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Abstract

This paper studies optimal tracking performance issues for linear time invariant system with two-channel constraints. The
specific problem under consideration is quantization for up-link and down-link communication channel which satisfies some
constraints. Logarithmic quantization law is employed in the quantizers. The tracking performance is defined in an square
sense, and the reference signal under consideration in this paper is a step signal. The system’s reference signal is considered
as a step signal. The tracking performance is measured by the minimum mean square error between the reference input and
the system’s output. By using dynamic programming approach, discrete-time algebraic Riccati equation (ARE) is obtained. The
optimal tracking performance is obtained by output feedback control, in terms of the space equation of the given system and the
unique solution of the discrete-time algebraic Riccati equation. And, the impact of quantizer for optimal tracking performance
is analyzed. Finally, simulation example is given to illustrate the theoretical results. c©2017 All rights reserved.
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1. Introduction

In recent years, more and more researchers are interested in networked control systems (NCSs), for
example [2, 3, 10, 15, 20, 21, 24, 25, 27], and references therein. The most problems under consideration
focus on how to model the networked control system and stabilization analysis with quantization effects
[9, 16, 22], time delays [9, 13, 14, 28], bandwidth constraint [5, 6, 19], and signal-to-noise ratio (SNR)
constraint [4, 7, 17, 18] over the communication channels. These studies investigate mostly the problem
of stability analysis and stabilization for networked control systems. However, from the angle of applica-
tion, only considering the stability of the networked control system is not enough, the performance of the
networked control system should also be considered. A poor performance may deteriorate stability of the
system, and even make the system unstable. Therefore, the study is necessary and urgent on NCSs. At

∗Corresponding author
Email address: ninggui@gmail.com (Ning Gui)

doi:10.22436/jnsa.010.04.47

Received 2016-07-11

http://dx.doi.org/10.22436/jnsa.010.04.47


C.-Y. Chen, et al., J. Nonlinear Sci. Appl., 10 (2017), 1873–1880 1874

present, many issues of optimal control performance under such network environment remain challeng-
ing for us, such as optimal attainable tracking performance of networked control systems in terms of the
key factors of the communication channel.

In recent years, most works for the performance limitation of NCS are investigated communication
network with channel noise, signal-to-noise ratio (SNR) constraints, packet loss, bandwidth constraint,
and delay time. For instance, in [18], SNR fundamental limitations are investigated for discrete-time
single-input and single-output (SISO) NCSs. A tight condition of communication SNR is obtained for
the linear time invariant output feedback stabilization of a discrete-time. In [26], the optimal tracking
problem is studied for SISO discrete-time systems over communication channel with network-induced
delay in the feedback path. In [23], the problem of optimal tracking performance for SISO discrete-time
NCSs with packet dropouts and channel noise is studied. [11] focuses on two kinds of network parameters
for bandwidth and additive colored white Gaussian noise (ACGN), the optimal tracking performance are
obtained for multi-input-multi-output (MIMO) NCSs. In [12], the stabilization and tracking performance
issues are investigated for MIMO control system over additive white noise channels.

In this paper, optimal tracking performance issues are investigated for linear time invariant discrete-
time system with quantized input and output. We are interested in the intrinsic limit on the tracking
performance achievable via feedback. The tracking performance under consideration amounts to de-
termine the minimal tracking error between the system output and the reference signals of a feedback
system by output feedback stabilizing compensators. And, the tracking performance is defined in an
square sense, and the reference signals under consideration are step signals. The quantization is con-
sidered in up-link and down-link communication channel. Logarithmic quantization law is employed in
the quantizers. By using dynamic programming approach, discrete-time ARE is obtained. The optimal
tracking performance is obtained by output feedback control, in terms of the space equation of the given
system and the unique solution of the discrete-time ARE.

The notation used throughout this paper is fairly standard. For any complex number, denote its
transpose by (·)T , and its Moore-Penrose pseudo inverse by (·)†. Denote the expectation operator and the
variance operator by E{·} and D{·}, respectively.

2. Preliminaries and problem statements

We consider control over a communication link as illustrated in Fig. 1., where the sensor and plant are
connected through a network, in which quantizer maybe be necessary and channel noise may also exist,
as depicted in Fig. 1.

Figure 1: Feedback control over communication channels.

