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Abstract
The notion of coincidence point and common fixed point were extended in generalized partially ordered fuzzy metric

spaces. Under some conditions, some coincidence point and common fixed point theorems were established in generalized
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1. Introduction

In 1987, Guo and Lakshmikantham [7] introduced the notion of coupled fixed point. Recently, Gnana-
Bhaskar and Lakshmikantham [5] established some coupled fixed point theorems in partially ordered
metric space. Sedghi et al. [18] studied coupled fixed point in fuzzy metric space. After that, common
coupled fixed point results for compatible mappings in partially ordered fuzzy metric spaces were estab-
lished by Hu [8] and Hu et al. [9]. Very recently, coupled coincidence point and fixed point results for
compatible mappings was established in partially ordered fuzzy metric spaces by Chouldhury et al. [1].
And, Roldan et al. [15] obtained multidimensional coincidence point theorems for nonlinear mappings
in any number of variables in partially ordered fuzzy metric spaces. Later, Wang [20] obtained some
common fixed point and coincidence point results for weakly compatible mappings in partially ordered
fuzzy metric spaces.

Ćirić [2] introduced the condition:

(a) φ(0) = 0, φ(t) < t and lim infr→t+ φ(t) < t for all t > 0.

Later, Jachymski [10] presented the condition:

(b) 0 < φ(t) < t and limn→∞φn(t) = 0 for all t > 0.
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Fang [3] introduced the condition:

(c) for each t > 0 there exists r > t such that limn→∞φn(r) = 0 in the context of Menger probabilistic
metric spaces and fuzzy metric spaces.

Recently, Jin et al. [11] introduced the condition:

(d) for each t > 0 there exist r > t and N ∈N such that φn(r) < t for all n > N.

In this paper, we extend the notion of Υ-coincidence point, coincidence and common fixed point and
etc. Under the condition (d), we present some multidimensional coincidence point and common fixed
point results for weakly compatible mappings in generalized partially ordered fuzzy metric spaces.

2. Preliminaries

In order to state our main results, we recall the following notions. Let n ∈ N, X be a non-empty
set and Xn be the Cartesian product of n copies of X. For brevity, (y1,y2, · · · ,yn), (y1

m,y2
m, · · · ,ynm),

(z1
m, z2

m, · · · , znm), (z1, z2, · · · , zn), (v1, v2, · · · , vn) and (x1
0, x2

0, · · · , xn0 ) will be denoted by Y, Ym, Zm, Z, V
and X0, respectively.

Throughout this paper, let {A,B} be a partition of the set Λn = (1, 2, · · · ,n), i.e., A ∪ B = Λn and
A∩B = ∅. Let σ1,σ2, · · · ,σl : Λn → Λn be n mappings from Λn into itself. We denote

ΩA,B = {σ : Λn → Λn|σ(A) ⊆ A and σ(B) ⊆ B},

Ω′A,B = {σ : Λn → Λn|σ(A) ