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Abstract

In this work, we study a class of neutral stochastic functional differential equations driven by G-Brownian motion. We
derive by variation-of-constants formula sufficient conditions for exponential stability and quasi sure exponential stability of the
solutions. Finally, we provide an example to illustrate the effectiveness of the theoretical results. c©2017 All rights reserved.
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1. Introduction

The theory of neutral functional differential equations has attracted many researchers’ great attention
for its potential applications in finance, population dynamic and control. For instance, Hale and Lunel [9]
studied the fundamental theory of deterministic neutral functional differential equations. Liu [17] con-
sidered standard optimal control problems for a class of neutral functional differential equations. One of
the basic works of the theory of neutral functional differential equations is to study the theory of stability
of solutions. Moreover, there is an extensive literature on the stability of neutral stochastic functional
differential equations (NSFDEs), such as [2, 3, 12, 15, 18–21, 28]. In particular, Mao [19] investigated
the exponential stability in mean square for a NSFDEs. Mao also established several Razumikhin-type
theorems on the exponential stability for stochastic functional differential equations in [20].

Meanwhile, the theory of nonlinear expectation has also drawn a great deal of attention in uncertainty
problems, risk measures and the superhedging in finance. Especially, Peng [22] established the fundamen-
tal theory of the G-expectation and G-conditional expectation. Under the framework of G-expectation,
Peng [23, 24] not only introduced the notion of G-Gaussian distribution and the G-Brownian motion but
also set up the associated stochastic calculus of Itô type. On the basis of Peng’s works, related topics in

∗Corresponding author
Email addresses: zhumin0107@csu.edu.cn (Min Zhu), jpli@mail.csu.edu.cn (Junping Li), zyx1998@sina.com (Yongxiang

Zhu)

doi:10.22436/jnsa.010.04.43

Received 2016-12-01

http://dx.doi.org/10.22436/jnsa.010.04.43


M. Zhu, J. P. Li, Y. X. Zhu, J. Nonlinear Sci. Appl., 10 (2017), 1830–1841 1831

the G-stochastic analysis are developed by many researchers, especially on the stability properties. For ex-
ample, Zhang and Chen [27] investigated the sufficient conditions for quasi surely exponentially stability
of the solutions for a kind of special G-stochastic differential equations (GSDEs). Fei and Fei [7] estab-
lished the exponential stability of paths for a class of GSDEs. Hu et al. [11] studied p-moment stability of
solutions to GSDEs by means of the Lyapunov function and the Itô formula. Ren et al. [26] established
the p-moment exponential stability and quasi sure exponential stability of solutions to impulsive GSDEs
by means of G-Lyapunov function method. Through more careful observation and analysis, readers can
discover that G-Lyapunov function method is in general available to establish the stability of solutions to
GSDEs.

Motivated by the above discussion, we will, in this present work, be interested in the stability problem
for a class of neutral stochastic functional differential equations driven by G-Brownian motion (SFDEGs).
In contrast to the existing results on GSDEs, by now there was no study of neutral SFDEGs. Only, Ren et
al. [25] studied the existence and uniqueness of the solutions to SFDEGs with the coefficients satisfying
both the linear growth condition and the classical Lipschitz condition, and investigated the exponential
estimate of the solutions. However, they did not consider the stability of the solutions. The techniques
used in [25] to prove the existence and uniqueness of the solutions are not suitable to the model whose
coefficients do not satisfy the Lipschitz condition. Different from those result obtained in [7, 11, 26, 27], in
this work we shall investigate the p-moment exponential stability and quasi sure exponential stability of
solutions to a class of neutral SFDEGs. As well all know, in the case without delay, Lyapunov’s method is
in general available to study the stability of solutions to GSDEs, as seen in [7, 11, 26, 27]. However, in the
case of differential equations with retarded arguments, even with constant delays, Lyapunov’s method
is not suitable as Krasovkiĭ [13] pointed out for the ordinary differential equations, and Kushner [14]
(among others) also did for stochastic differential equations (SDEs), since the history of the process must
be taken into account [10]. In addition, the main method in the aforementioned references is to incorporate
certain dissipativity to establish the stability of solutions to NSFDEs , as seen in [15, 19, 28] and [3]. The
dissipativity is assured by imposing information of the current time with certain decay conditions [5].
But this method cannot deal with the system in this work, since both the drift and diffusion coefficients
involve only retarded elements and do not involve information on current time. All these issues will
hinder the development of stochastic systems. Consequently, the stability of neutral SFDEGs should be
developed.

