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Abstract

In this paper, we introduce and analyze a composite relaxed extragradient viscosity algorithm for solving the triple hier-
archical variational inequality problem with the constraint of general system of variational inequalities in a real Hilbert space.
Strong convergence of the iteration sequences generated by the algorithm is established under some suitable conditions. Our
results improve and extend the corresponding results in the earlier and recent literature. (©)2017 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product (:,-) and norm | - ||. Let C be a nonempty closed
convex subset of H. Let S : C — H be a nonlinear mapping on C. We denote by Fix(S) the set of fixed
points of S and by R the set of all real numbers. A mapping S: C — H is called L-Lipschitz continuous if
there exists a constant L > 0 such that

[Sx = Sy[| < Lix—yl, vxyeC

In particular, if L =1 then S is called a nonexpansive mapping; if L € [0,1) then S is called a contraction.
Let A : C — H be a nonlinear mapping on C. The classical variational inequality problem (VIP) is to

find x € C such that
(Ax,y—x) =0, WwyeC. (1.1)

The solution set of VIP (1.1) is denoted by VI(C, A).
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We now recall that the metric (or nearest point) projection from H onto C is the mapping Pc : H — C
which assigns to each point x € H the unique point Pcx € C satisfying the property

—Pex| = inf ||x —y|| = d(x, C).
[[x —Pcx|| ylgCHx y|| (x,C)

If A is a strongly monotone and Lipschitz-continuous mapping on C, then VIP (1.1) has a unique
solution. In order to solve (1.1), Korpelevich [16] proposed the following extragradient algorithm in
Euclidean space R™:

Yk = Pclxx — TAXy),

Xk+1 = Pc(xx —TAyYx), Vk=0.
The VIP and Korpelevich’s extragradient method have received so much attention, see e.g., [2, 6-8, 29, 30]
and references therein.

Let A:C — Hand B: H — H be two mappings. Consider the following bilevel variational inequality
problem (BVIP).

Problem 1.1. Find x* € VI(C, B) such that
(Ax*,x —x*) >0, Vx e VI(C,B),
where VI(C, B) is the set of solutions of the VIP of finding y* € C such that

(By*,y—y*) >0, vyeC.

Note that Anh et al. [1] studied the above BVIP with H = R™. BVIP includes the classes of math-
ematical programs with equilibrium constraints ([18]), bilevel minimization problems ([23]), variational
inequalities ([3, 31, 32]) and complementarity problems as special cases. It is worth pointing out that the
BVIP is quite different from other types of variational inequality problems considered in the very recent
literature, see e.g., [9, 10, 21, 22].

In what follows, suppose that A and B satisfy the following conditions:

(C1) B is pseudomonotone on H and A is (3-strongly monotone on C;
(C2) A is Ly-Lipschitz continuous on C;

(C3) B is Ly-Lipschitz continuous on H;

(C4) VI(C,B) # 0.

In 2012, Anh et al. [1] introduced the following extragradient iterative algorithm for solving the above
bilevel variational inequality.

Algorithm 1.2 ([1]). Initialization. Choose u € R™, xp € C,0 < A < positive sequences {dv}, (A},

LZ/

{ou}{Br}, {vi), and (&} such that lim 8, = 0,) & < oo, o + P +vk = 1 Vk > O,Zock = oo,
k—o0 b
. _ . _ 1 . _ 1
]}Lr}rgoak—O,gl_r)r;oBk—Ee (0,51, kh_r)r;o?\k—Oand?\k <4 for all k > 0.
Step 1. Compute Yy := Pc(xx — AxBxy) and zy := Pc(xy — AxByxk).
Step 2. Inner loop j =0, 1, .... Compute

Xk,0 ‘= Zk — }\AZk,

Yk,j = Pc(xx,; — 8;Bxx j),

Xk,j+1 = 05Xk, 0 + Bjxkj +vViPc(xk,; — 8Byx ;).

If ||xkj+1 — Pvi(c,B)XKk0ll < € then set hy :=xy ;41 and go to Step 3.

Otherwise, increase j by 1 and repeat the inner loop Step 2.
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Step 3. Set X111 = xxu+ Bixi + Ykhi. Then increase k by 1 and go to Step 1.

Furthermore, in [13, 14], liduka introduced the following three-stage variational inequality problem,
that is, the following monotone variational inequality with variational inequality constraint over the fixed
point set of a nonexpansive mapping.

Problem 1.3 ([14, Problem 3.1]). Assume that

(i) T:H — H is a nonexpansive mapping with Fix(T) # 0;

(ii) Aq:H — His a-inverse strongly monotone;
(iii) A2 : H — His B-strongly monotone and L-Lipschitz continuous;
(iv) VI(Fix(T), A1) # 0.

Then the objective is to
find x* € VI(VI(Fix(T), A1), Ag) := {x* € VI(Fix(T), A1) : (Ax*,v—x") > 0,¥v € VI(Fix(T), A1)}

Since this problem has a triple structure in contrast with bilevel programming problems ([18, 20]) or
hierarchical constrained optimization problems or hierarchical fixed point problem, it is referred to as
a triple hierarchical variational inequality problem (THVIP). Very recently, some authors continued the
study of liduka’s THVIP (i.e., Problem 1.3 and its variant and extension; see e.g., [6, 33]).

For solving Problem 1.3, liduka presented the following algorithm.

Algorithm 1.4 ([14]). Let T: H - Hand A; : H — H (i = 1,2) satisfy the assumptions (i)-(iv) in Problem
1.3.

Step 0. Take {ouc 2o, (AR C (0,00), and n > 0, choose xg € H arbitrarily, and let k := 0.

Step 1. Given x € H, compute xx 1 € H as

Yk = T(xx — AkArxi),
Xk+1 ‘= Yk — HotkA2Yxk.

Update k := k+1 and go to Step 1.

On the other hand, let F{,F, : C — H be two mappings. Consider the following general system of
variational inequalities (GSVI) of finding (x*,y*) € C x C such that
(viFiy* +x* —y*,x—x*) >0, V¥xeC(, (12)
(voFox* +y*—x*,y—y*) >0, VvyeC, ‘

where v; > 0 and v, > 0 are two constants. The solution set of GSVI (1.2) is denoted by GSVI(C, Fy, F,).
Recently, many authors have been devoting the study of the GSVI (1.2); see e.g., [3, 7, 27] and the references
therein.

In particular, if F; = Fo = A, then the GSVI (1.2) reduces to the new system of variational inequalities
(NSVI), which was defined by Verma [25]. Further, if x* = y* additionally, then the NSVI reduces to the
classical VIP (1.1). In 2008, Ceng et al. [7] transformed the GSVI (1.2) into the fixed point problem of the
mapping G = Pc(I —vi1F)Pc (I —vaFp), that is, Gx* = x*, where y* = Pc (I — voF2)x*. Throughout this
paper, the fixed point set of the mapping G is denoted by GSVI(G).

In 2010, Yao et al. [27] introduced a relaxed extragradient algorithm for finding a common element of
the solution set of the GSVI (1.2) and the fixed point set of a strictly pseudocontractive mapping T: C — C,
and derived the strong convergence of the proposed algorithm to a common element under some mild
conditions.

In this paper, we introduce and analyze a composite relaxed extragradient viscosity algorithm for
solving the triple hierarchical variational inequality problem (THVIP) with the constraint of general sys-
tem of variational inequalities in a real Hilbert space. The proposed algorithm is based on Korpelevich’s
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extragradient method [16], Mann’s iteration method [2] and composite viscosity approximation method
[5]. Under some suitable conditions, the strong convergence of the iteration sequences generated by the
algorithm is established. Our results improve and extend the corresponding results announced by some
others, e.g., liduka [14], Zeng et al. [33], Anh et al. [1], and Yao et al. [27].

2. Preliminaries

Throughout, denoted the weak w-limit set of the sequence {xx} by w,,(xx), i.e.,
Wy (x1c) :={x € H : xx, — x for some subsequence {xy,} of {xy}}.

Definition 2.1. Recall that a mapping A : C — H is called

(i) monotone if (Ax—Ay,x—y) >0, Vx,yeC;
(ii) n-strongly monotone if there exists a constant 1 > 0 such that (Ax — Ay, x—y) > n|[x—y|%, VYx,ye€
G
(iii) a-inverse-strongly monotone if there exists a constant « > 0 such that

(Ax — Ay, x —y) > af|Ax — Ay|]>, Wx,yeC.
Some important properties of projections are gathered in the following proposition.

Proposition 2.2 ([26]). For given x € Hand z € C:

(i) z=Pex & (x—z,y—2z) <0, Yy € C;
(i) z=Pex & [x—zIP <[x—yl|*—lly—z|> Yy € C
(iii) (Pcx —Pcy,x—y) = ||Pcx —Pcyl?, Yy € H.

Consequently, Pc is nonexpansive and monotone.

If A is an a-inverse-strongly monotone mapping of C into H, then it is obvious that A is Z-Lipschitz
continuous. We also have that, for all u,v € Cand A > 0,

[(T=AA)u— (I=AA)WV|? < [[u—v|> + AA —20) |Au— Av|>. (2.1)
So, if A < 2«, then I — AA is a nonexpansive mapping from C to H.

Definition 2.3. A mapping T: H — H is said to be:

(a) nonexpansive if |[Tx —Ty|| < [[x—y|, Vx,y e H;

(b) firmly nonexpansive if 2T — I is nonexpansive, or equivalently, if T is 1-inverse strongly monotone
(l-ism), (x —y,Tx —Ty) > |[Tx—Ty|%>, V¥x,y € H; alternatively, T is firmly nonexpansive if and
only if T can be expressed as T = (I +S), where S : H — H is nonexpansive; projections are firmly
nonexpansive.

It can be easily seen that if T is nonexpansive, then I — T is monotone. It is also easy to see that a
projection Pc is 1-ism. Inverse strongly monotone (also referred to as co-coercive) operators have been
applied widely in solving practical problems in various fields.

Proposition 2.4 ([12]). Let T : C — C be a nonexpansive mapping. Then the followings hold:

(i) Fix(T) is closed and convex;
(ii) Fix(T) # 0 when C is bounded.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.
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Lemma 2.5. Let X be a real inner product space. Then there holds the following inequality
I +yll? < X7 + 20y, x +y), YxyeX.

Recall that, a mapping A : C — H is called hemicontinuous if for all x,y € C, the mapping g: [0,1] —
H, defined by g(t) := A(tx + (1 —t)y), is continuous. Some properties of the solution set of the monotone
variational inequality are mentioned in the following result.

Lemma 2.6 ([15, 24]). Let A : C — H be a monotone and hemicontinuous mapping. Then the following hold:

[

(i) VI(C, A) is equivalent to MVI(C,A) :={x* € C: (Ay,y—x*) > 0,Vy € C};

(ii) VI(C,A) # 0 when C is bounded;
C,A)=
C,A)

7

(iii) VI Fix(Pc (I —AA)) for all A > 0, where 1 is the identity mapping on H;
(iv) VI consists of only one point, if A is strongly monotone and Lipschitz continuous.

ﬁz—\ﬁz—\

Lemma 2.7 ([11]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let S be a nonexpansive
self-mapping on C with Fix(S) # (. Then 1—S is demiclosed. That is, whenever {xy} is a sequence in C weakly
converging to some x € C and the sequence {(I1 — S)xi.} strongly converges to some vy, it follows that (I1—S)x =y.
Here 1 is the identity operator of H.

Recall that, a mapping T : C — C is called a C-strictly pseudocontractive mapping (or a (-strict
pseudocontraction) if there exists a constant ¢ € [0,1) such that

[Tx —Ty[> < [x—y|*+ |(I-T)x—(I-THy|>, VYxyeC.

Lemma 2.8 ([19]). Let C be a nonempty closed convex subset of a real Hilbert space Hand T : C — C be a mapping.
(i) If T is a C-strictly pseudocontractive mapping, then T satisfies the Lipschitzian condition

+¢
ITx=Tyll < ;= Ix—vl, ¥xyeC.

(i) If T is a C-strictly pseudocontractive mapping, then the mapping 1 —T is semiclosed at 0, that is, if {xn} is a
sequence in C such that x,, = X and (I1—T)x, — 0, then (I-T)Xx =0.

(iii) If T is C-(quasi-)strict pseudocontraction, then the fixed-point set Fix(T) of T is closed and convex so that the
projection Priy (1) is well-defined.

Lemma 2.9 ([27]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C bea
(-strictly pseudocontractive mapping. Let 'y and & be two nonnegative real numbers such that (y +8){ < y. Then

[y(x—y)+8(Tx=Ty)[ < (v +8)[x—yl, WxyeC.
Lemma 2.10. Let f: C — C be a p-contraction with p € [0,1). Then I —f is (1 — p)-strongly monotone, that is,
(T=fx—(I—=fy,x—y) = (1—p)x—yl?> YxyeC

Lemma 2.11 ([7]). For given x*,y* € C, (x*,y*) is a solution of the GSVI (1.2) if and only if x* is a fixed point
of the mapping G : C — C defined by

Gx = Pc(I —VlFl)Pc(I —Vze)X, Vx € C,
where y* = Pc (I —voFp)x*

In particular, if the mapping F; : C — H is (i-inverse-strongly monotone for i = 1,2, then the mapping
G is nonexpansive provided v; € (0,2¢;] for i = 1,2. We denote by GSVI(G) the fixed point set of the
mapping G.
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Lemma 2.12 ([17]). Let {ax} be a sequence of nonnegative real numbers satisfying the property
a1 < (I—si)ax + skt +1, V=0,

where {s\.}, {tx}, and {r\.} are sequences of real numbers such that

(1) {sx}C 0,1 and >3 sk = o0,
(ii) either limsup, _,  tx <0, 0r Y 3 g lsktkl < oo;
(i) Y 3 oTk < oo withti >0, Vk > 0.

Then, limy_,o, ai = 0.
Lemma 2.13 ([11]). Let H be a real Hilbert space. Then the followings hold:

@) [x=yl* = x| = [yl = 2(x =y, y) for all x,y € H;
(b) |IM+ pyl|? = Allx|> + wlyl® = Aullx —yl|? for all x,y € Hand A, u € [0, 1] with A+ p = 1;
(c) if {xx} is a sequence in H such that xyc — x, it follows that

limsup |[xic —y||* = limsup |xk — x|+ [x —y[?, vy eH.
k—o00 k—o00

Lemma 2.14 ([4]). Let {ax ¥ be a bounded sequence of nonnegative real numbers and {by }3°_, be a sequence of
real numbers such that limsup, _, by < 0. Then, limsup, _, _ axby <0.

3. Main results
Let H be a real Hilbert space. In this section, we always assume the followings.
e i : H — His (i-inverse strongly monotone for i =1,2 and T : H — H is a (-strictly pseudocontrac-
tive mapping;
e G:H — Cis a mapping defined by Gx = Pc(I —v1F)Pc(I—voF)x with 0 < vi < 2¢; fori=1,2;
e f:H — His a p-contraction mapping with p € [0,1);
e A:H — Hand B:H — H are two mappings such that the hypotheses (H1)-(H4) hold:

(H1) B is monotone on H,

(H2) A is B-inverse-strongly monotone on H,
(H3) B is L-Lipschitz continuous on H,

(H4) Q:= VI(VI(GSVI(G) NFix(T),B),A) # 0.

Next, we introduce the following triple hierarchical variational inequality problem (THVIP) defined over
the common solution set of the GSVI (1.2) and the fixed point problem of a strictly pseudocontractive
mapping T.

Problem 3.1. The objective is to
find x* € 2 := VI(VI(GSVI(G) NnFix(T),B), A)
= {x* € VI(GSVI(G) N Fix(T),B) : (Ax*,x —x*) > 0,Vx € VI(GSVI(G) NFix(T), B)}.
That is, the (2 is the solution set of the THVIP of finding x* € VI(GSVI(G) N Fix(T), B) such that
(Ax*,x—x*) >0, Vx e VI(GSVI(G) NnFix(T),B), (3.1)

where VI(GSVI(G) NFix(T), B) denotes the set of solutions of the VIP of finding y* € GSVI(G) N Fix(T)
such that

(By*,y—y*) >0, Vye GSVI(G)NFix(T).
It is worth pointing out that Problem 3.1 is very different from Problem 1.3 because the solution set of
Problem 3.1 may not be a singleton but the solution set of Problem 1.3 must be a singleton.
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Algorithm 3.2. Choose u € H, xp € H, k =0, 0 < A < 2f3, positive sequences {0y}, {Ax ), {otc ), {Bi}, {vk),
[ee) o

€ h that li = € =1 = li —0. 1 — 1
and {2y} such that lim &, 0,];]61( < 00, o+ B + Y ,];cxk 0o, lim o =0, lim By = & € (€, 3],
lim A =0, and A, < % for all k > 0.
k—o0
Step 1. Compute
Uy = o f(xi) + (1 — o) Gxy,
Vi = ok + Brxk + Vi mGx + (1 — ) TGxil,
Yk = Pasvi(G)nFix(T) (Vk — AkBvi),

z = Pasvi(G)nFix(T) (Vk — AkByi).