In Fig. 1., G(z) denotes the plant that should be controlled, Q denotes the quantizer, K denotes
the controller, and K0 denotes the steady state part of the controller K. This steady state control signal
and steady state system’s output signal are transmitted to the plant G and the controller K through the
network with a sufficient accuracy at the initial time and are held by the storage S1 and S2, respectively.
u and y denote output signal of the controller and the plant, respectively. us and ys denote the steady



C.-Y. Chen, et al., J. Nonlinear Sci. Appl., 10 (2017), 1873–1880 1875

state part of the control signal u and the system output y, respectively. ut and yt are the transient part of
the control signal u and the system output y, which are quantized by the quantizer Q1 and Q2. uq and
yq are the system quantized control signal and the system quantized output signal, respectively.

The reference signal under consideration in this paper is a step signal, i.e.,

r(k) =

{
r0, for k = 0, 1, 2, · · · ,
0, for k < 0,

where the magnitude r0 of the reference signal is random variable with zero mean and variance σr.
We consider a logarithmic quantization law of the quantizer Q1 and Q2 as [8], in which ut,yt and

utq,ytq are the input and output of quantizers Q1 and Q2, respectively, and have{
utq(k) = Q1(ut(k)) = ut(k) + ut(k)w1(k),
ytq(k) = Q2(yt(k)) = yt(k) + yt(k)w2(k),

where w1(k) and w2(k) are quantization error, and it holds that δ1 = (1 − ρ1)/(1 + ρ1) and δ2 = (1 −
ρ2)/(1 + ρ2) where ρi, i = 1, 2, (0 < ρ1, ρ2 < 1) are the quantization density. We assume that the quan-
tization errors processes w1(k1) and w1(k2) are uncorrelated for any k1 6= k2. The quantization errors
processes w2 have the same assumptions, and w1(k1) and w2(k1) are also uncorrelated. Furthermore, for
any k1 and k2, it holds that

E{w1(k1)w1(k2)} =

{
σ2

1, k1 = k2,
0, k1 6= k2,

E{w2(k1)w2(k2)} =

{
σ2

2, k1 = k2,
0, k1 6= k2,

where σ1 and σ1 are the variances of w1 and w2, respectively. Additionally, the reference signal r(k1) and
quantization errors w1(k2) and w2(k3) are uncorrelated for any kl,k2 and k3.

Lemma 2.1 ([1]). Let matrices F = FT , H, and G = GT be given with appropriate sizes. Consider the following
quadratic form

q(x,u) = E{xTFx+ xTHu+ uTHx+ uTGu},

where x and u are random variables defined on a probability space (Ω, B,P). Then the following conditions are
equivalent:

(i) G > 0 and H(I−GGT ) = 0;
(ii) there exists a symmetric matrix S = ST such that inf

u
q(x,u) = E{xTSx} for any random variable x.

Assume that the plant is strictly proper and has a state space representation:{
x(k+ 1) = Ax(k) +Buq(k),
y(k) = Cx(k) +Duq(k),

where x(·) is the system state with initial value x(0)=0, u(·) is the control input, y(·) is the system output,
and assume that (A,B) is stabilizable, (A,C) is observable. Noting Fig. 1, we have

uq(k) = us(k) + utq(k) = us(k) + ut(k) + ut(k)ω(k) = u(k) + ut(k)ω(k).

Thus, the system in tracking performance problem is{
x(k+ 1) = Ax(k) +Bu(k) +Butω1(k),
y(k) = Cx(k) +Du(k) +Dutω1(k).

(2.1)
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Denote the steady state values of the input, output, and state by us,ys, and xs, respectively. The
transient part of the control input and the system’s state be denoted by ut := u− us, xt := x− xs and
yt := y− ys, respectively. The random variables ω1(k), ω2(k) are defined on a given probability space
(Ω, F,p). Owning to y(k) = ys+yt(k), when the system achieves asymptotically tracking, the steady state
value of the output ys = y(∞), and the transient parts of the system’s output variable value is equal to
yt(∞) = 0. Thus, the steady state value ys of the system’s output is equal to magnitude of the reference
signal. The homeostatic control us and status xs must satisfy equations{

xs = Axs +Bus,
ys = Cxs +Dus.

So, we have 
xs =

(I−A)−1Br

C(I−A)−1B+D
,

us =
r

C(I−A)−1B+D
.