2. Preliminary

Let (Ω,H, Ē) be a sublinear expectation space. Denote Ω = C0(R
+) by the space of all real-valued

continuous paths (ωt)t∈R+ with ω0 = 0 equipped with the distance

ρ(ω1,ω2) =

∞∑
i=1

2−i[( max
t∈[0,i]

|ω1
t −ω

2
t|)∧ 1].

For every ω ∈ Ω, let B(·,ω) = ω(·) be the corresponding canonical process. For each fixed T ∈ [0,∞), set

Lip(ΩT ) := {ϕ(B(t1),B(t2), ...,B(tm)) : m ∈N, t1, ..., tn ∈ [0, T ],ϕ ∈ Cb,Lip(R
d×m)},

and

Lip(Ω) :=

∞⋃
n=1

Lip(Ωn),

where Cb,Lip(R
d×m) denotes the space of bounded and Lipschitz continuous functions. Let (B(t))t>0

be real-valued G-Brownian motion on the sublinear expectation space (Ω,H, Ē) with G(a) = 1
2(σ̄

2a+ −
σ2a−), where σ̄2 = Ē[B(1)2], σ2 = −Ē[−B(1)2], 0 6 σ 6 σ̄ < ∞. For 1 6 p < ∞, let LpG(Ω) be the

completion of Lip(Ω) under the norm ‖ · ‖p = Ē[| · |p]
1
p . Similarly, we can define LpG(ΩT ) for each T > 0.

Define the space Mp,0
G ([0, T ]) of simple processes by
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M
p,0
G ([0, T ]) =

{
ηt(ω) =

N−1∑
j−1

ξtj(ω)I[tj,tj+1); ξtj(ω) ∈ LpG(Ωtj),

∀N > 1, 0 = t0 < t1 < · · · < tN = T , j = 0, 1, · · · ,N− 1
}

.

Let Mp
G([0, T ]) be the completion of Mp,0

G ([0, T ]) with the norm

‖η‖Mp
G([0,T ]) =

(
Ē(

∫T
0
|ηt|

pdt)
) 1
p

.

For the construction of the stochastic integrals with respect to the G-Brownian motion, we can refer to
Peng [24]. For each fixed τ ∈ (0,∞), it is referred to as the delay or time lag. Let C = C([−τ, 0]; Rn) be
the family of all real-valued continuous functions on [−τ, 0] equipped with the uniform norm ‖ξ‖∞ :=
sup−τ6θ60 |ξ(θ)| for ξ ∈ C . For X(·) ∈ C([−τ,∞]; Rn), define the segment process Xt ∈ C by

Xt(θ) := X(t+ θ), θ ∈ [−τ, 0], t > 0.

Let µ(·) and ρ(·) denote the finite signed measures on [−τ, 0], ν(·) a measure on [−τ, 0], C the set of all
complex numbers and Re(z) the real part of z ∈ C. We define the G-capacity by Ĉ(A) = supP∈P P(A),
A ∈ B(Ω), where P is a (weakly compact) collection of probability measures on (Ω,B(Ω)).

Consider the following deterministic linear retarded equation of neutral type:

d
(
Y(t) −

∫
[−τ,0]

Y(t+ θ)ρ(dθ)
)
=
( ∫

[−τ,0]
Y(t+ θ)µ(dθ)

)
dt, (2.1)

with the initial value Y0 = ξ ∈ C . By the variation-of-constants formula (see, e.g., [9, Theorem 1.1, p.256]),
(2.1) has a unique solution {Y(t; ξ)}t>−τ. Set

υ := sup
{

Re(λ) : λ ∈ C, det
(
λ
(
In×n −

∫
[−τ,0]

eλθρ(dθ)
)
−

∫
[−τ,0]

eλθµ(dθ)
)
= 0
}

,

where det(A) denotes the determinant of an A ∈ Rn ⊗Rn. The fundamental solution of (2.1) is a unique
continuous function G : [0,∞) 7→ Rn ⊗Rn which satisfying

d
(
G(t) −

∫
[−τ,0]

G(t+ θ)ρ(dθ)
)
=
( ∫

[−τ,0]
G(t+ θ)µ(dθ)

)
dt, t > 0,

with the initial value G(0) = In×n and, for each θ ∈ [−τ, 0), G(θ) = 0n×n. Then according to [1, Lemma
1], for any α > υ, there exists a constant cα > 0 such that

‖G(t)‖ 6 cαeαt, t > −τ, (2.2)

where ‖ · ‖ denotes the operator norm of the matrix.
Now, we end this subsection by stating the following definitions and a lemma which plays an impor-

tant role in obtaining our result.

