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Abstract

By using critical point theory, some new criteria are obtained for the existence of a nontrivial homoclinic orbit to a higher
order difference system containing both many advances and retardations. The proof is based on the mountain pass lemma in
combination with periodic approximations. Related results in the literature are generalized and improved. (©2017 All rights
reserved.

Keywords: Homoclinic orbits, higher order difference systems, critical point theory, advances and retardations.
2010 MSC: 34C37, 37]45, 39A12.

1. Introduction

In the theory of differential equations, the trajectories which are asymptotic to a constant state as
the time variable [t| — oo are called homoclinic orbits (or homoclinic solutions). Such orbits have been
found in various models of continuous dynamical systems and frequently have tremendous effects on
the dynamics of such nonlinear systems. So homoclinic orbits have been extensively studied since the
time of Poincaré, see [7, 8, 17] and the references therein. Recently, Ma and Guo [14, 15] have found
that the trajectories which are asymptotic to a constant state as the time variable [k| — oo also exists in
discrete dynamical systems [2-6, 11-15, 20-24, 26]. These trajectories are also called homoclinic orbits (or
homoclinic solutions).

We denote by N, Z, and R the sets of all natural numbers, integers, and real numbers, respectively.
For a,b € Z, define Z(a) ={a,a+1,---},Z(a,b) ={a,a+1,---,b} when a < b. In the following and in
the sequel, for any n € N, we will denote the Euclidean norm in R™ by |- |, and defined as

1
n 2
|X| = (Z X%) ’ \V/X - (X11X2/' T IXTI) € Rn‘
i=1
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In this paper, we consider the following higher order nonlinear difference system

n
D X+ Xiert) +x0X = K Xir, -, Xi, -+ Xier),n € Nk € Z, (1.1)
i=0

where 1 is real-valued for each i € Z, xy is positive real-valued for each k € Z, I' is a given nonnegative in-
teger, m is a given positive integer, f=(f1, fa, - - , f;m)* € C(R* 72 x R™,R), xi and f(k, Yr,- -, Yo, -, Y_r)
are T-periodic in k for a given positive integer T.

Difference equations represent the discrete counterpart of ordinary differential equations and are usu-
ally studied in connection with numerical analysis. For the general background of difference equations,
one can refer to monographs [1, 19]. We may regard (1.1) as being a discrete analog of the following
2nth-order differential equation

[r(t)x(m} Fx(OX(L) = F(t, X(t+T), -+, X(1),--,X(t=T)), t € R. (1.2)

Smets and Willem [25] had proved the existence of solitary waves with prescribed speed on infinite
lattices of particles with nearest neighbor interaction for the following forward and backward differential
difference equation

Au’(t) =V (u(t+1)—ut) = V' (ut) —u(t—1)), teR.

Equations similar in structure to (1.2) arise in the study of the existence of homoclinic orbits for functional
differential equations, see [7, 8].
Whenm =1,n=2and I' =0, (1.1) reduces to the following special case

A (pkAkal) —Axi + b V(xy) =0,k € Z. (13)

In 2009, Deng et al. [3] applied the critical point theory to prove the existence of one homoclinic orbit
for (1.3).
In 2015, Liu et al. [12] considered the existence of a nontrivial homoclinic orbit for the following
equation
Luy — wuy = f(k, Wy, ug, uk—1), k € Z,

containing both advance and retardation [27] by using the mountain pass lemma in combination with
periodic approximations.

Recently, Shi et al. [22] studied the existence of a nontrivial homoclinic orbit for second order p-
Laplacian difference equations containing both advance and retardation

A(@p (Auk_1)) — qrep (wi) + flk, W v, u, u-—m) =0,k € Z,

by using the critical point theory.

By establishing a proper variational framework and using the critical point theory, Chen and Tang [2]
obtained some new existence criteria to guarantee the 2nth-order nonlinear difference equation containing
both many advances and retardations

A™ (1AM ) + grug =k, Ukgn, -, Uk, -0, Uk—n), M € Z(3),k € Z,

has at least one or infinitely many homoclinic orbits.