Step 2. Inner loop j =0, 1, .... Compute

Xk,0 = Zk — 7\AZk,

Yx,j = Pasvi()mFix(T) (Xk,j — 8 Bxk,5),

Xk,j+1 = %Xk,0 + BjXk,j + YjPcsvi(G)nrix(T) (Xk,j — 8By j)-

If |Ixkj+1 — Pvi(Gsvi(G)nFix(T),B)Xk0l| < €k then set hy :=x; ;41 and go to Step 3.
Otherwise, increase j by 1 and repeat the inner loop Step 2.

Step 3. Set xy11 = axu+ Bixk +vihk. Then increase k by 1 and go to Step 1.

Let C be a nonempty closed convex subset of H, B : C — H be monotone and L-Lipschitz continuous
on C,and S : C — C be a nonexpansive mapping such that VI(C, B) NFix(S) # 0. Let the sequences {xn}
and {yn } be generated by

xo € C chosen arbitrarily,
Yk = Pclxx — dBxy),
Xk+1 = XkXo + Pixk +YSPc(xi —dByx), Vk =0,

where {ouc}, {Bi}, {vk), and {8y} satisfy the following conditions: &, > 0, klim ok =0, ax+Px+vk =1,
—00

E X = oo,klim o =0,and 0 < li]zn infBy < limsupfy < 1 for all k > 0. Under these conditions, Yao et
— 00 — 00 k—00
k=0

al. [28] proved that the sequences {xy} and {yx} converge strongly to the same point Pyy(c B)nFix(s)X0-
Applying these iteration sequences with S being the identity mapping, we have the following lemma.

Lemma 3.3. Suppose that the hypotheses (H1)-(H4) hold. Then the sequence {xy ;} generated by Algorithm 3.2
converges strongly to the point PyyGsvi(G)nrix(T),B) (Zk —AAZy) as j — oo. Consequently, we have

" — Pvicsvi(G)nrix(T),B) (zk — AAZi) || < &, Yk > 0.

In the sequel, we always suppose that the inner loop in Algorithm 3.2 terminates after a finite number
of steps. This assumption, by Lemma 3.3, is satisfied when B is monotone on GSVI(G) N Fix(T).

Lemma 3.4. Let the sequences {vy },{yx}, and {z\ } be generated by Algorithm 3.2, B be L-Lipschitzian and monotone
on H, and p € VI(GSVI(G) NFix(T), B). Then, we have

lzi = PII* < [vie = pII* — (1= ML) vie — yiell> — (1= L) flye — zae > 3.2)
Proof. Let p € VI(GSVI(G) NFix(T), B). That means

(Bp,x—p) =0, Vxe GSVI(G)NFix(T).
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Then, for each Ay > 0, p satisfies the fixed point equation p = Pggyi()nFix(T)(P — AxBp). Since B is
monotone on H and p € VI(GSVI(G) NFix(T), B), we have
(Byk,yx —p) = (Bp,yx —p) = 0.
Then, applying Proposition 2.2 (ii) with vi, — AxByy and p, we obtain
Iz = pII* < [vic = AkByi — 1> = [[vic — AkByi — 2|
= [lvic = pII> = 2A By, vic — P) + ALlByic|* — [[vic — zc ||
— A Byl + 2Ak (Byie, vic — zi)

= vic = pII> = vk =zl + 2A (By, p — zi)

= [vic = PII* = vk — zicl* + 2Mc (Byie, P — yie) + 2M By, Yie — zi)

< v =pI* = Vi — zicl* + 2M By, yie — zic).-

(3.3)

Applying Proposition 2.2 (i) with vix —AxBvy and zy, we also have

<Vk — }\kBVk —Yx,Zk —yk> < 0.

Combining this inequality with (3.3) and observing that B is L-Lipschitz continuous on H, we obtain

lzie = PI* < [vie = II* = | (vic = yie) + (yr — zi) > + 2Ak (Byie, yie — zx)
= [vic = pI* = v =yl = [y — 2l — 2(vic = Yie, Yi — z&c) + 20 By, Y — zi0)
= Vi = PI* = vk = yil* = llyx — zicl> = 2(vic = AcBYx — yi, Y — 2k
= [vic = pI* = Ivic =yl * = [lyxe — 2l > — 2(vic = McBvic — Y, Yi — i)
+ 22 (Bvk — Byx, zk —yx)

< e =PI~ Ivic— i — i — 2l + 20 (Bvic — By 21— i) o4
< v =PI* = v = yiel* = lyie — zicl* + 27k [IBvic — Byxc [z — yx|
< v =PI = Vi = yiel* = lyx — zicl* + 20 Ll vic — el |26 — yiel
< v =PI = v = yiel* = vk — zicl* + ML (vic = yiel* + 2k — el P)
< vie = pIP = (1= AkD) [lvic = yiel* = (1 = ML)y — 2|
O

Lemma 3.5. Suppose that the hypotheses (H1)-(H4) hold. Then the sequence {x\} generated by Algorithm 3.2 is
bounded.

Proof. Since limy_,o o = 0, limy_yo0 Bk = & € (¢, 3] and o + B + vk = 1, we get limy_,00(1 —vi) =
limy o (0t + Bx) = & Moreover, we may assume, without loss of generality, that {fx} C [a,b] C ((,1).
Take an arbitrary p € 2 := VI(VI(GSVI(G) NFix(T),B),A). Putting 0 =1 —p and A = I —T, we know
that A is 1EC—invelrse—strongly monotone since T is (-strictly pseudocontractive. We write iy = puGxy +
(1— W) TGxy for k > 0. Then we observe that iy, = uGxyx + (1 — W) TGxx = Gxie — (1 — W) (I —T)Gxy =
Gxx — 0AGxy, which together with (2.1), yields

[tk —pI? = [[Gxx — oAGxK — (p — 0AP)||?
= ||Gxi —p — o(AGx — Ap)|]?

< ||Gxi —p* — o(1 — ¢ — 0) || AGxy — Ap||? (3.5)
= [|Gxic = P[> = (1 = Wk — Q)] Gxic — TG |?
< [1Gxx —p%

Since p = Gp = Pc(I—v1F1)Pc(I—v2F)p and F; is (i-inverse-strongly monotone with 0 < v; < 2(; for
i=1,2, we deduce that
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1Gxic = P[> = [Pc (T = viF1)Pc (1= vaFa)xi — Pe(I— viF1)Pe (I — vaFa)p
< (I =v1F1)Pc(I—vaFa)xi — (I—v1F1)Pc(I—voF2)p|?
= |[[Pc(I—vaF2)xx — Pc(I—vaF2)pl — vi[F1Pc (I — vaFo)xi — FiPc (I — voFo)pl |2
< |[Pc(I—vaF2)xk — Pc(I—vaFa)p|)?

+v1(v1 —28) |[F1Pc (I —vaFa)xk — FiPc (I —voFa)pl? (3.6)

< |[Pc(I—vaF2)xk — Pc(I—vaFa)p|)?

< (I —=vaF2)xk — (I—vaF2)p|?

= ||(xx —p) — va(Fax — F2p)|?

< [}k = plI? + valva —28)[Faxic — Fap|?

< e —pll

So, it follows that
[wk —pll = [Joa (F(xx) — f(p)) + (1 — o) (Gxx — p) + ok (f(p) — P) |

< oue|[fx) — ()] + (1 — o) || Gxi — | + o[ f(p) — Pl
< oeplPxi =Pl + (1 — o) [[xx — Pl + ok [[f(p) — p|
= (1 — o (1= p))[Pxi — pll + o[ f(p —P|| (3.7)

o) (@) —Pll

= (1= ouc(1—p))Ixic —pl + i (1 1_

Ip) =l

< max{v. —p, P

Thus, from (3.1) and (3.5), (3.6), and (3.7) we get
[[vic = | = ||otc(uie =) + Brc(xic —P) + Vi [MGxx + (1 — W) TGxyc — p]||
= |l (e =) + Br(xk —p) + v (k. — )|
< oef[uk = pll + Brllxk — Il + vtk —PH

f
Mw Brcllxic — pll + vill Gxc — Pl

tp (3.8)
Mw Biclxic — Pl + vilhe — Pl

< o max{||xx —pll,
< o max{||xx —pll,

= o max{||xx —

o, P pp” (1= o)k — )

f(p
< max{|xx —pll, M}

On the other hand, for p € (2, we have
(Ap,x—p) =0, Vx € VI(GSVI(G) NFix(T),B),

which implies p = Pyy(gsvi(G)nrix(T),) (P — AAPp). Then, from (2.1), Proposition 2.2 (iii), f-inverse strong
monotonicity of A, and 0 < A < 23, it follows that

IPyI(GsvI(G)nFix(T),B) (Zk — Mzi) — P12

= ||Pvi(Gsvi(G)rFix(T),B) (2k — Mzi) — Pyrcsvi()nrix(T),8) (P — AAP) |12

< (T=AA)zic — (I—AA)p|? (3.9)
<z =PI+ AN —2B) Az — Apl?

< |z —pl

Utilizing (3.4), (3.8), (3.9) and the assumptions 0 < A < 2B, > &k < oo we obtain that
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IXk+1 =Pl = [ + Brxk +vichk — |

which shows that the sequence {xy} is bounded, and so are the sequences {uy}, {tix}, {vk}, {yx}, and {zy}.

< o |[u—pll + Bxllxk —pll +vr/hk =Pl
< o |[u—pll + Bxllxk =PIl +Vrlhk — Pyricsvi(G)nFix(T),B) (2 — Az ) ||

+ YrlIPvi(Gsvi(G)rFix(T),B) (2 — Az ) — P

< o |[u—pll + Brllxk —pll + VK€ +vlzk — P
< o |[u—pll + Bxllxk =Pl + YK€k + VK|V — Pl
f

< o [lu—pl| + Bxl|xk — Pl +Yk€x + i max{||xx —p|, prH}
< aelu—pl + (B +vi) max{] —pll, M}—l—v
= gl + (1 o) max( e — p|, I p”}+vkék

_ _ H —pll
< max{[[xx —p|, lu—mpl, - )+ e

- H PH
< max{[|xo —pl|, [u—pl|, }+Z€

_ pH
< max{|[xo —pl|, [u— PII }+Ze

< oo,

O

Lemma 3.6. Suppose that the hypotheses (H1)-(H4) hold. Assume that the sequences {vy.} and {z\.} are generated
by Algorithm 3.2. Then, we have

lz41 — zx || <

(1 + A1 D) [[vierr = viel| + AwliByxe|| + A1 ([[Bvieral| + IBywya || + [[Bvkl])-

Proof. Taking into account the L-Lipschitzian property of B, for each x,y € H we have

[(T=MB)x — (I=AByl| = [[x =y — M (Bx — By)|| < [lx —y|| + Aw[[Bx — Byl < (1 +AcL)|[x —y].

Combining this inequality with Proposition 2.2 (iii), we have

|zi+1 — zk|| = ||Pasvi(c)nFix(T) (Vk+1 — Ak+1BYx+1) — Pasvi(c)nrix(T) (Vi — Ak By ) ||

< (i1 — M1 BYxs1) — vie + A Byx||
= || (Vk41 — Ak1BVik41) — (Ve = A1 Bvie) + Ak (Bviepr — Bykg1 — Bvi) + A Byx||
< (T + A D fvierr = viell + AliByx || + A1 ([Bvieya || + By 1 || + [IBvkl]).

This completes the proof.

(3.10)

O

Proposition 3.7. Let {xy} and {yy} be two bounded sequences in a real Banach space X. Let {f} be a sequence in

[0,1]. Suppose that 0 < hlfn infBy < lim suka <1 x4 =

K
XK1 —xk|]) < 0. Then, limy o [[yx *Xk|| =0.

k—o00

(1 —Bw)yx + Bixk and limsup(|lyx+1 — k|| —

Lemma 3.8. Suppose that the hypotheses (H1)-(H4) hold. Assume that the sequence {xy} is generated by Algorithm
3.2. Then, limy o0 || Xk+1 — xx|| = 0.
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Proof. Since limy_,o i = 0, limxoo B = & € (G, %], and oy + Bk +vk = 1, we get limy_, vk =
limy oo(1—ox —PBx) =1—E& € [1/2,1— (). Now, we write xi11 = (1 — B )wk + Brxk for all k > 0. Then,
we have

X1+ Vierr ey o+ yichie

w — Wy —
k+1 k 1 — Bk—!—l 1 _ Bk (3 11)
Ok +1 Xk Yi+1 Yk Vit .
1—Brs1 1—[5k) (1—[3k+1 1_[5k) k 1—f5k+1( k+1— hi)

Note that, for 0 < A < 2f3, we have from (2.1) that

IPVI(GSVI(G)rEix(T),B) (Zk+1 — AMAZi41) — Pyi(Gsvi(G)rFix(T),B) (2k — Mz ) |2
I =AA)zi1 — (I—AA)zi |2
< 21 — zxl* AN = 2B) || Aziey 1 — Azi |2
<

llzk41 _ZkHZ-

Then, utilizing (3.10) and (3.11) we get

W1 —wie|
Xk+1 X Yk+1 Y _
< - - P - VY
= By 1 Bk'”uH +lo B 1o Bk|(|| VI(GSVI(G)Fix(T),B) (2 zi) || + &)
Yk+1 Yk+1 - _
+———|lzis1 — zk|| + o (Ex 41 + Ex)
1—f5k+1H + | 1= Bryy o
K41 X Yk+1 Yk ~
< — [[|w|l + | — I(]|P i (zik — AAzy )| + €x)
1= Brry  1—Pr [l 1= Brrs  1—pr IPVI(GSVI(G)nFix(T),B) |
Yi+1(1+ A l) Yi+1 o _
+ =t 2 ket — vk + e (&1 + Ex)
1—PBxs1 1— By
Yk+1
+ ———— (A1 ([[Bvicpal| + [[Bywall + [[Bvkl]) + A Byx)
1—PBrp
K41 k Kk+1 (%43 -
=| - [[[w]] + | - I(||P i (zik = AAzZy)|| + &)
TPy 1-pv el +1— P 1Py IPvI(GSVI(G)rFix(T),B) | (3.12)
Yk+1

Yi+1(1 4+ Ax1L)
+ == B [[Vicr1 — vl +

————— (€541 + &)
Xk+1+ Yi+1 Ok+1 + Yk+1 *

Yk+1
—— (M1 ([Bvicsa || + [BYsa || + [[Bvic]]) + Aw || Byx])
Kk+1 T Yr+1
(|¢Xk+1 — ot ot |Brt1 — Bl

< ([ + ||P 3 (zk —AAzZy)|| + €x)
T —pry =B —py) [wll + [IPvi(Gsvi(G)nEix(T),B) (2k W+ ex

+ Vi1 = vl + ALV — vl + &xqr + &k
+ A1 ([ Byt || + IBYwa ]| + [|Bvie]]) + Aw || By ||

lull + [ Pyi(csvi(G)nFix(T),B) (Zk — AAzZy ) || + Ex
< vk = vl + (loves1 — ol + 1Br1 — Bil) V) iX(—)b )

+ €1 + Ex + A1 (Lfvicgr = viel| + [IBvicsa || + Byl + [IBvic|l) + A || By |-

For simplicity, we write S = pul 4+ (1 — )T for 0 < ¢ < p < 1. According to Lemma 2.9 we know that S is
a nonexpansive mapping. It is clear that Fix(S) = Fix(T). Also, we write vii = Byxx + (1 — B )Wy for all
k > 0, where

o = Ve Proxie e £ yiclnGxic £+ (1= W TGxid _ ovewne + viSG
1— Bk 1-— Bk 1- Bk ‘
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Observe that

[ W1 — W]
= Xk 1Uk 41+ Vi+156Xk41 Xl + Vi SGxy H
1—PBxy1 1—PBx (313)
Xk+1 Xk Yk+1 .