Lemma 2.1 (Peng [24, (4.10), p. 47]). For each η ∈M1
G(0, T),

Ē

∣∣∣ ∫T
0
η(t)d〈B,B〉(t)

∣∣∣ 6 σ̄2Ē
[ ∫T

0
|η(t)|dt

]
,

where 〈B,B〉(t) is the quadratic variation process of B(t).

Lemma 2.2 (Peng [24, exercise 3.9, p. 45]). For each η ∈Mp
G(0, T),

Ē
[ ∫T

0
|η(t)|pdt

]
6
∫T

0
Ē|η(t)|pdt.
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Definition 2.3. The solution (X(t)) is said to be p-th moment exponentially stable if there is a pair of
positive constants κ and K, for any p > 0 and ξ ∈ C such that

Ē|X(t; ξ)|p 6 K‖ξ‖p∞e−κpt.

When p = 2, it is often called to be exponentially stable in mean square.

Definition 2.4. The solution (X(t)) is said to be quasi surely exponentially stable if for any ξ ∈ C such
that

lim sup
t→∞

1
t

log |X(t; ξ)| < 0 q.s. .

3. Exponential stability of the solutions

In this work, we first consider the following semi-linear retarded SDE of the form

d
(
X(t) −

∫
[−τ,0]

X(t+ θ)ρ(dθ)
)
=
( ∫

[−τ,0]
X(t+ θ)µ(dθ)

)
dt+ σ(Xt)dB(t), (3.1)

with the initial value X0 = ξ ∈ C , where σ : C 7→ R such that σ(0) = 0 is Borel measurable. Throughout
this section, we further assume that the initial value ξ ∈ C is independent of {B(t)}t>0, and for any
φ,ϕ ∈ C there exists an L > 0 such that

|σ(φ) − σ(ϕ)|2 6 L
(
|φ(0) −ϕ(0)|2 +

∫
[−τ,0]

|φ(θ) −ϕ(θ)|2ν(dθ)
)

. (3.2)

We remark that the right-hand side of (3.1) do not involve information on current time. We use the
variation-of-constants formula to overcome this difficulties. That has been applied successfully in [5]. The
following lemma gives a variation-of-constants formula for (3.1).

Lemma 3.1. For each ξ ∈ C such that
∫
[−τ,0] |ξ

′(θ)|2dθ <∞, there is a unique strong solution {X(t; ξ)}t>0, which
can be represented by

X(t; ξ) =G(t)ξ(0) −
∫
[−τ,0]

G(t+ θ)ξ(0)ρ(dθ)

+

∫
[−τ,0]

µ(dθ)
∫ 0

θ

G(t+ θ− s)ξ(s)ds

+

∫
[−τ,0]

ρ(dθ)
∫ 0

θ

G(t+ θ− s)ξ′(s)ds+
∫t

0
G(t− s)σ(Xs)dB(s).

(3.3)

Proof. By [17, Theorem 2.2], the solution of (2.1) can be expressed by

Y(t; ξ) =G(t)ξ(0) −
∫
[−τ,0]

G(t+ θ)ξ(0)ρ(dθ) +
∫
[−τ,0]

µ(dθ)
∫ 0

θ

G(t+ θ− s)ξ(s)ds

+

∫
[−τ,0]

ρ(dθ)
∫ 0

θ

G(t+ θ− s)ξ′(s)ds.

Moreover, by [1, Theorem 1] it follows that

X(t; ξ) =Y(t; ξ) +
∫t

0
G(t− s)σ(Xs)dB(s)

=G(t)ξ(0) −
∫
[−τ,0]

G(t+ θ)ξ(0)ρ(dθ) +
∫
[−τ,0]

µ(dθ)
∫ 0

θ

G(t+ θ− s)ξ(s)ds

+

∫
[−τ,0]

ρ(dθ)
∫ 0

θ

G(t+ θ− s)ξ′(s)ds+
∫t

0
G(t− s)σ(Xs)dB(s).
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For convenience, let W1,2([−τ, 0]; R) denote the Sobolev space consisting of functions ϕ : [−τ, 0] 7−→ R

such that ϕ(·) and ϕ′(·) belong to L2([−τ, 0]; R). For the rest of the work we assume that the initial value
of (3.1) belongs to W1,2([−τ, 0]; R) and υ < 0. By (2.2), for any β ∈ (0,−υ), there exists a constant Cβ > 0
such that

‖G(t)‖ 6 Cβe−βt, t > −τ. (3.4)

The following lemma plays an important role in obtaining the exponential stability of the solutions to
(3.1).