However, to the best of our knowledge, since (1.1) contains both many advances and retardations,
there are very few manuscripts dealing with this subject. The main purpose of this paper is to develop a
new approach to above problem without the classical Ambrosetti-Rabinowitz condition. Motivated by the
above papers [3, 22], the intention of this paper is to consider problem (1.1) in a more general sense. More
exactly, our results represent the extensions to a higher order nonlinear difference system containing both
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many advances and retardations. We establish some new existence criteria to guarantee that (1.1) has a
nontrivial homoclinic orbit. Some existing results are generalized and improved. In fact, one can see the
following Remarks 1.3 and 1.4 for details.

Throughout the paper, for a function F, we let F/(Yy,---,Y;---,Yy) denote the partial derivative of F
on the 1 variable. Let

= min ,X = max .
X keZ(l,T){Xk}X kEZ(l,T){Xk}

Our main results are the following theorems.

Theorem 1.1. Assume that T > 2n + 1 and the following hypotheses are satisfied:

n
(r) o+ 2_ Irs| <0;

s=1

(F1) there exists a function F(t,Yr,---,Yp) € CYR" 2 x R™,R) such that

0
F(t+T1le' o /YO) = F(t/le' o IYO)I Z F£+F+i(t+irYF+i/' t IYi) = f(ter/' o /YOI' o ,Y—F))
i=—T

(F2) there exist positive constants p and a < Z(I“X;H) such that

F(t, Yr, -, Yol < a ([YrPP+ - +[Yo?)

forallt € Rand \/[Yr2+--- +Yol2 < p;

(F3) there exist constants p,c > ’éfrﬁ“‘l‘"‘f and b such that

F(t, Yr, -, Yol = c (VPP + -+ Vo) +b

forall t € Rand \/[Yr2+--- +Yol2 = p;
(Fy) forall (t,Yr,---,Yo) € R"™2\{(0,---,0)},

0
D Foir(t+4,Yr, o, Yo)Yoi —2F(t, Yr, -+, Vo) > 0;
i=—T

0
(Fs) > Foprp(t+1,Yr, -, Yo)Y_{ —2F(t, Yr,---,Yg) = +ooas \/|Yr|2 + -+ |Ypl2 — +o00, where Amax
i=T
can be referred to (2.4).

Then (1.1) has a nontrivial homoclinic orbit.

Remark 1.2. By (F3), it is easy to see that there exists a constant ¢ > 0 such that

(F3)
|F(t/ YF/ e /Y0)| 2 c (|YF|2 +-- 4+ |YO|2) +b - C/ v(‘l:/Yr/ T /YO) € Rr+2‘

As a matter of fact, let

C=sup {[F(tYe, - Yo) = (Ve W) — b st € R,y Ve ol < o}

we can easily get the desired result.

Remark 1.3. Theorem 1.1 extends Theorem 1.1 in [12] which is the special case of our Theorem 1.1 by
letting m =1 and n = 2.
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Remark 1.4. In many studies (see, e.g., [3, 4,9, 11, 12, 14, 15, 23]) of second order difference equations, the
following classical Ambrosetti-Rabinowitz condition is assumed

(AR) there exists a constant > 2 such that 0 < fF(k,u) < uf(k,u) for all k € Z and u € R\ {0}

Note that (F3)-(Fs) are much weaker than (AR). Thus our result improves the existing ones.

Theorem 1.5. Assume that T > 2n+ 1, (r) and (F1)-(Fs) and the following hypothesis are satisfied:
(F6) X—x =xx, F(=Kk,Yr, .-, Yo) =F(k, Yr, -, Yp).

Then (1.1) has a nontrivial even homoclinic orbit.

For basic knowledge of variational methods, the reader is referred to [16, 18].