< W1 — well + g - 5 ISGxcll + = 15Gxicia —SG]

1-— Bk+1 1— Bk Bk+l 1

Kk+1 Yk+1 Y
<——F— 1 + u +| — [IISGx + XK1 — Xk ||

. || Wi || || k|| P g Bk [SGxx11]| by [xx-+1 |

Moreover, simple calculations show that
V41 — Vi = Brg1Xk41 + (1 — By ) W1 — Brxe — (1 — By )W
= (Brg1 — Bic) (X1 = Wieg1) + B (X1 —xi) + (1 — Bic) (W1 — W),

which together with (3.13), leads to

Vi1 =il < IBxr1 — BrllPxis1 — Wil + BrlPxr1 — x| + (1 — i) [[Wie 1 — W]

. Kk+1
< Brt1 — Bl xk+1 — Wit ]| + Bl i1 — x| + (1 — Bk)[il ﬁi 5 w1l
— P+

Yi+1 Yx Yx
+ Ui +| — l[|SGxc41] + X1 — Xk||]
1 H | B 1—pr | 11l 1—f5kH + |
= |Bk+1 - Bk|||xk+1 _Wk+1|| + Bk +Yk i1 — x| (3.14)
Xk+1 Yxk+1 Yk
+(1— Bk)[7+ w1l 1 a HUkH Jr| = IISGx1]]]
B+ —Brr1 1—PBx
- 1 (%953
< Brst — Bl — Wiqall + ||Xk+1 x| +1 T ]| + [l
— Bt 1—Px
Yk+1 Yk
—|—| — | SGXk 11-
1—Bxy1 1-—PBx | +l

Combining (3.12) and (3.14), we obtain

| wll + [[PviGsvi(G)nFix(T),B) (Zk — Mz ) || + &k
1—0b

+ Exp1 + &k + Arg1 (L[viecrr — viel| + 1BVt || + By || + [[Bvl]) + A || Byx||

o1

—Pxr+1

|HSGXk+1H + (|O(k+1 - 0(k| + |Bk+l - Bk”

[Wicp1 —wil| < [[vierr — Vil + (looe 1 — ol + [Brg1 — Brl)

< Br41 — Bl xk+1 — Wit || + X1 — Xk || + Wi ]| + [l ||

993
1—Px
Yx+1 Yk
1—PBry1 1—Bx
" [wl| + [[PviGsvi(G)nFix(T),B) (2k — AAzy) || + &k

1—-b
+ A1 (LlVier 1 = viel[ + [[Bvica || + [Bysesa | + [1Bvil) + Al [Byxc|l,

+|

+ ékJrl + ék

which immediately yields

Kk+1 Xk
1— By 1—PBx
Yi+1 Yk

+ — SGx + (lotge+1 — x| + -
|1—f5k+1 1—(5k|H K1l 4 (loacrr — ol + 1Brs1 — Bxl)

o lu|l + [ Pvi(csvi(G)nFix(T),B) (2k — AAZ ) || + Ex
1-b
+ A1 (Lviers = Vil + BVt | + Byw 1l + Bvill) + Ax[|Byx |-

[Wicr1 —wiel| = X1 — x| < IBry1 — BrlllXkr1 — Wi || + Wit + [lux]|

+ €x41 + €x
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Since limy_,0o ok = 0, limy_so0 Bk = & € (¢, 3], ok + P + vk = 1, limyg_so0 €k = 0, and limy_,0o Ak = 0,
we conclude from the boundedness of the sequences {uy}, {vk}, {x«},{yx}, {zk}, and {Wy} that

lim sup(|[wi1 —wil| — [[Xi41 —xk]) <O
k—o0

Therefore, by Proposition 3.1 we have
klim |lwk —xk|| =0,
—00

which together with xy ;1 = Brxk + (1 — Bx)wy, implies that
lim ||Xk+1 —XkH = lim (1 - Bk)”wk _XkH =0.
k—o0 k—o0
O

Lemma 3.9. Suppose that the hypotheses (H1)-(H4) hold. Then for any p € 2 := VI(VI(GSVI(G) NFix(T),B), A)
we have 2 ) ) )
[Xk+1 —PII° < o[ —plI” + BxlPxk —pII” +vxlvk —PII” + 2y &x|zx — P

+veEr — Vi1 =MD (v =y ? + lyx — z[1?)
Moreover, we have

lim ||Pyr(Gsvi(G)nFix(T),B) (2Zk —AkAzk) —zi| = 0
k—o0

and
lim ||Pyr(Gsvi(G)nrix(T),B) (Yk — AkAYk) —Yk|| = 0.
k—o0

Proof. By Lemma 3.3, we know that

lim Xy ; = Pv1(GsVI(G)nFix(T),B) (z1c. — AAzZy),
J—>oo

which together with 0 < A < 23, inequality (3.2), limx_, Bk = & € ((, %], and
p € O := VI(VI(GSVI(G) N Fix(T), B), A),
implies that

X1 —PlI* = loscu+ Brxi + vichi — plI?
< oge[u—pl* + Bcllxi — pII® +villhie — plI?
< oe[u—pl* + Brllxi — pII* + vr (IPvigsvi(e)nFix(T),B) (2 — AAzi) — pl| + &k )?
= Yx(IPvi(gsvi(G)nFix(T),B) (2k — AAZK) — Py1(Gsvi(G)nFix(T),B)
+oucllu—plI* + Brlxk — pl*(p — AAP) || + &)?

o[l =PI+ Brlxi — I + v (| (T=AA)zy — (1= AA)p| + &x)?

) 3.15
< (3.15)

acllw— | + Brllx — 1> + iz — pll + &)
= ouel[u—p> + Brcllxi — pII* + vicllzi — Pl + 2vi€xllze — pll +vicER
< acflu—pl* + Bl — pII* + 2vicerllzi — pll + vicei

+yr(vie = pl* = (1= AL lvie =yl > = (1= ML)y — 2 ||)
= oel[u—p* + Brcllxi — pII* +vicllvic — PII* + 2vi&xllzi — Pl + v &R
=yl =MD (Ivic = yxl? + lyie — zk])

Next we claim that ||xx —vk| — 0 as n — oo. Indeed, for simplicity, we write qx = Gxy, X = Pc(I—
voF2)xi and p = Pc (I —voF2)p. Then gy = Pc(I —viFq)X. Utilizing Algorithm 3.2, we obtain from (3.5)
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and (3.6) that

[vie — P[> = [lok (wie — ) + Br (xi — P) + v (Tt — p)|?

< acfluie — pI* + Brcllxic — I + vicl [t — pI?

< acflue = pIP + Bl ¥ — pII* + vl Gxic = p1* — (1 — ) (= Q[ Gxac — TGxic |

< acflwie — pIP + Brclxic — PII* + villxie = pI* + va(va — 28) [[Faxic — Fop |
+vi(v1—26G)|[Fific — Fip|* = (1 — ) (1 — 0| Gxic — TGxx ] (3.16)

= o flur —pl1> + (Br +vid) I — II* + v[va(va — 28) [[Faxic — Fop |?
+vi(v1—26G)|[Fifie — Fip|* — (1 — ) (n— 0| Gxic — TGxx ]

< oel[we —pI* + I — 1> = vi[v2 (282 — v2) [ Faxic — Fap |12
+v1(28 — V1) P& — Fip || + (1 — ) (n — 0) | Gxxe — TG ||,

Combining (3.15) and (3.16) we get

i1 —=pl? < oucllw—pl1? + Brcllxic = plI* +viclvk = plI* + 2yexllzx —pll + k&

—vi(T= ML) (vie =yl + [[yx — ziclP)

< oaeflu—pl® + Bicllxic — pII* + vl [we — 1> + [l — plf?
—Yk[V2(28 — Vo) [[Faxic — Fop||* + v1 (24 — v1)|[Faki — Fip |2
+ (1= p) (= 0)|Gxx — TGxx|[*1} + 2ykEx|zk — Pl
+ vt — V(1 =MD ([vie =yl P + [y — z«[P)

< orel[u—pl1* + ol [we — 1> + (B +vid) [x — pl?
—Yrl[va(2Ga — v2)[[Faxi — Fap * +v1 (24 — 1) [[Fi% — Fap ||
+ (1= ) (k= Q)| Gxi — TG |1 + 28k | zic — P
+ &% — v = ML) (vic =yl + [y — 2z« [1?)