Lemma 3.2. Let p > 2, f ∈Mp
G([0, T ]; R) and T > t > 0. Then,(

Ē

∣∣∣ ∫t
0
r(t− s)f(s)dB(s)

∣∣∣p) 2
p
6

1
2
p(p− 1)σ̄2

∫t
0
(Ē‖r(t− s)f(s)‖p)

2
p ds,

provided that the integral on the right hand side is finite for each t > 0.

Proof. We shall apply the method used in the argument of [4, Lemma 2.3] to prove this lemma. Let

M(u) =

∫t
0
r(t− s)f(s)dB(s), u ∈ [0, t].

By the G-Itô formula, for any u ∈ [0, t], it follows that

Ē|M(u)|p 6
1
2
p(p− 1)Ē

∣∣∣ ∫u
0
|M(s)|p−2‖r(t− s)f(s)‖2d〈B,B〉(s)

∣∣∣
6

1
2
p(p− 1)σ̄2Ē

[ ∫u
0
|M(s)|p−2‖r(t− s)f(s)‖2ds

]
6

1
2
p(p− 1)σ̄2

∫u
0

Ē|M(s)|p−2‖r(t− s)f(s)‖2ds

6
1
2
p(p− 1)σ̄2 sup

06s6u
(Ē|M(s)|p)

p−2
p

∫u
0
(Ē‖r(t− s)f(s)‖p)

2
pds,

where in the second step we have used Lemma 2.1, in the third step utilized Lemma 2.2 and in the last
step used the Hölder inequality. Then, we have

sup
06s6u

Ē|M(s)|p 6
1
2
p(p− 1)σ̄2 sup

06s6u

(
Ē|M(s)|p

)p−2
p

∫u
0
(Ē‖r(t− s)f(s)‖p)

2
pds.

This further implies that

sup
06s6u

(
Ē|M(s)|p

) 2
p
6

1
2
p(p− 1)σ̄2

∫u
0
(Ē‖r(t− s)f(s)‖p)

2
pds

6
1
2
p(p− 1)σ̄2

∫t
0
(Ē‖r(t− s)f(s)‖p)

2
pds.

Taking u ↑ t yields that(
Ē

∣∣∣ ∫t
0
r(t− s)f(s)dB(s)

∣∣∣p) 2
p
6

1
2
p(p− 1)σ̄2

∫t
0
(Ē‖r(t− s)f(s)‖p)

2
pds.

Remark 3.3. For the estimate of the diffusion term, one of the classical methods is to use some martingale
inequalities (e.g., [16, Lemma4.5], [24, p.59, Pro6.4], [8, Theorem 2.1]. For example, by means of martin-
gale inequalities Ren et al. [25] discussed the existence and uniqueness of the solutions to SFDEGs and
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established the exponential estimate of the solution. It should be pointed out that martingale inequalities
for G-stochastic integrals play an important role in analyzing the diffusion term therein. However, such a
method is not applicable to

∫t
0 r(t− s)f(s)dB(s) because it is not a martingale. Lemma 3.2 can deal with

this problem.

Next, we shall investigate the p-th moment exponential stability and quasi sure exponential stability
for the solution X(t) to (3.1).

Theorem 3.4. Let p > 2. Assume that (3.2) holds with L > 0 such that p(p− 1)σ̄2LC2
β(1+ν([−τ, 0])e2βτ) < 4β,

for β ∈ (0,−υ), where Cβ > 0 is introduced in (3.4). Then for any initial value ξ ∈W1,2([−τ, 0]; R), the solution
of (3.1) is p-th moment exponentially stable, i.e., there exist constants K > 0 and β̃ > 0 such that

Ē|X(t; ξ)|p 6 K‖ξ‖p∞e−pβ̃t, t > 0. (3.5)

Proof. For any p > 2, due to p(p− 1)σ̄2λC2
β(1 + ρ([−τ, 0])e2ατ) < 4β, we can choose γ2 > 1 such that

p(p− 1)σ̄2γ
2
p

2 λC
2
β(1 + ρ([−τ, 0])e2βτ) < 4β. (3.6)

In the sequel, we fix γ2 > 1 such that (3.6). Then there exists a γ1 > 1 such that

(a+ b+ c)q 6 γ1(a
q + bq) + γ2c

q, q > 1, a,b, c ∈ R+. (3.7)

By the elementary inequality:

(a+ b)θ 6 aθ + bθ, 0 < θ < 1, a,b ∈ R+,

it follows from (3.3) and (3.7) that

Ē|X(t)|p 6γ̄1Ē|G(t)ξ(0)|p + γ̄1Ē

∣∣∣ ∫
[−τ,0]

G(t+ θ)ξ(0)ρ(dθ)
∣∣∣p

+ γ̄1Ē

∣∣∣ ∫
[−τ,0]

µ(dθ)
∫ 0

θ

G(t+ θ− s)ξ(s)ds
∣∣∣p

+ γ̄1Ē

∣∣∣ ∫
[−τ,0]

ρ(dθ)
∫ 0

θ

G(t+ θ− s)ξ′(s)ds
∣∣∣p

+ γ̄2Ē

∣∣∣ ∫t
0
G(t− s)σ(Xs)dB(s)

∣∣∣p
=:

5∑
i=1

Ji.

