(v) Foralli=1,---,q, there exist constants 8; > 0, x; > 0 and ¢; > 0 such that

ISxlle < 0;+xillx[[#, x€E.
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(vi) Ki:la, bl x[a,b] x RxR —-R,i=1,---,q, is continuous.

(vii) There exists ¢; : [0,00) x [0,00) = [0,00),1=1,-- -, q, a nondecreasing function with respect to each
variable, such that

IKi(t,s,u,v)| < @i(lul,vl), (t,s,u,v) € [a, bl x[ab] xR xR.

(viii) There exists R > 0 such that

(01 + kiR®) @i (R, ciRY1) (In 2)™

. <RV4, i=1,...,q.
lgille + Moot 1) i q

(ix) We suppose that
Rt 3 YRR ()™
i1 r(O(i + 1) ’

From Theorem 4.6, we deduce the following existence result.

Corollary 5.3. Suppose that assumptions (i)-(ix) are satisfied. Then (5.3) has at least one solution x* € B(0g, R).

5.4. A functional equation involving Erdélyi-Kober frational integrals

Now, we deal with a functional equation involving Erdélyi-Kober fractional integrals. More precisely,
we are interested in studying the existence of solutions to the functional equation

q

. t g.¢Ri—1K. ;
x(t)zl‘{(gat)ﬂsﬁ’g;)j P e s, et 54

a

where f; >0,0<a; <land 0 < a<b.
Clearly, (5.4) is a special case of (1.2) with

hi(t) =th, i=1,.--q.
Equation (5.4) is investigated under the following assumptions:
(i) gi€E,i=1,---,q.

(i) T:E—Ei=1,---,q,and
[Tixlle < cilx|[f', x€E,

where c; > 0 and y; > 0 are constants.

(iii) Foralli=1,---,q,
ITix —Tiylle < Lix—yllg, (xy) € ExE,

where L; > 0 and {; > 0 are constants.
(iv) Si:E—E,i=1,---,q, is continuous, and
H(SiM) < vip(M), M€ Py(E),
where v; > 0 is a constant and p is given by (4.1).
(v) Foralli=1,---,q, there exist constants 8; > 0, k; > 0 and ¢; > 0 such that

ISxlle <0+ xilx[[#, x€E.
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(vi) Ki:la, bl x[a,b] x RxR —-R,i=1,---,q, is continuous.

(vii) There exists @; : [0,00) x [0,00) = [0,00),1 =1, -, q, a nondecreasing function with respect to each
variable, such that

|Ki(t/ S,U,V)| < (pl(‘u|/ |V|), (t/ Slulv) € [a/ b] X [a/ b] x R x RR.

(viii) There exists R > 0 such that

H ” 4 (0; + Kqu’i)(pi(R/ ciRY1) (bﬁi o aﬁi)“i
e Moy +1)

gRl/q, 1:]_,’q

(ix) We suppose that
T q .
ocl—i—l)

i=1

From Theorem 4.6, we deduce the following existence result.
Corollary 5.4. Suppose that assumptions (i)-(ix) are satisfied. Then (5.4) has at least one solution x* € B(0g, R).

Remark 5.5. For q =1, Corollary 5.4 is a generalization of the existence result obtained recently in [5].

5.5. A functional equation with mixed Hadamard and Erdélyi-Kober frational integrals

In this section, a functional equation with mixed Hadamard and Erdélyi-Kober frational integrals is
investigated. More precisely, we are interested in the existence of solutions to the functional equation

t o —1
x(t) = (gl(t) + (1) (t) J 1 (ln t) Ky (t,s,%x(s), (Tix)(s)) ds)

MNoa) Jos S
t aop—1
() + G [ B o B D o), e fav, 65)

where0 < oy <1,1=1,2,>0,and 0 < a < b.
Observe that (5.5) is a special case of (1.2) with

q=2, hi(t)=Int, hy(t) =tP.
Equation (5.5) is investigated under the following assumptions:
(i) g1 ek i=1,2

(i T;:E—E 1=1,2,and
[Tixlle <cilx|[f', x€E,

where c¢; > 0 and y; > 0 are constants.

(iii) Foralli=1,2,
ITox—Tiylle < Lillx—yllf, (xy) € ExE,

where L; > 0 and {¢; > 0 are constants.
(iv) S;:E — E,1=1,2, is continuous, and

H(SiM) < viu(M), M € Py(E),

where v; > 0 is a constant and p is given by (4.1).
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(v) For all i = 1,2, there exist constants 0; > 0, k; > 0 and ¢; > 0 such that

ISix|[e < 05+ kilx[[$, x €E,

(vi) Ki:[a,b] x[a,b] x R xR — R, 1=1,2, is continuous.

(vii) There exists @; : [0,00) x [0,00) — [0,00), i = 1,2, a nondecreasing function with respect to each
variable, such that

|Ki(t/ Slulv)| < (pl(‘u|/ |V|)/ (tr slulv) S [Cl, b] X [a/ b] x R x R.