2. Variational structure

Our main tool is the critical point theory. We shall establish the corresponding variational framework
for (1.1). We start by some basic notations for the reader’s convenience.
Let S be the set of sequences X = (---,X_y, -+, X_1, X0, X1, , Xy, -+ ) = {Xk}ﬁiofoo, where Xy, =
(X1, X2, -+, Xie,m) € R™.
Forany X,Y € S, a,b € R, aX+ bY is defined by
aX +bY = {aXx + bYi i >

k=—00"

Then § is a vector space.
For any given positive integers p and T, E,, is defined as a subspace of S by

Ep ={Xe S|Xk+2pT = Xi,Vk € Z}.

E,, can be equipped with the inner product (X,Y) and norm |X|| as follows,

pT—1
X, YV)= Y XY, VX YeEE,
j=—pT
and )
pT—1 2
IXI= X | , ¥XeE,,
j=—pT

where | - | denotes the Euclidean norm in R™, and X; - Y; denotes the usual scalar product in R™.
Define a linear map M : E, — R**™T by

*

MX = (X_p1a, -, Xpro1,, XopT2  , XpTo12, s XpToms - XpT—1,m) & (2.1)

where X = {Xy}, Xk = (Xk,lek,Zr' .- /Xk,m)* , ke Z(—‘pT,”pT —1).

It is easy to see that the map M defined in (2.1) is a linear homeomorphism with ||X|| = [MX|, and
(Ep, (-, -)) is a Hilbert space, which can be identified with RZPmT,

For all X € E,, define the functional ] on E, as follows:

pT—1 n pT—1 pT—1

1 1
JIX) =5 DD i (Xt A+ Xieqt) Xic + 5 > oxeXieP= > F X, e, X
k=—pT i=0 k=—pT k=—pT

Since E,, is linearly homeomorphic to R*™T, J can be viewed as a continuously differentiable func-
tional defined on a finite dimensional Hilbert space. That is, | € Cl(Ep, R). Furthermore, J/(X) = 0 if and
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only if
0J(X)
an,1

If we define X_,1 := X7, then forall L € Z(1,m), k € Z(—pT,pT —1),

=0,leZ(1,m),k € Z(—pT,pT —1).

0J(X)
X1

n

=3 miXein A Xir 1) +x0Xi0 — fulk Xiyr, -+, Xie, -+, Xier).
i=0

Therefore, X € E,, is a critical point of ], i.e., ]'(X) = 0 if and only if

n
Z Ti(kai,l + XkJri,l) +Xka,1 = fl(k/ Xk+F; e /Xk/ T /kar)/l € Z(ll m)/ k € Z(_pT/pT - 1)
i=0
That is,
n
Z Ti(Xk—1 + Xieri) + XXk = f(k, Xeqr, -+, Xy, -+, Xk—r), k € Z(—pT,pT —1).
i=0
On the other hand, {Xx}xcz € Ep is 2pT-periodic in k and f(k, Yr,---, Yy, -+, Y_r) is 2pT-periodic in
k. So X € E,, is a critical point of ] if and only if

n

D Xt Xiept) +x0Xk =k, Xier, -+, X, -+, Xieor), Vk € Z.
i=0

Thus, we reduce the problem of finding 2pT-periodic solutions of (1.1) to that of seeking critical points of
the functional ] in E,. For all X € E, J can be rewritten as

pT—1 pT—1

1 1 ,
J(X) = —§<DMX, MX) + 5 k_ZpTXk Xk |” — k_ZpTF(k, Xisr, o+, Xk), (2.2)

where X = {Xi} € Ep, Xk = (X1, Xi2,- - ,Xk,m)* ,k € Z(—pT,pT —1), and

P 0
P

D= ,

0

2pmTx2pmT

2r 11 T2 -+ Th1 Tn 0 o .- 0 Th Tn-1 -+ To T

T 2rg T1 -+ Thn—2 Tn—1 Tn o --- 0 0 Th - T3 T2

TR, T 2r9 -+ Th-3 Th-2 Thn-1 Tn --- 0 0 0 e Ty T3
—P=

To T3 T4 - 0 0 0 0 Th  Th-1 Tn-2 --- 219 T1

TN T, T3 -+ T 0 0 0O -+ Th1 Tno Th3 --- T1 219
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is a 2pT x 2pT matrix. Assume that the eigenvalues of P are Aj, Ay, -, AT, and P is a circulant matrix [12]
denoted by
P = CirC {_2T0/ —T1,— T2, ,—Tn, 0/ Tty 0/ —Tn,Tn-1,""",—T2, _Tl} .