(2.2)

From (2.1), we can get the following equations:{
xt(k+ 1) = Atx(k) +But(k) +But(k)ω1(k),
yt(k) = Cxt(k) +Dut(k) +Dut(k)ω1(k).

(2.3)

3. Optimal tracking performance

The performance index of the discrete-time networked control systems is defined as

J = lim
N→∞ inf

ui∈Uad

J(u0,u1, · · · ,uN−1) = inf
ui∈Uad

E

∞∑
k=0

[r− y(k)]2. (3.1)

The admissible controller set Uad is the set of all such controllers. The tracking problem under considera-
tion is to find a controller sequence (u0,u1, · · · ,u∞) that minimizes J over Uad. And the control sequences
u0,u1, · · · ,u∞, (ui ∈ Rn) are defined on a given probability space (Ω, F,p).

From the system (2.3), performance index (3.1) can be turned to

J = inf
ui∈Uad

E
{ ∞∑

k=0

[Cxt(k) +Dut(k) +Dut(k)ω1(k)]
2
}

.

The optimal tracking performance is given as following theorem.

Theorem 3.1. For given discrete-time NCSs as depicted Fig. 1, considering the plant (2.3), optimal tracking
controller can be designed as

u∗ =−
1

1 + σ2
1
[BTPB+DDT ]−1[BTPA+CDT ]C†yq

1
1 + σ2

1
[BTPB+DDT ]−1[BTPA+CDT ]C†r

+
r

C(I−A)−1B+D
.

The optimal performance under uplink and downlink channels with quantization are given by

J∗ =
BT (I−AT )−1

BT (I−AT )−1CT
P

(I−A)−1B

C(I−A)−1B
σ2
r,

where, P is the unique solution of discrete-time ARE

P = CTC+ATPA−
(1 + σ2

2)

(1 + σ2
1)

[
ATPB+DCT

](
BTPB+DDT

)−1[
BTPA+CDT

]
.
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Proof. Consider the following performance index:

JN = E

N∑
k=0

[Cxt(k) +Dut(k) +Dut(k)ω1(k)]
2,

and let Vj = JN − Jj−1, (j ∈ 1, · · · ,N). Then

VN =JN − JN−1

=E[Cxt(N) +Dut(N) +Dut(N)ω1(N)]2

=E
{
xTt (N)CTCxt(N) + xt(N)TCTDut(N) + uTt (N)DTCxt(N) + (1 + σ2

1)ut(N)TDTDut(N)
}

.

Following Lemma 2.1, we have

inf
ui∈Uad

VN = E[xTt (N)PN(N)xt(N)], (3.2)

where PN(N) is a symmetric matrix. From equations (2.1) and (3.2), we have

inf
ut(N)∈Uad

VN =E[xTt (N)PN(N)xt(N)]

=xTt (N− 1)ATPN(N− 1)Ax(N− 1) + uTt (N− 1)BTPN(N− 1)Ax(N− 1)

+ xTt (N− 1)ATPN(N− 1)But(N− 1) + xTt (N− 1)ATPN(N− 1)But(N− 1)

+ (1 + σ2
1)u

T
t (N− 1)BTPN(N− 1)But(N− 1).

Then, we have

VN−1 =JN − JN−2

=(JN − JN−1) + (JN−1 − JN−2)

=VN + (JN−1 − JN−2)

=E
{[
Cxt(N− 1) +Dut(N− 1) +Dut(N− 1)ω1(N− 1)

]2}
+ VN

=E
{
xTt (N− 1)[CTC+ATPN(N− 1)A]xt(N− 1)

+ xTt (N− 1)[ATPN(N− 1)B+CTD]ut(N− 1) + uTt (N− 1)[BTPN(N− 1)A+DTC]xt(N− 1)

+ (1 + σ2
1)u

T
t (N− 1)[BTPN(N− 1)B+DTD]ut(N− 1)

}
+ VN − inf

ui∈Uad

VN

=E
{
xTt (N− 1)PN(N− 1)xt(N− 1)

+ (1 + σ2
1)[ut(N− 1) +Kt(N− 1)ytq(N− 1)]T [BTPN(N)B+DDT ][ut(N− 1)