(3.8)

On one hand, by virtue of Lemma 3.2 and the Hölder inequality, together with (3.2) and (3.4), one has(
Ē

∣∣∣∣ ∫t
0
G(t− s)σ(Xs)dB(s)

∣∣∣∣p) 2
p

6
p

2
(p− 1)

∫t
0

(
Ē|G(t− s)σ(Xs)|

p
) 2
p

ds

6
p

2
(p− 1)C2

β

∫t
0

e−2β(t−s)
(

Ē|σ(Xs)|
p
) 2
p

ds

6L
p

2
(p− 1)C2

β

∫t
0

e−2β(t−s)
[
Ē
(
|X(s)|2 +

∫
[−τ,0]

|X(s+ θ)|2ν(dθ)
)p

2
] 2
p

ds

6L
p

2
(p− 1)C2

β

∫t
0

e−2β(t−s)
[(

Ē|X(s)|p
) 2
p



M. Zhu, J. P. Li, Y. X. Zhu, J. Nonlinear Sci. Appl., 10 (2017), 1830–1841 1836

+

∫
[−τ,0]

(
Ē|X(s+ θ)|p

) 2
p
ν(dθ)

]
ds

6L
p

2
(p− 1)C2

βe−2βt
∫t

0
e2βs(Ē|X(s)|p)

2
pds+ L

p

2
(p− 1)C2

βe−2βt

×
∫t

0
e2βsds

∫
[−τ,0]

(
Ē|X(s+ θ)|p

) 2
p
ν(dθ)

6L
p

2
(p− 1)C2

βe−2βt
∫t

0
e2βs

(
Ē|X(s)|p

) 2
p

ds+ L
p

2
(p− 1)C2

βe−2βt (3.9)

× ν([−τ, 0])e2βτ
∫t
−τ

e2βs(Ē|X(s)|p)
2
pds

6L
p

2
(p− 1)C2

β(1 + e2βτν([−τ, 0]))e−2βt
∫t

0
e2βs(Ē|X(s)|p)

2
pds

+ L
p

2
(p− 1)C2

βe−2βtν([−τ, 0])e2βτ(2β)−1‖ξ‖2∞,

where in the fourth step we have used Minkovskii’s inequality.
On the other hand, by the Hölder inequality and (3.4), it is readily seen that

Ē

∣∣∣ ∫
[−τ,0]

µ(dθ)
∫ 0

θ

G(t+ θ− s)ξ(s)ds
∣∣∣2 6Ē

∣∣∣µ([−τ, 0])
∫
[−τ,0]

µ(dθ)
( ∫ 0

θ

G(t+ θ− s)ξ(s)ds
)2∣∣∣

6Ē

∣∣∣µ([−τ, 0])
∫
[−τ,0]

−θµ(dθ)
∫ 0

θ

‖G(t+ θ− s)ξ(s)‖2ds
∣∣∣

6Ē

∣∣∣µ([−τ, 0])C2
β‖ξ‖2∞

∫
[−τ,0]

−θ
( ∫ 0

θ

e−2β(t+θ−s)ds
)
µ(dθ)

∣∣∣
6(µ([−τ, 0]))2τC2

β‖ξ‖2∞e−2βt
∫τ

0
e2βsds,

(3.10)

and

Ē

∣∣∣ ∫
[−τ,0]

ρ(dθ)
∫ 0

θ

G(t+ θ− s)ξ′(s)ds
∣∣∣2 6ρ([−τ, 0])Ē

∫
[−τ,0]

( ∫ 0

θ

G(t+ θ− s)ξ′(s)ds
)2
ρ(dθ)

6ρ([−τ, 0])Ē
∫
[−τ,0]

−θρ(dθ)
∫ 0

θ

|G(t+ θ− s)|2|ξ′(s)|2ds

6ρ([−τ, 0])C2
βe−2βt‖ξ′‖2∞

∫
[−τ,0]

−θρ(dθ)
∫ 0

θ

e−2β(θ−s)ds

6(ρ([−τ, 0]))2C2
βτe−2βt‖ξ′‖2∞

∫τ
0

e2βsds.