< ol —pl* + el [ — pII* + [ — 1> = v [V2(242 — va) [ Faxic — Fap[?
+v1(281 — v1) [Fi% — F1p|* + (1 — ) (n— Q)| Gxie — TGxic 7]
+2ek ||z —pll + & — V(1= AL ([[vic = yiel* + Iy — zi 1),

which immediately yields

Ve = AL ([[vie =il + Iy — zic1?) + Vi [v2 (282 — v2) [ Faxic — Fap |12
+v1(24 — v1) P&k — Fip > + (1 — ) (i — Q)| Gxie — TGxxc ||
ael[u—pl* + o lwe — pII* + [Jxic =PI = x1 — plI* + 28k [lzx — Il + &%

<
<o (lu—pl* + we —plI?) + IIxic — x| (Ixie =PIl + X1 — pl) + 2&x ||z — || + €.

Since ot + P +vk =1, ax = 0, P — & € ((, %], €k = 0, Ay = 0, and ||xk+1 — xxk|| = 0 (due to Lemma

3.8), we deduce from the boundedness of {xy},{ux} and {zy} that
lim ||F2Xk — sz” = lim HFlik — F1f)H = 0,
k—o0 k—00 (3.17)

lim ||Gxx — TGxk|| = lim |[vk —yxk]|| = lim |lyx —zk|| = 0.
k—o00 k—o0 k—o0

On the other hand, in terms of the firm nonexpansivity of Pc and the (i-inverse strong monotonicity of
F; for i = 1,2, we obtain from v; € (0,2(;),1=1,2 and (3.6) that

% — P> = |[Pc(I—vaFa)xx — Pc(I—vaFa)pl?
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< ((IT—=vaF)xic — (I—=v2F2)p, % — D)
= E[H(I —voFa)xk — (1= vaF2)p|l* + [[%x — P> — (I — v2F2)xi — (1= vaF2)p — (% — P[]
< E[ka —pl?+ % —PII> — || (xk — %) — Va(Faxi — Fap) — (p — 9))°]
1 L . -
= E[ka —pl*+ 1% —PII* — | (xk — %) — (P — D) |I?
+2vo((xk — %) — (p —P), Faxk — Fap) — V3 ||[Faxi — Fap |12,
and
gk — P> = [[Pc(I—v1Fy)%k — Pc(I—viF1)p|?

< ((IT—=viF)%e — (I=viF1)p, qx — p)
1 . _ . -

= E[H(I —viF1) %k — (I—=vaF)p[* + [|qx — P[> — [|[(I—vaF1)% — (1= viF1)p — (qx —p) ||
1. N - . . s N

< E[ka —I*+llax — PlI* — (% — qi) + (p — P)II* + 2v1 (Fi% — F1p, (X — qi) + (p — P))
—vi|[Fi%k — F1p ]
1 . - . o -

< E[ka =P+ gk —pl* = | Rk — qi) + (p — B)|I* + 2v1 (Fi%x — FiB, (R — qi) + (p — D))

Thus, we have
% — B < [x — > = [|(xk — %) — (p — P)|* + 2v2 ((x — %) — (p — D), Faxic — Fop)
] . (3.18)
—v5||Faxic — Fop||*,
and
lak —Ppl* < [[xk — P> — | (R — qi) + (p — )| + 2v1|[Fi% — Fabl[| (% — qi) + (p —P)- (3.19)

In the meantime, utilizing (3.16) and (3.18) we obtain

Ivic—Pp1* < oucflue — plI” + Brlxic — > + vl Gxi — p?

o [luk =PI + B[ — pl* + il —plI?

o[ wre — pII* + Brcl i — 1> + villxi = pIIP — | e — %) — (p — P) 17

+2vo((x — i) — (p — P), Fax — Fap) — V3| Foxic — F2p 7]

< acfluk =17 + Bl — Pl + vl = plP — [ (xk — %) — (p
+2va | (i — %) — (p — P) || [IF2xc — F2p ]

< oel[uie — Pl + (Br +vid 1k — II* — vl (xic — %i) — (p— )12
+ 2va || (xi — %i) — (p — D[ Faxx — F2p |

< acllwie — pIP + [l — P> = vicll (i — %) — (p — P)II?
which together with (3.15), leads to

<
<

)

+2va || (xk —Xk) — (p — P)|[|F2xi — F2p]|,

Pxicen =Pl < oklw—pl? + Brlxik — pII> + viclvic = pI* + 2vkex |z —pll + ek
< ogeflu—p|* + Bulxk — pII* + viclo[wk — pl* + [[xk — P> — vl (xk — %) — (p — P

+2v2| (xi — %k) — (p — P)[[[F2xic — Fop |l + 2&x |2k — p|| + &
< ol —pl? + ol = pII* +

)17

Bic +vi) [}k — Pl — Vil (xk — %) — (p — P
+2vo | (xi — %i) — (p — P) || |F2xic — Fap|| + 2&x ||z — p|| + &%

< ouelfu—pl* + ouecl[ux —pI* + [[xx — Pl — Vil (xxk —%x) — (p —P)|?

+2vo | (xk — %i) — (p — P)[||[Foxic — Fap | + 28k ||z — p| + &%-
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So, it follows that
Vil (e —%k) — (p—P)II* < aacflw—plI* + o [u — p)1* + [lxx — pI* — [[x+1 — P12
+2va | (xk — %i) — (p — P)||[[Faxx — Fap || + 28 [z — Pl + &%
< oflu—pl* + ol — pI* + [Ixic — xies1 [l (xx = Il + X1 — P
+2va | (xi — %) — (p — P) [ [[Faxx — Fap|| + 28 ]|z — Pl + &%

Since o + P +Yk = 1, o = 0, Bk — & € (1], & — 0, |[Faxk — Fap|| — 0 (due to (3.17)), and
IX1+1 —xk|| — 0 (due to Lemma 3.8), we deduce from the boundedness of {xy}, {Xk}, {ux}, and {zy} that

lim [|(xx —%x) — (p —P)|| = 0. (3.20)

k—o00

Also, utilizing (3.16) and (3.19) we obtain

o [[wie — pI* + Buellxic — 1> + vl Gxie — plf?

o ure =PI + Bl — Pl + vicllPac = plI* — [ (R — qic) + (p — )

+2vq|[Fi% — Fip|l[| (R — qi) + (p — P[]

< oel[uie — plI* + (Br +vi) Ik — PII* — vl (R — ax) + (p — )|?
+2vq|[Faxk — Fip|l[| (R — qi) + (p — D)

< el [we =PI + [ =P I* = Vil (R — qic) + (p — P)IIP + 2va [[Fifac — Fap || (R — qic) + (p — P,

Vi =l

<
< [&

which together with (3.15), leads to

i =PI < oacllu—pl1 + Brlxik — I + vicllvie = PI* + 2vicexllzx — pll + vier
< oucl[u—p* + Brcllxic — P II* + Vil [ure — pI* + [[xic — PII* — el (R — qic) + (p =PI
+2v4|[Faxie — Fap ||| (R — qi) + (p — B)II] + 28|z — Pl + &%
< oflu—p* + ol — P> + (Br +vi) [xx =PI — vl (R — qi) + (p — D)
+2v1 P&k — Fip ||| (R — qic) + (p — P)I| + 2&x ]|z — pl| + &%
< ogel[u—p|I* + ol — 1> + xi — pII> = vl (% — qi) + (p—B)II?
+2v1[[Fa%i — Fip || (Rk — qi) + (p — )| + 28|z — p| + &-
So, it follows that
Yell(% = aqi) + (p —P) 1> < oacflu—plI* + oaefwie — pI* + [[xic = pII* — i1 — pII?
+2v1||Fi%ic — Fip || (R — i) + (p — B)I| + 2&x ]|z — Pl + &%
< ocl[u—p|* + ol — 1> + [xie — xaeq1 (e =l + xwe1 — Pl
+2v1|[Fi% — F1p || (R — qi) + (p — P)|| + 28|z — pl| + &

Since ok + Px +Yk = 1, o = 0, Bx = & € (1], & — 0, |[Fai% —F1p| — 0 (due to (3.17)), and
IxK+1 —xk|| — 0 (due to Lemma 3.8), we deduce from the boundedness of {x}, {Xk}, {ux}, and {zy} that

Jim [|(Rx —qi) + (p =P =0. (3.21)

Note that
Xk — qul| < [[(xk — %) — (P =PI + [ (R — qi) + (p — D).