By [10], the eigenvalues of P are

n jme n .jﬂ 2pT—s n jSﬂ
Aj = =219 — Z T {exp lpT} — Z T {exp lpT} =2 Z T COS <pT> , (2.3)

s=1
where j =1,2,---,2pT. By (2.3), we know that

n n
—2r9—2) [l <A <-2r0+2) Il j=12,---,2pT.
= s=1

It follows from (r) that A; > 0 for all j € Z(1,2pT). Denote
Amax = max {Aj[A; #0,j =1,2,---,2pT}. (2.4)

Let E be a real Banach space, and | € CYE,R),ie, Jisa continuously Fréchet-differentiable functional
defined on E. ] is said to satisfy the Palais-Smale condition (PS condition for short) if any sequence
{xm) }neN C E for which {J (X(™)) }neN is bounded and ]’ (X(™)) — 0 (n — oo) possesses a convergent
subsequence in E.

3. Main lemmas

In order to apply critical point theory to study the existence of a nontrivial homoclinic orbit of (1.1),
we shall state some lemmas, which will be used in the proofs of our main results.
Let B, denote the open ball in E about 0 of radius p and let 0B, denote its boundary.

Lemma 3.1 (Mountain pass lemma [16, 18]). Let E be a real Banach space and | € CY(E, R) satisfy the PS.
condition. If J(0) = 0 and

(J1) there exist constants p, o > 0 such that J|ap, > «, and
(J2) there exists e € E\ By, such that J(e) < 0,

then ] possesses a critical value ¢ > « given by

c= guég srggﬁ]l(g(s)), (3.1)
where
Y ={g € C([0,1],E)[g(0) =0, g(1) = e}. (3.2)

Lemma 3.2. Assume that T > 2n+1, (r) and (F1)-(Fs) are satisfied. Then | satisfies the P.S. condition.

Proof. Let {X(™)} _ C E, be such that {J (X™))} _ is bounded and J’ (X(™) — 0 as n — oo. Then
there exists a positive constant K such that —K <] ( ) By (F}), we have

2 % 2 Pl 2 2
3l = 2 fe (el e ) o
k=—pT

< P“z‘ +’§—(r+1)c] Hx(“>H2+2pT(C—b).

K< (X(“)> < 7\n21ax

Therefore,

[(F+1)c— A _ ﬂ x| <2pT(c—0) 4k (33)

Since ¢ > Xfrr}jf‘fx (3.3) implies that {X n } eN 18 bounded in E,. As a consequence, it has a convergent
subsequence. O
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Lemma 3.3. Assume that T > 2n+1, (r) and (F1)-(Fs) are satisfied. Then for any given positive integer p, (1.1)
possesses a 2pT-periodic solution XP) € E,,.

Proof. In our case, it is clear that J(0) = 0. By Lemma 3.1, | satisfies the P.S. condition. By (F»), we have

X Pt X X
102 ZIXIP=a Y (KierP 4o+ X)) = ZIXI2 = alr+ DX = |Z = a(M+1)] X2
k=—pT
Taking & = [% —a(l"+ 1)} p? > 0, we obtain

J(X)loB, = o >0,

which implies that | satisfies the condition (J;) of the mountain pass lemma.
Next, we shall verify the condition (J2).
There exists a sufficiently large number ¢ > max{p, p} such that

A
[(F+1)c— f; —% €2 > |bl. (3.4)

