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Abstract
In this paper, we prove a Meir-Keeler theorem in b-rectangular metric spaces. Thus, we answer the open question raised by
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1. Introduction

To prove a fixed point theorem, researchers must consider contractive condition and underlying space.
A large number of weaker contractive conditions have been put forward since Banach contraction princi-
ple was published in 1922. For example, in a comprehensive overview of contractive definitions, Rhoades
[9] compared 250 contractive definitions in 1977. In the recent forty years, the theory of fixed point has
been grown rapidly (see [2, 7, 8, 10, 12, 14, 15] and the references therein for others). In the meantime,
the underlying spaces have been extended from usual metric spaces to generalized metric spaces such as
b-metric spaces [1, 4], rectangular metric spaces [3], b-rectangular metric spaces [5, 6] and so on. Ding
et al. in [5, 6] discussed some fixed point results in b-rectangular metric spaces and put forward the
following open question [6]:

Prove or disprove the following (Meir-Keeler theorem): let (X,d) be a b-rectangular metric space with
coefficient s > 1, and let f,g : X→ X be two self-maps such that f(X) ⊆ g(X), and one of these two subsets
of X being complete. Assume that the following condition holds:

for each ε > 0 there exists δ > 0 such that ε 6 d(gx,gy) < ε+ δ implies sd(fx, fy) < ε, and fx = fy

whenever gx = gy.
Then f and g have a unique point of coincidence, say ω ∈ X. Moreover, for each x0 ∈ X, the cor-

responding Jungck sequence {yn} can be chosen such that limn→∞ yn = ω. In addition, if f and g are
weakly compatible, then they have a unique common fixed point.

In this paper, we answer the open question affirmatively.
Let recall some definitions and lemmas that will be used in the paper.
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Definition 1.1 ([1, 4]). Let X be a nonempty set, s > 1 be a given real number and let d : X×X −→ [0,∞)
be a mapping such that for all x,y, z ∈ X, the following conditions hold:

(b1) d(x,y) = 0 if and only if x = y;
(b2) d(x,y) = d(y, x);
(b3) d(x,y) 6 s[d(x, z) + d(z,y)] (b-triangular inequality).

Then the pair (X,d) is called a b-metric space (metric type space).

For all definitions of notions as b-convergence, b-completeness, and b-Cauchy in the frame of b-metric
spaces see [1, 4].

Definition 1.2 ([3]). Let X be a nonempty set, and let d : X× X −→ [0,∞) be a mapping such that for all
x,y ∈ X and distinct points u, v ∈ X, each distinct from x and y:

(r1) d(x,y) = 0 if and only if x = y;
(r2) d(x,y) = d(y, x);
(r3) d(x,y) 6 d(x,u) + d(u, v) + d(v,y) (rectangular inequality).

Then (X,d) is called a rectangular metric space or generalized metric space.

For all definitions of notions in the frame of rectangular metric spaces see [3].

Definition 1.3 ([5, 6]). Let X be a nonempty set, s > 1 be a given real number and let d : X×X −→ [0,∞)
be a mapping such that for all x,y ∈ X and distinct points u, v ∈ X, each distinct from x and y:

(rb1) d(x,y) = 0 if and only if x = y;
(rb2) d(x,y) = d(y, x);
(rb3) d(x,y) 6 s[d(x,u) + d(u, v) + d(v,y)] (b-rectangular inequality).

Then (X,d) is called a b-rectangular metric space or b-generalized metric space.

From the above definitions, we know that every metric space is a rectangular metric space and a b-
metric space. Also, every rectangular metric space or every b-metric space is a b-rectangular metric space.
However the converse is not necessarily true [11, 13]. To illustrate it, we give the following example which
is a modification of example of [13].

Example 1.4. Let A = {0, 2}, B = { 1
n : n ∈ N}, and X = A

⋃
B. Define d : X×X −→ [0,+∞) as follows:

d(x,y) =


0, if x = y,
1, if x 6= y and {x,y} ⊂ A or {x,y} ⊂ B,
y2, if x ∈ A,y ∈ B,
x2, if x ∈ B,y ∈ A.

Then (X,d) is a complete b-rectangular metric space with coefficient s = 3, but which is neither a b-metric
space nor a rectangular metric space. Meanwhile, it is easy to see that [13]:

(i) the sequence { 1
n }n∈N converges to both 0 and 2, and it is not a Cauchy sequence;

(ii) there is no r > 0 such that Br(0)
⋂
Br(2) = ∅. Hence, the corresponding topology is not Hausdorff;

(iii) B1/3(
1
3) = {0, 2, 1

3 }, however, there does not exist r > 0 such that Br(0) ⊆ B1/3(
1
3);

(iv) limn→∞ 1
n = 0, but limn→∞ d( 1

n , 1
2) 6= d(0, 1

2). Hence, d is not a continuous function.

Lemma 1.5 ([5]). Let (X,d) be a b-rectangular metric space with s > 1, and let f,g : X→ X be two self-maps such
that f(X) ⊆ g(X). If Jungck sequence yn = fxn = gxn+1 and yn 6= yn+1 for all n ∈ N satisfies

d(yn,yn+1) < λd(yn−1,yn)

for all n ∈ N, where λ ∈ (0, 1), then yn 6= ym whenever n 6= m.

Lemma 1.6 ([5, 6]). Let (X,d) be a b-rectangular metric space with s > 1, and let {yn} be a Cauchy sequence in X
such that yn 6= ym whenever n 6= m. Then {yn} can converge to at most one point.
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2. Main results

Theorem 2.1. Let (X,d) be a b-rectangular metric space with coefficient s > 1, and let f,g : X → X be two
self-maps such that f(X) ⊆ g(X), and one of these two subsets of X being complete. Assume that the following
condition holds: for each ε > 0 there exists δ > 0 such that

ε 6 d(gx,gy) < ε+ δ implies sd(fx, fy) < ε, and fx = fy whenever gx = gy. (2.1)

Then f and g have a unique point of coincidence, say ω ∈ X. Moreover, for each x0 ∈ X, the corresponding
Jungck sequence {yn} can be chosen such that limn→∞ yn = ω. In addition, if f and g are weakly compatible, then
they have a unique common fixed point.

Proof. First of all, by (2.1), we point out that: for all x,y ∈ X, and gx 6= gy,

sd(fx, fy) < d(gx,gy). (2.2)

Suppose x0 ∈ X be an arbitrary point, since f(X) ⊆ g(X), we can choose sequences {xn} and {yn} in X such
that yn = fxn = gxn+1,n = 0, 1, 2, . . ..

If yn+1 = yn for some n = p ∈ N, then gyp+1 = yp = yp+1 = fxp+1, so f and g have a point of
coincidence. Therefore, we can suppose yn+1 6= yn for each n ∈ N.

Making use of the inequality (2.2) with x = xn+1 and y = xn, we can get

sd(yn,yn+1) < d(yn−1,yn). (2.3)

Since s > 1, {d(yn,yn+1)} is a decreasing sequence, it is easy to prove that

lim
n→∞d(yn,yn+1) = 0. (2.4)

By (2.3) and Lemma 1.5, for n 6= m, we have yn 6= ym.
Now making use of the inequality (2.2) repeatedly with initial value x = xn+k and y = xm+k, we

obtain
skd(yn+k,ym+k) < d(yn,ym). (2.5)

In what follows, we prove that {yn} is a Cauchy sequence in X. For any ε > 0, we can choose an N (large
enough) such that whence n > N,

d(yn+1,yn) 6
ε− ε

s

1 + s
.

Put K(yN, ε) = {y ∈ {yn} : d(y,yN) 6 ε}. Define the map H : {yn}→ {yn} by H(yn) = yn+1.
If ym ∈ K(yN, ε) with m > N, then ym 6= yN,

d(H2ym,yN) 6 s(d(H2ym,H2yN) + d(H2yN,HyN) + d(HyN,yN))

= s(d(ym+2,yN+2) + d(yN+2,yN+1) + d(yN+1,yN))

6 s(
1
s2d(ym,yN) + (

1
s
+ 1)d(yN+1,yN))

6
1
s
d(ym,yN) + s(

1
s
+ 1)d(yN+1,yN)

6
ε

s
+ (1 + s)

ε− ε
s

1 + s
= ε.