(3.11)

By a slight variation on (3.8) and taking the previous estimates (3.9), (3.10) and (3.11) into consideration,
it gives that

(Ē|X(t)|p)
2
p 6γ̄

2
p

1 C
2
βe−2βt‖ξ‖2∞ + γ̄

2
p

1 (ρ([−τ, 0]))2e2βτC2
βe−2βt‖ξ‖2∞

+ γ̄
2
p

1 (µ([−τ, 0]))2τC2
β‖ξ‖2∞e−2βt

∫τ
0

e2βsds

+ γ̄
2
p

1 (ρ([−τ, 0]))2C2
βτe−2βt‖ξ′‖2∞

∫τ
0

e2βsds

+ γ̄
2
p

2 L
p

2
(p− 1)C2

βe−2βtν([−τ, 0])e2βτ(2β)−1‖ξ‖2∞
+ γ̄

2
p

2 L
p

2
(p− 1)C2

β(1 + e2βτν([−τ, 0]))e−2βt
∫t

0
e2βs(Ē|X(s)|p)

2
pds,
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which implies that

e2βt(Ē|X(t)|p)
2
p 6 K1 + γ̄

2
p

2 L
p

2
(p− 1)C2

β(1 + e2βτν([−τ, 0]))
∫t

0
e2βs(Ē|X(s)|p)

2
pds,

K1 =γ̄
2
p

1 C
2
β‖ξ‖2∞ + γ̄

2
p

1 (ρ([−τ, 0]))2e2βτC2
β‖ξ‖2∞ + γ̄1(µ([−τ, 0]))2τC2

β‖ξ‖2∞
∫τ

0
e2βsds

+ γ̄
2
p

1 (ρ([−τ, 0]))2C2
βτ‖ξ′‖2∞

∫τ
0

e2βsds+ γ̄
1
p

2 L
p

2
(p− 1)C2

βν([−τ, 0])e2βτ(2β)−1‖ξ‖2∞.

So, the Gronwall inequality leads to

(Ē|X(t)|p)
2
p 6 K1e−2β̃t, t > 0,

where 2β̃ := 2β− γ̄
2
p

2 L
p
2 (p− 1)C2

β(1 + e2βτν([−τ, 0])). This further gives for p > 2,

Ē|X(t)|p 6 K‖ξ‖p∞e−pβ̃t, t > 0.

Note that (3.6) implies that β̃ > 0, therefore the result (3.5) is established in the case of p > 2.

Noting
(Ē|X(t)|p)

1
p 6 (Ē|X(t)|p̄)

1
p̄ , for 0 < p < 2, p̄ > 2,

together with (3.5), we see that the p̄-th moment exponential stability implies the p-th moment exponential
stability. Taking p̄ = 2 yields that the estimate to Ē|X(t)|p(0 < p < 2) can be done by exponential stability
in mean square. Therefore, we have the following corollary.

Corollary 3.5. Let 0 < p < 2. Assume that (3.2) holds with L > 0 such that Lσ̄2C2
β(1 + ν([−τ, 0])e2βτ) < 2β,

for β ∈ (0,−υ), where Cβ > 0 is introduced in (3.4). Then for any initial value ξ ∈W1,2([−τ, 0]; R), the solution
of (3.1) is p-th moment exponentially stable, i.e., there exist constants K > 0 and β > 0 such that

Ē|X(t; ξ)|p 6 K‖ξ‖p∞e−pβt, t > 0.

Carrying out similar arguments as Theorem 3.4 and Corollary 3.5, we can show that the solution X(t)
of (3.1) has the property as follows:

Theorem 3.6. Let the conditions of theorem 3.4 hold. Then for any different initial values ξ,η ∈W1,2([−τ, 0]; R),
there exists a pair of positive constants K and β̃ such that

Ē|X(t; ξ) −X(t;η)|p 6 K‖ξ− η‖p∞e−pβ̃t, t > 0, p > 2,

where β̃ is given in Theorem 3.4.

Corollary 3.7. Let the conditions corollary 3.5 hold. Then for any different initial values ξ,η ∈ W1,2([−τ, 0]; R),
there exists a pair of positive constants K and β such that

Ē|X(t; ξ) −X(t;η)|p 6 K‖ξ− η‖p∞e−pβt, t > 0, 0 < p < 2.

In a stable system, by virtue of the results of Theorem 3.6 and Corollary 3.7, trajectories of solutions
corresponding to different initial values become closer in the sense of p-th moment after a long time.