Hence from (3.20) and (3.21) we get

lim ”Xk — GXkH = lim ||Xk — qu =0. (322)
k—o0 k—o0
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Also, observe that

w||Gxx — xk|| + (1 — W) || TGx — x|

wl|Gxx —xk|| + (1 — 1) (|| TGxc — Gxi || + ||Gxie — xx||)
= ||Gxx —xi|| + (1 — ) || TGx — Gxi ||

<|Gxe = x| + || TGxye — Gxie |,

[T — x| <
<

So, from (3.17) and (3.22) we know that
lim Hﬁk —XkH =0. (323)
k—o00

Taking into consideration that
ur — x|l < o[ (xi) — x|l + (1 — o) || Gxae — xae || < o [[F(xac) — x| + [[Gxae — xiel,
and
[Vie = xx || < oaelfue — x| + vl T — x| < o flure — x| + [T — xxc ],

we conclude from (3.17), (3.23), and o — 0 that

lim [[xx —ux||=0 and lim |xx —vi| =0. (3.24)
k—o0 k—+o0

So, it follows from (3.17) that

lim |[xk —yk||=0 and lim |xx —z| =0. (3.25)
k—o00 k—o0

Since A is p-inverse-strongly monotone, it is known that A is L;-Lipschitzian with [; = 1/. Again by
Proposition 2.2 (iii) and Lemma 3.3 we have

IPvi(Gsvi(G)nFix(T),B) (Yk — AAYL) — Xic 41|
< |[Pyvicesvi(e)nFix(T),B) (Uk — AAYK) — Pyrasvi(c)nrix(T),B) (Zk — AAZi ) ||
+ HPVI(GSVI(G)mFix(T),B)(Zk —AAZy) — Xi41]|
< (T4 ALY Jyk — zi || + o ||Pvi(csvi(c)nFix(T),B) (2k — AAZK) — U]
+ BicllPvi(csvi(G)nEix(T),B) (Zk — AAZK) — Xk || + €k (326)
< (T+AL)[[yk — 2|l + o [IPvi(Gsvi(6)nEix(T),B) (2k — AMAzi) —u| + &
+ BkHPVI(GSVI(G]mFix(T) B8) (Zk — AAz) — Pyr(gsvi(G)nrix(T),B) (Yk — AAYL) ||
+ BrlIPviiGsvi(6)nFix(T),B) (Yk — AMYx) — Ykl + Brllyx —XkH
< (T+AL) [y —zill + o‘k”PVI(GSVI(G)ﬁFix(T),B) (zk —AAzy) —ul| + &x
+ Br(1+AL) Iz — Y| + Bl Pvi(csvi(e)nrix(T),8) Uk — AAYK) — Yk || + B [yx — xx||-

Consequently, from (3.26), we have

IPvi(GsvI(G)nFix(T),B) (Yk — AAYK) — Y ||
< [|Pvr GSVI(G)mFix(T),B)(Uk —AAYk) — x|+ e — xill + [xe — Y|
< (T +AL)[[yx — zkll + o [[Pvi(Gsvi(G)nFix(T),B) (2 — AAzi) — ul| + &k
+ B (14 AL |1z — Y|l + BxlIPvi(asvi(c)nrix(T),B) Yk — AAYK) —Yx || + Bic[[yx — k||
+ %1 — x| + [xe — Y|
= (14 Br) (1 +ALy) [y — zi || + o [|Pvi(Gsvi(G)nFix(T),B) (2k — AAZK) — | + &k
+ B lIPvi(asvi(6)nEix(T),8) YUk — AAYK) — Y[l + (1 + B[y — il + i1 —xxl,
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which immediately yields

IPvi(Gsvi(G)nFix(T),B) (Uk — AAYy) yk||
1+ Py €x
<1 gy (1 +AL)[[yx — 2kl + f5 IPvicsvi(G)nFix(1),B) (2 = AAZi) —uf + 7— B
1+ 1
+ BkHUk—XkH +7 XK1 — xx]|-
1- — P

Since o +Px+vk =1, ax — 0, P — & € (C,%], €k = 0, lyk —zkl| = 0, [[xk —yxk|| — O, and

IIxK+1 —xk|| = 0 (due to Lemma 3.8, (3.17), and (3.25)), we conclude that
]}1_1%10 IPvi(GsvI(G)nFix(T),B) (Yk — AAYK) —yx|| = 0. (3.27)
From Proposition 2.2 (iii), it follows that

IPvi(Gsvi(G)nFix(T),B) (Zk — AAZK) — zi||
< |IPvi(asvi(G)nEix(T),B) (Zk — AMZi) — Pyriasvi(G)nrix(T),8) (Uk — AAY) ||
+ [IPvi(Gsvi(G)rEix(T),B) (Uk — AAYK) — Yk || + ”Uk—ZkH
< (T+ AL ||z — yil[ + ||PVI (GSVI(G)nFix(T),B) (Uk — AAYK) — Ykl + [lyx — z«||
< IPvi(Gsvi(6)nFix(T),8) (Uk — AAYx) ka + (2+AL1) [y — z«]|-
Utilizing the last inequality we obtain from (3.17) and (3.27) that

lim [|Pyr(csvi(c)nrix(T),B) (2k — AAzy) — zk || = 0.
k—o0
OJ

Theorem 3.10. Suppose that the hypotheses (H1)-(H4) hold. Then the two sequences {xy} and {z\.} in Algorithm
3.2 converge strongly to the same point x* € (2 := VI(VI(GSVI(G) N Fix(T), B), A) provided ||xx — vi|| = o(oci),
which is a unique solution to the VIP

(I-f)x",p—x") >0, VpeO.
Equivalently, x* = Pof(x*).

Proof. Note that Lemma 3.5 shows the boundedness of {xi}. Since H is reflexive, there is at least a
weak convergence subsequence of {xi}. First, let us assert that w.,, (xx) C (2. As a matter of fact, take
an arbitrary w € wy,(xi). Then there exists a subsequence {xy,} of {xx} such that xx, — w. From
(3.25), we know that yy, — w. It is easy to see that the mapping PyiGsvi(G)nrix(T),8)(I —AA) : H —
VI(GSVI(G) NFix(T), B) C H is nonexpansive because Pyycsvi(G)nrix(T),B) is nonexpansive and I —AA is
nonexpansive for B-inverse strongly monotone mapping A with 0 < A < 2. So, utilizing Lemma 2.7 and
(3.27), we obtain
W = Py1(GsvI(G)nFix(T),B) (W — AAW),
which leads to w € VI(VI(GSVI(G) NFix(T),B), A) =: Q2. Thus, the assertion is valid.
Also, note that
(I=fx—(I—=fly,x—y) > (1—p)x—yl> vxyeH.

Hence, it follows from 0 < p < 1 that I —f is (1 — p)-strongly monotone. In the meantime, it is clear that
I — f is Lipschitzian with constant 1+ p > 0. Thus, by Lemma 2.6 (iv) we know that there exists a unique
solution x* € 2 := VI(VI(GSVI(G) NFix(T),B), A) to the VIP

(I—x",p—x") >0, ¥pen. (3.28)

Equivalently, x* = Pqf(x*).
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Next, let us show that xi — x*. Indeed, take an arbitrary p € (2 := VI(VI(GSVI(G) NFix(T),B), A).
Then, from Algorithm 3.2, Lemma 2.5, (3.5), and (3.6), we have

[we — P> = [Joae(F(xa) — F(p) + (1 — o) (Gxxe — p) + e (F(p) — p) |12
< HOCk(f(Xk)_f NIZ+ (1= oa) (Gxic — P> + 200 (F(p) — P, wic — P)
< o[ Fxxc) HZ + (1= o) [ Gxxe — pII* + 200 (f(p) — p, u — p)
< oueplxk —PHz (1— o) [|xic — pII* + 200 (f(p) — p, w — )
= (1 —ae(1—p)) [}k = pII* + 2 (F(p) — p, Wi — P),

and hence

v = pI* = [lokw + Brxk + Vit — plI*

otie|[we — pII* + Biecllxic — pII® + vt — plI?

o [(1— o (1= p)) [[xic — pII* + 200 (F(p) — p, wic — )] + Bucllxic — P> + vl Gxic — p?
o [(1— o (1= p)) [[xic — pII* + 200 (F(p) — p, wic — )] + Buclxic — PII> + viclxi — >
(1— o (1= p)) [P — pII* + 204 (f(p) — p, wic —p)