Letd € E;, and

g, ifk=0,
0, fke{jeZ:—pT <j<pT—1andj#0},

o {

e, ifk=0,
19k+r={ 0

ifke{jeZ: —pT <j<pT—1andj+#0}L

~

Then
(0131"' /8)/ lszol

F
F(k,8k+r,---,ﬁk)—{ 0, ifke{jeZ:—pT <j<pT—1landj#0}

With (3.4) and (F3), we have

pT—1 pT—1

1 1
J®) = —5 DM, M)+ 2 3 Xl = 3 Flkdepr, o, 0)
k=—pT k=—pT
Amm 2 X 2 2
< =EIRIP + SI917 — (M +1)e|9)* b
Anmx X 2
= — —_— _—— _ < .
T+ 1)c > 2]5 b<0

All the assumptions of the mountain pass lemma have been verified. Consequently, ] possesses a
critical value ¢, given by (3.1) and (3.2) with E = E,, and ¥ = V', where

Tp = {gm € C([0,1], Ep)|9p(0) =0, 9]9(1) =99 € Ep\Be}-
Let X(P) denote the corresponding critical point of ] on E,. Note that ||X!P)|| # 0 since ¢}, > 0. O

Lemma 3.4. Assume that T > 2n+1, (r) and (F1)-(Fs) are satisfied. Then there exist positive constants p and 1
independent of m such that

p< |X®|| <. (3.5)
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Proof. The continuity of «F (t,Yr,---,Y Z F2 +rai(t Yr, oo+, Yo)Y_; with respect to the variable from

Yr to Yy implies that there exists a constant T > 0 such that [F (t, Yr,- -, Yp)| < 7 for \/|Yr|2 + VP < )
It is clear that

T-1 pT—1
l p
(p) _ - - _
I(Xp)<0?321 5 (DM(s9), M(s9)) + k—EpTXk| (s9)1? k_}pTF (9)kar, -, (s9)K)
A % A
< ( Hm;%_X)HSHZ%_T::( nm;*‘X)E T+

Let & = %ﬂaz + T, we have that | (X(T’)) < &, which is independent of p. From (2.2), we have

1 pT—1 0 pT—1

I (X(P)) = E Z Z F£+F+i (k—i_ilxl(gir)FJril’ o /X](Jir)l) X]Ep) - Z F (k/X](er)r/' o ,X]((p))
k=—pTi=-T k=—pT
pT—1 pT—1
)
k——pT i=—T k=—pT
By (F4) and (Fs), there exists a constant 1 > 0 such that for all t € R and /|[Yr2+- - +[Yo]2 = n,
0
Z F£+F+i(t+ i,YF/ e /YO)Yfi _2F(ter/ e ,Y()) > Ev
i=—T
which implies that ‘X](f)‘ <nforallteR,thatis HX(T’) HOO < M. From the definition of |, we have
pT—1 pT—1 0
0= <], (X(p)> > X Z ‘X ) Z Z Fé+r+i (kJri/Xl(j;)FH" o ’Xl(f!—)i) Xl(cp)
k=—pT k=—pTi=—T
pT—1 T 1 0
- y(p) (p) (p)
=X Z ‘X ) - Z Foirii <k+1ka1rf“' XiE )ka—i‘
k=—pT k=—pTi=—T
Therefore, combined with (F,), we get
5 pT—1 0
XHXMH < 2 D Fhrw (k+i,X](fi)r,--- fX1(<p)> X7
k=—pTi=—T
0 pT—1 ) 2
< 3 'E P teroxti e)f] el
i=—T [k=—pT
That is,
1
0 pT—1 : 2
(p) : v (p) (p)
(X < 5T [Fored (kX0 X0
i=—T | k=—pT
Thus,
iy 2
2 0 pT—1 » 2
X< X | X (ki xP o X)) E (36)
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Combined with (F), we get

Nl—

0 pT—1

2
P < 34 Y [2axifhg
i=T | k=—pT

2 2
} <4(r+1)2a2Hx(P)H .

Thus, we have X(P) = 0. But this contradicts HX“’) H = 0, which shows that
[x™ =
o 4

and the proof of Lemma 3.3 is finished. O

4. Proof of the main results
Now, we shall finish out main results by using the critical point method.

Proof of Theorem 1.1. In the following, we shall give the existence of a nontrivial homoclinic orbit.

Consider the sequence {X]((p) }kEZ of 2pT-periodic solutions found in Lemma 3.3. First, by (3.5), for

any p € N, there exists a constant k,, € Z independent of p such that

X2 > . (4.1)

Since xx and f(k,Yr,---,Yo,---,Y_r) are all T-periodic in k, {X](gir)jT} (Vj € N) is also 2pT-periodic
solution of (1.1). Hence, making such shifts, we can assume that k, € Z(0,T —1) in (4.1). Moreover,
passing to a subsequence of ps, we can even assume that k,, = kg is independent of p.

Next, we extract a subsequence, still denote by X such that

XP) 5 Xy, p— o0, VR € Z

Inequality (4.1) implies that [Xy,| > & and, hence, X = {Xi} is a nonzero sequence. Moreover,

n

Zri(xkq + X)) FxaeXe — Tk, Xear, o+, X, o0, Xet)

i=0
- (p) (p) (p) (p) (p) (p)
1=

So X = {Xy} is a solution of (1.1). Finally, for X;, € E,,, let

r+1
r+1 "

vIi+1
F+1

Rp—{keZ:‘X](f))< pTgkng—1},

sp:{kez:‘xfj’)p p,—pTgkng—l}.

Since F(t,Yr, -+, Yp) € CHR"2 x R™, R), there exist constants & > 0, & > 0 such that

0 2

0
min{ Z Foirpi(k+14,Yr, o, Yo) Yoy —F(k, Yr, -+, Yo) 1 p < \/|Yr|2+~-'+|Yo|2 <n ke Z} > &,
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For k € Ry,

Thus,

HX(F ) HZ < 3 .
(z_, [XZ —4(] + 1)2(12]
FOI‘ any fixed D € Z and p large enough, we have that

I R =

o CELE A 1Re]
Since &, &, &, x and a are constants independent of p, passing to the limit, we have that

D
Z X P < &&

o & [x? — 4 +1)%a?)

Due to the arbitrariness of D, X satisfies Xj. — 0 as |k| — oco. The existence of a nontrivial homoclinic orbit
is obtained.

O
Proof of Theorem 1.5. Consider the following boundary problem

mn

> Ti(Xk—i + Xiepi) + XXk = flk, Xieqr, -+, Xy, -, Xk—r), k€ Z(—pT,pT),
izo
Y—pT =YpT =0, X—pT =XpT =0, Y-k =Yk, Xk =Xk, k€ Z(=pT,pT).
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Let S be the set of sequences X = (---,X_y, -+, X_1,X0, X1, , Xy, -+ ) = {Xk}{fiofoo, where Xy, =

(X1, X2,

-, Xkm) € R™ Forany X,Y € S, a,b € R, aX+ bY is defined by

aX+bY :={aXx + bV }>® .

Then S is a vector space. For any given positive integers p and T, E,, is defined as a subspace of S by

Ep ={X e SIX_x =Xy, Vk € Z}.

E, can be equipped with the inner product (X, Y) and norm ||X|| as follows,

and

pT
XY= > XY, VXY ebpr,
j=—pT
pT 2
2 ~
IXI={ > IX]7] . ¥XekEpr,
j=—pT

where |- | denotes the Euclidean norm in R™, and X; - Yj denotes the usual scalar product in R™. It is
obvious that E,, is linearly homeomorphic to R?P™ 1,

The techniques of the proof of Theorem 1.5 are just the same as those carried out in the proof of
Theorem 1.1. For simplicity, we do not repeat them here. O
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