If some conditions are required, moment exponential stability can imply quasi sure exponential sta-
bility. The following result demonstrates this point.

Theorem 3.8. Let the conditions of theorem 3.4 hold. Then for any initial values ξ ∈W1,2([−τ, 0]; R), there exists
a constant γ > 0 such that

lim sup
t→∞

1
t

ln |X(t)| 6 −γ, q.s.,

where γ = min{2β̃, τ−1 ln 1
(ρ([−τ,0]))2 }, β̃ is given in Theorem 3.4.



M. Zhu, J. P. Li, Y. X. Zhu, J. Nonlinear Sci. Appl., 10 (2017), 1830–1841 1838

Proof. For any integer n > 1, using the Doob martingale inequality and Hölder’s inequality, together with
(3.1), (3.2) and (3.5), we have

Ē
(

sup
06θ̄6τ

∣∣∣X(nτ+ θ̄) − ∫
[−τ,0]

X(nτ+ θ+ θ̄)ρ(dθ)
∣∣∣2)

63Ē

∣∣∣X(nτ) − ∫
[−τ,0]

X(nτ+ θ)ρ(dθ)
∣∣∣2 + 3Ē

∣∣∣ ∫ (n+1)τ

nτ

( ∫
[−τ,0]

X(s+ θ)µ(dθ)
)

ds
∣∣∣2

+ 3Ē
(

sup
06θ̄6τ

∣∣∣ ∫nτ+θ̄
nτ

σ(Xs)dW(s)
∣∣∣2)

66Ē|X(nτ)|2 + 6Ē

∣∣∣ ∫
[−τ,0]

X(nτ+ θ)ρ(dθ)
∣∣∣2 + 3τĒ

∫ (n+1)τ

nτ

∣∣∣ ∫
[−τ,0]

X(s+ θ)µ(dθ)
∣∣∣2ds

+ 12
∫ (n+1)τ

nτ

Ē‖σ(X(s+ θ))‖2ds

66Ē|X(nτ)|2 + 6ρ([−τ, 0])
∫
[−τ,0]

Ē|X(nτ+ θ)|2ρ(dθ) + 3τµ([−τ, 0])

× Ē

∫ (n+1)τ

nτ

∫
[−τ,0]

|X(s+ θ)|2µ(dθ)ds

+ 12LĒ

∫ (n+1)τ

nτ

(
|X(s)|2 +

∫
[−τ,0]

|X(s+ θ)|2ν(dθ)
)

ds

66Ē|X(nτ)|2 + 6(ρ([−τ, 0]))2 sup
−τ6θ60

Ē|X(nτ+ θ)|2 + 3τµ([−τ, 0])

×
∫
[−τ,0]

µ(dθ)
∫ (n+1)τ

nτ

Ē|X(s+ θ)|2ds

+ 12L
∫ (n+1)τ

nτ

Ē|X(s)|2ds+ 12L
∫ (n+1)τ

nτ

( ∫
[−τ,0]

Ē|X(s+ θ)|2ν(dθ)
)

ds

66Ē|X(nτ)|2 + 6(ρ([−τ, 0]))2 sup
−τ6θ60

Ē|X(nτ+ θ)|2 + 3τ(µ([−τ, 0]))2
∫ (n+1)τ

nτ−τ
Ē|X(s)|2ds

+ 12L
∫ (n+1)τ

nτ

Ē|X(s)|2ds+ 12Lν([−τ, 0])
∫ (n+1)τ

nτ−τ
Ē|X(s)|2ds

66K‖ξ‖2∞e−γ̄nτ + 6(ρ([−τ, 0]))2K‖ξ‖2∞e−γ̄(nτ−τ) + 3τ(µ([−τ, 0]))2K‖ξ‖2∞
∫ (n+1)τ

nτ−τ
e−γ̄sds

+ 12LK‖ξ‖2∞
∫ (n+1)τ

nτ

e−γ̄sds+ 12Lν([−τ, 0])K‖ξ‖2∞
∫ (n+1)τ

nτ−τ
e−γ̄sds

66K‖ξ‖2∞e−γ̄nτ + 6(ρ([−τ, 0]))2K‖ξ‖2∞eγ̄τe−γ̄nτ + 3τ(µ([−τ, 0]))2K‖ξ‖2∞γ̄−1eγ̄τe−γ̄nτ

+ 12LK‖ξ‖2∞γ̄−1e−γ̄nτ + 12Lν([−τ, 0])K‖ξ‖2∞γ̄−1eγ̄τe−γ̄nτ

=Ce−γ̄nτ,

where

C = K‖ξ‖2∞[6 + 6(ρ([−τ, 0]))2eγ̄τ + 3τ(µ([−τ, 0]))2γ̄−1eγ̄τ + 12Lγ̄−1 + 12Lν([−τ, 0])γ̄−1eγ̄τ].

For any ε ∈ (0, γ̄), using the Chebyshev inequality, we have

Ĉ
(
ω : sup

06θ̄6τ

∣∣∣X(nτ+ θ̄) − ∫
[−τ,0]

X(nτ+ θ+ θ̄)ρ(dθ)
∣∣∣2 > e−(γ̄−ε)nτ

)
6 Ce−εnτ.
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The Borel-Cantelli lemma for capacity [6] yields that for almost all ω ∈ Ω, there exists an integer n0(ω)
such that

sup
06θ̄6τ

∣∣∣X(nτ+ θ̄) − ∫
[−τ,0]

X(nτ+ θ+ θ̄)ρ(dθ)
∣∣∣2 6 e−(γ̄−ε)nτ, n > n0.

Consequently, for almost all ω ∈ Ω, if t > n0τ,∣∣∣X(t) − ∫
[−τ,0]

X(t+ θ)ρ(dθ)
∣∣∣2 6 e−(γ̄−ε)(t−τ).

Moreover, for t ∈ [0,n0τ],
∣∣∣X(t) − ∫[−τ,0] X(t+ θ)ρ(dθ)

∣∣∣2 is finite. So, for almost all ω ∈ Ω, there exists a
finite constant H = H(ω), if t > 0,∣∣∣X(t) − ∫

[−τ,0]
X(t+ θ)ρ(dθ)

∣∣∣2 6 He−(γ̄−ε)t.

On the other hand, set eγ̄τ(ρ([−τ, 0]))2 < ε < 1. For t > 0, note that∣∣∣X(t) − ∫
[−τ,0]

X(t+ θ)ρ(dθ)
∣∣∣2 >|X(t)|2 − 2|X(t)|

∣∣∣ ∫
[−τ,0]

X(t+ θ)ρ(dθ)
∣∣∣+ ∣∣∣ ∫

[−τ,0]
X(t+ θ)ρ(dθ)

∣∣∣2
>(1 − ε)|X(t)|2 + (ε−1 − 1)

∣∣∣ ∫
[−τ,0]

X(t+ θ)ρ(dθ)
∣∣∣2.

Hence, we see that

|X(t)|2 6
1

1 − ε

∣∣∣X(t) − ∫
[−τ,0]

X(t+ θ)ρ(dθ)
∣∣∣2 + 1

ε

∣∣∣ ∫
[−τ,0]

X(t+ θ)ρ(dθ)
∣∣∣2.

Also, for each T > 0,

sup
06t6T

[e(γ̄−ε)t|X(t)|2] 6
H

1 − ε
+

1
ε

sup
06t6T

[
e(γ̄−ε)t

∣∣∣ ∫
[−τ,0]

X(t+ θ)ρ(dθ)
∣∣∣2]

6
H

1 − ε
+

e(γ̄−ε)τ(ρ([−τ, 0]))2

ε
sup

−τ6t6T
[e(γ̄−ε)t|X(t)|2].

Through a straightforward mathematical computation, we get(
1 −

e(γ̄−ε)τ(ρ([−τ, 0]))2

ε

)
sup

06t6T
[e(γ̄−ε)t|X(t)|2] 6

H

1 − ε
+

e(γ̄−ε)τ(ρ([−τ, 0]))2

ε
‖ξ‖2∞,

which implies that

lim sup
t→∞

1
t

ln |X(t)| 6 −
γ̄− ε

2
a.s. .

Let ε→ 0. The required result is obtained.

4. An illustrative example

In this section, we consider an example to verify the theory established in the previous section.

Example 4.1. Consider a semi-linear retarded SDEs

d
(
X(t) +

1
3
X(t− 1)

)
= −X(t− 1)dt+ σ(X(t− 1))dB(t), X0 = ξ ∈ C . (4.1)

In view of the corresponding characteristic equation λ+
(
1 + λ

3

)
e−λ = 0, we deduce that the unique root

is λ ≈ −2.3134. So, we have υ = −2.3134. Therefore, taking p = 2 and by Theorem 3.4, when the Lipschitz
constant L of σ such that Lσ̄2C2

β(1 + ν([−τ, 0])e2βτ) < 2β, for β ∈ (0, 2.3134), the solution X(t) of (4.1) is
quasi sure exponentially stable and exponentially stable in mean square.
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