That is to say, H2 maps K(yN, ε) into itself. Since yN+1 ∈ K(yN, ε), then yN+3,yN+5 ∈ K(yN, ε).
Using the b-rectangular inequality, and by (2.5),

d(yN,yN+2) 6 s(d(yN,yN+3) + d(yN+3,yN+5) + d(yN+5,yN+2))
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6 s(d(yN,yN+3) +
1
s3d(yN,yN+2) +

1
s2d(yN+3,yN))

6 s(ε+
1
s3d(yN,yN+2) +

1
s2 ε).

Therefore, we have

d(yN,yN+2) 6
s3 + s

s2 − 1
ε.

Put ε
′
= s3+s

s2−1ε and K(yN, ε
′
) = {y ∈ {yn} : d(y,yN) 6 ε

′
}. Then we can verify that H2 maps K(yN, ε

′
)

into itself in a similar way. Since ε
′
> ε, then yN+1,yN+2 ∈ K(yN, ε

′
). Thus {yN+1,yN+3,yN+5, · · · } ⊂

K(yN, ε
′
) and {yN+2,yN+4,yN+6, · · · } ⊂ K(yN, ε

′
). That is to say, {yn : n > N} ⊂ K(yN, ε

′
).

For n > m > N, since yn,ym ∈ K(yN, ε
′
), we have

d(yn,ym) 6 s(d(yn,yn+1) + d(yn+1,yN) + d(yN,ym)) 6 s(
ε− ε

s

1 + s
+ ε

′
+ ε

′
) 6 3sε

′
=

3s4 + 3s2

s2 − 1
ε.

Thus {yn} is a Cauchy sequence in X.
Since g(X) or f(X) is complete, and f(X) ⊆ g(X), then {yn} converges to some point ω in gX. Thus,

there exists a point z ∈ X such that gz = ω. In order to prove fz = gz, we suppose that fz 6= gz.
By b-rectangular inequality, (2.2), and (2.4),

d(fz,gz) 6 s(d(fz, fxn+1) + d(fxn+1, fxn) + d(fxn,gz))

6 s(
1
s
d(gz,gxn+1) + d(fxn, fxn+1) + d(fxn+1,gz))

= d(gz,yn) + sd(yn,yn+1) + sd(yn+1,gz).

Passing to limit as n→∞, we have
d(fz,gz) 6 0,

which is a contradiction. Thus, fz = gz = ω.
Next, we shall show that the point of coincidence of f and g is unique.
Suppose µ 6= ω is another point of coincidence of f and g, so there exists t ∈ X such that ft = gt = µ.

Then
d(ω,µ) = d(fz, ft) <

1
s
d(gz,gt) =

1
s
d(ω,µ),

which is a contradiction. Thus, point of coincidence of f and g is unique. If f and g are weakly compatible,
it is easy to prove that ω is the unique common fixed point.

Finally, we give an example to support our result, which is a modification of Example 1.4.

Example 2.2. Let A = {0, 2}, B = { 1
n : n ∈ N}, C = [5,+∞), and X = A

⋃
B
⋃
C. Define d : X× X −→

[0,+∞) as follows:

d(x,y) =


0, if x = y,
1, if x 6= y and {x,y} ⊂ A or {x,y} ⊂ B,
y2, if x ∈ A,y ∈ B,
x2, if x ∈ B,y ∈ A,
|x− y|, otherwise.

Then (X,d) is a complete b-rectangular metric space with coefficient s = 3, but which is neither a b-metric
space nor a rectangular metric space as pointed out in Example 1.4.

Now, define

f(x) =

{
5, if x ∈ A

⋃
B,

5 + x−5
6 , if x ∈ C,
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and

g(x) =

{
5, if x ∈ A

⋃
B,

5 + x−5
2 , if x ∈ C.

Then for ε > 0, pick δ = ε. We can easily show that f,g satisfy all the conditions of Theorem 2.1. Let
x0 = 10, then xn = 5 + 5

3n , and yn = 5 + 5
2×3n −→ 5. Obviously ω = 5 is the unique point of coincidence

of f and g.
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