+Kt(N− 1)ytq(N− 1)]
}
+ VN − inf

ui∈Uad

VN,

where

PN(N− 1) =CTC+ATPN(N)A−
1 + σ2

2

1 + σ2
1
CTKT

t (N− 1)[BTPN(N)B+DDT ]Kt(N− 1)C, (3.3)

Kt(N− 1) =
1

1 + σ2
1
[BTPN(N)B+DDT ]−1[BTPN(N)A+CDT ]C†. (3.4)

Thus, the following result can be obtained

inf
ui∈Uad

VN−1 =E
{
xTt (N− 1)PN(N− 1)xt(N− 1) + (1 + σ2)[ut(N− 1) +Kt(N− 1)ytq(N− 1)]T

× [BTPN(N)B+DDT ][ut(N− 1) +Kt(N− 1)ytq(N− 1)]
}

.
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Therefore, when equations (3.3) and (3.4) are satisfied, we have

inf
ui∈Uad

VN−1 = E{xT (N− 1)PN(N− 1)x(N− 1)}.

We use the same treatment process, we can obtain

PN(j− 1) =CTC+ATPN(j)A− (1 + σ2
1)(1 + σ2

2)C
TKT

t (j− 1)[BTPN(N)B+DDT ]Kt(j− 1)C,

Kt(j− 1) =
1

1 + σ2
1
[BTPN(j)B+DDT ]−1[BTPN(j)A+CDT ]C†.

Accordingly, we have
inf

ui∈Uad

Vj−1 = E[xT (j− 1)PN(j− 1)x(j− 1)],

where j = 2, · · · ,N− 1. It is implied that when

ut(j) = −Kt(j)ytq(j),

the cost function obtains the minimum. Therefore, the optimal tracking performance for system (2.3) is
given by

J∗N = inf
ui∈Uad

V1 = E{xTt (0)PN(0)xt(0)}, (3.5)

where PN(0) > 0 is solution of the following discrete-time infinite ARE

PN(j− 1) =CTC+ATPN(j)A−
(1 + σ2

2)

(1 + σ2
1)

[
ATPN(j)B+DCT

]
(BTPN(j)B+DDT )−1

[
BTPN(j)A+CDT

]
.

Thus, we know that the discrete-time finite ARE

PM(j− 1) = CTC+ATPM(j)A−
(1 + σ2

2)

(1 + σ2
1)

[
ATPM(j)B+DCT

]
(BTPM(j)B

+DDT )−1
[
BTPM(j)A+CDT

]
, (3.6)

has a unique solution PM(k) > 0,k ∈ {0, 1, · · · ,M}. It is obvious that PM(k) = PM−k(0). If the output of
system (2.1) asymptotically tracks the reference signal, the corresponding tracking performance limitation
must exist, namely, PM(0) in equation (3.6) must exist, and

lim
M→∞PM(0) = lim

M→∞PM−k(0) = lim
M→∞PM(k) = P

exists, and

lim
j→∞Kt(j− 1) =

1
1 + σ2

1
[BTPB+DDT ]−1[BTPA+CDT ]C† , K∗t .

Therefore, the discrete-time ARE can be converted to the following ARE

P = CTC+ATPA−
(1 + σ2

2)

(1 + σ2
1)

[
ATPB+DCT

](
BTPB+DDT

)−1[
BTPA+CDT

]
.

Noting equation (3.5) and the fact that x(0) = 0 and

xt(0) = x(0) − xs = −xs,
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therefore

J∗ = lim
N→∞ J∗N = E{xTsPxs}.

Noting the equation (2.2), the minimum tracking performance for system (2.3) can be given by

J∗ =
BT (I−AT )−1

BT (I−AT )−1CT
P

(I−A)−1B

C(I−A)−1B
σ2
r.

Additionally, we have

u∗ = u∗t + us = −
1

1 + σ2
1
[BTPB+DDT ]−1[BTPA+CDT ]C†yq

+
1

1 + σ2
1
[BTPB+DDT ]−1[BTPA+CDT ]C†r+

r

C(I−A)−1B+D
.

Thus, the proof is completed.

4. Conclusion

In this paper, the best attainable tracking performance of networked control systems in tracking step
signal has been discussed for linear time-invariant unstable plants using output feedback control. By
using dynamic programming approach, discrete-time algebraic Riccati equation (ARE) is obtained. Then
the best attainable tracking performance is obtained, in terms of the space equation of given system and
the unique solution of the discrete-time ARE.
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