(viii) There exists R > 0 such that

(05 + kiR @i (R, ciRY)(hi(b) — hi(a))™
lgille + Mo 7 1) < VR,

i=1,2,

where h;(t) =Int and hy(t) = tP.

(ix) We suppose that

+

R vie1(R ciRY) (In2)™"  v,0,(R, caRY2) (bP — aB)x2 <1
Moy +1) Mo +1)

From Theorem 4.6, we deduce the following existence result.

Corollary 5.6. Suppose that assumptions (i)-(ix) are satisfied. Then (5.5) has at least one solution x* € B(0g, R).

6. Numerical examples
In order to illustrate our theoretical results, some numerical examples are presented in this section.

Example 6.1. We deal with the solvability of the nonlinear integral equation

I () |+maxoc s [ (7)]
t  x(sint) + 2 Jt In (1 + 7 >
t = - ds, 0<t<1 6.1
x(t) =1 2 0 (1+t+s)v/is ) 6D

Observe that (6.1) is a special case of (5.1) with (a,b) =(0,1),q=1, hy(t) =t, 3 = %, g1(t) = %,

: 2
sww=r(3) (*EE), e xecionR)

and
lul + vl

Ki(t,s,u,v) =1n (1 + ) , (t,s,u,v)€[0,1] x[0,1] x R x R.
In order to obtain an existence result for the integral equation (6.1), we shall apply Corollary 5.1 after
checking that the required assumptions (i)-(viii) are satisfied. Clearly, g; € E, where E = C([0,1];R).

Moreover, we have
1
lgrlle = 15-
Therefore, assumption (i) is satisfied. Obviously, S; : E — E is a well-defined and continuous operator.
Let M € Py (E). Fix ¢ > 0, x € M, and take t1,t, € [a, b] such that [t; — t5] < . We have

(5130 (t0) ~ (S)(ta)l = 57 (5 ) Ixsints) —xsinta) + 6 - ¢
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<r () (Ix(sintq) — x(sintp)| + 2¢)

/
-

/N
—
7 N N N

(w(xosin, &) + 2¢)

(w(x, €) + 2¢)

N
-

(w(M, ¢) +2¢).

NIW NIW NIW NW

N—— N 0

Therefore, we have

which yields

For every x € E, we have

swwr<r (3) ixtsinvi+0 <7 (3) e+, teion,

3 3
< = = .
ISixlle < T <2) +T <2> Ixle, xeE

Therefore, assumption (iii) is satisfied with

3
01 =K1 <2> ;1

Then

Clearly, K; is a continuous function and
[Ki(t, s, w, vl < @ifful, V), (t,s,u,v) €10,1] x[0,1] x R x R,

where

@1(ry,12) =1n <1 + T14+r2> , 11,1220

Clearly, ¢, is nondecreasing with respect to each variable. Then assumption (v) is satisfied. In order to
check assumptions (vii) and (viii), we have to find R > 0 such that

(6.2)
Observe that for R = 1 we have

:i’

Therefore, R = 1 is a solution to (6.2). Finally, by Corollary 5.1, (6.1) has at least one solution x* €
B(0g,1/2).
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Example 6.2. In this example, we study the existence of solutions to the functional equation

t ox(t) [F1/, t\ V2
= o _ — 1 m
x(t) <10e + 2 L S <n s> 1@2{5 ()l ds

t x(t) Cts|x(s)]
X (15(2+262\/e—lj1 Vt—s

Observe that (6.3) is a special case of (5.5) with (a,b) =(1,e), 1 = xp =
(Tix)(t) = max [x(7), tellel,xeC([le
1<T<t

ITX

6.3)

ds) , tellel

B=1, gl(t) = ﬁ/ gZ(t) = ﬁ/
;R),

(Tx)(t) = Ix(t), te[lel, xeC([le}R),

1
(S1x)(t) = r(z)z"“) te el xeCll,elR),
B r (%) x(t) ‘
(s = 5 D20 el el xe ClLelR)

and

Ki(t,s,u,v)=v, (t,s,u,v)e[l,e]x[l,e] xR xR,
Ko(t,s,u,v) =tsv, (t,s,u,v)e[l,elx[l,e] xR xIR.

We argue as in the previous example to check that assumptions (i)-(vii) of Corollary 5.6 are satisfied with

r(s
C1=¢2:Y1=Y2=1,L1=L2=f1=€2=1,l<1=V1Zr(%),Kzz\/z:%,%:ez:O,dﬁ=¢2=1

and

@1(ry,12) =12, 71,1220,
2
@2(r1,12) = €1y, 71,12 20.

In order to check assumptions (viii) and (ix), we have to find R > 0 such that

{ 0 TR < VR

2RVR < 1. (6.4)

Observe that R = % is a solution to (6.4). Therefore, by Corollary 5.6, the functional equation (6.3) has at
least one solution x* € B(0g,1/4).
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