< [xic —plI* + 206 (f(p) —p, ux — p),

N

(3.29)

NN

which immediately leads to

< lx =PI = l[vic = pII* + 20 (F(p) — p, wic — )
< Jxic=viell(lxic = pll + [vie = pII) + 20 ({f(p) — P, wie = xx) + (F(P) = P, xx — P))
< e = vicll (e = pll =+ [Ivie =PI + 206 (IF(p) — plllwic —xicll + (F(p) — P, xx — P))-

0

That is,

Xk — Vi
16 = 2l ekl + v — il + 1P — s — xicl + (9~ xic— ).
k

Since for any w € w.,(xk) there exists a subsequence {xy.} of {xi} such that xx, — w, we deduce from
(3.24), x — 0, and |[|xx —vk|| = o(oci) that for all p € (2 := VI(VI(GSVI(G) N Fix(T),B), A)

0<

kai _vkiH ‘

0< lim{ (e =Pl + lviee =PI + 11F(p) = Pl = x| + (Fp) =P, 1 =)}

1—00 20(1{_1
= lim (f(p) —p,xx; —p) =((f —I)p,w—p).

i—o00

That is,

Consequently, by Lemma 2.6 (i) (Minty’s lemma), we know that

that is, w is a solution of VIP (3.28). By the uniqueness of solutions of VIP (3.28), we get w = x*, which
hence implies that w,, (xx) = {x*}. Therefore, it is known that {xy } converges weakly to the unique solution
x* € 2 := VI(VI(GSVI(G) N Fix(T), B), A) of VIP (3.28).

Finally, let us show that ||xx —x*|| — 0 as k — oco. Indeed, in terms of Algorithm 3.2 and Lemma 2.5,
we conclude from (3.4) and the p-inverse-strong monotonicity of A with 0 < A < 2f3, that

X1 — x| = floacu+ Broxic + yichie —x*|1?
< Bl —x*) +vie(hie = x*)|* + 200 (u — x*, X341 — X*)
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< Bl — X2 + viellhue = x*[|? + 200 (w — x*, %141 — x*)
< Buellxie — |12 + v (IPyiiasvi(e)nrix(T),B) (2k — Mzi) —x* || + €)% + 200 (L — X*, x5 11 — X*)
= Buelxi — x> + il IPvi(gsvi(e )nix(T),B) (2 — Mzi)

— Py1(GsvI(G)Fix(T),B) (X — AAX®)|| + €)% + 200 (1 — X*, X1 — X*)
< Brelxie = x* 2+ vic([[(T— AA)zic — (I = ANA)X* || + &x)? + 200 (0 — X, Xge 41 — X¥)
< Brlxie = x* 7+ viclllzie — x| + &) + 200 (u — x*, X 41 — x*)
= Brellxic = X*[1* + viellzie — x> + v 2]z — X*|| + &) + 200 (u—X*, X1 — XF)
< Brelxie = x* 12+ viellvic = x*[|* + yic@x (2l|zic — x| + &) + 200 (4 — x*, X1 — X*)
= Brellxic —x* 12 + vicllxic = X +vie = xicl|* + Y@ (2l|zic — x| + &) + 200 (W — x*, X1 — X)
= Bl — X2 +vicllxa — x| + 20 —x*, vic = x10) + [[vie = xic 1)

+VrE(2|lzie — X*|| + &) + 200 (u — X", X1 — X).
It follows that
X1 — X1 < Bl — X2+ vie([[xa — x*||* + [[vie — x| (2]xx — x| + [[vie — xxc]])
+ Ve 2]z — x| + &) + 2000 (u — X", X p1 — XT)
< (1 g0 i — X[ + i = x| (2l — % | + e — )
+ &1 (2||zic = xT|| + Ex) + 20 (U — X, Xgep1 — X ) (3.30)

[HVk_XkH
X

= (1 — o) e = x*|% + o (2[xx = x| 4 [lvie = xic]l)

+2(u—x", XK1 — X)) + €x(2]|zic — x| + Ex)-
Since ox — 0, [[xx —vi|| = olax), Y pop€x < oo, and xx — x*, we deduce from the boundedness of

{Xk}, {Vk}, {Zk} that Z?:O ék(ZHZk —x* H + ék) < oo and

[HVk_XkH
0,6

lim sup (2% — X" + [[vie — xx|]) + 2(u —x", X171 — x")] < 0.

k—o0

Therefore, applying Lemma 2.12 to (3.29), we infer from ) oy = oo that |[xx —x*|| — 0 as k — oo.
Utilizing (3.25) we also obtain that ||z —x*|| — 0 as k — oco. This completes the proof. O

Theorem 3.11. Suppose that the hypotheses (H1)-(H4) hold. Then the two sequences {x\} and {zy} in Algorithm
3.2 converge strongly to the same point x* € 2 := VI(VI(GSVI(G) N Fix(T), B), A), where x* = Pqu, ie,
lu—x| = infpeq [[u—p.

Proof. Assume that the hypotheses (H1)-(H4) hold and that ||xk41 —xk|| = o(c3 ). In this case, it is easy to
see that Lemmas 3.3-3.6, 3.8 and 3.9 hold.
Next, we divide the rest of the proof into several steps.

Step 1. Repeating the same arguments as those of (3.24) and (3.25), we can prove that
lim ||xx —uk|| =0, lm |xx —vi||=0, lim ||xx —yx|| =0, lim |xx—zk| =0.
k—o00 k—o00 k—o0 k—o00

Step 2. We prove that w., (xx) C 2 := VI(VI(GSVI(G) NFix(T), B), A).
Indeed, from Lemma 3.9 and limy_, , || Xk — Vk|| = 0, we have

lim ||Pyr(Gsvi(G)nrix(T),B) (2Zk —AkAzk) —zi || = 0,

k—o0

klim IPvi(Gsvi(G)nFix(T),B) (Yk — AkAYK) —yx|| = 0.
— 00

Utilizing the same argument as in the proof of Theorem 3.10, we obtain that w., (xx) C (2.
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Step 3. We prove that limy_, || xk —x*|| = 0 where x* = Pqu.

Indeed, we may assume, without loss of generality, that there exists a subsequence {xy,} of {xx} such
that

limsup(u—x*, xj —x*) = lim (u—x*, xy, —x*)
k—00 i—oo

and xy, — w € (2. Since x* = Pqu and ||xy4+1 —xk|| = 0, we have

lim sup(u—x*, x}11 —x*) = lim (u—x*, x, —x*) = (u—x", w—x") <0. (3.31)
k—o0 1= ’

Utilizing the similar arguments to those of (3.29) and (3.30), we get
[vie = x| < [lxie = x¥||2 + 20 (F(x*) — X, wye — x*),
and

P =312 < Brellxie = x* |2+ yiellvie = %[ + i (212 — x| + &) + 200w — X, X101 — X¥).

Combining the last two inequalities, we get

[xi1 — x*[12 < Brellxie — X |2 + vl — ¥ 4+ 20 (F(x*) —x*, wye —x*)]
+ YK€k (2]lzie — x| + &) + 200 (W — X, Xp 41 — XT)
= (Br + Vi) I — X7 + 2yiod (F(x*) —x*, we — x¥)
+ YK€k (2]lzie — x| + &) + 200 (U — X, Xp 41 — XT)
< (1= o) [P = x| 4 20 | F(¢) — x| — x| (3.32)
+ &k 2]z — x| + &) + 200 (U — X", X 41 — XT)
= (1 — o)l — X*||* + o - 2( o[ F(x*) — x| uge — x|
+ (U —x", X1 — X)) + & (2]|z — x| + k)
= (1= si)llxie = x*[> + sk - i + 7,
where sx = o, tie = 2(ouc||T(x*) —x*[|[Jure — x*|| + (w—x*, X 41 —x*)) and 1 = €x(2]|zk —x*|| + €k ). Since
ax =0, >0 k=00, ) g€k < oo and limsup, , (u—x* x1—x*) <0 (due to (3.31)), we deduce

from the boundedness of {xy},{ux},{zx} that limsup, ., tx < 0, } 3y sk = oo, and } § Tk < oo.
Therefore, applying Lemma 2.12 to (3.32), we obtain

lim ||xx —x*|| =0.
k—o00

This completes the proof. O
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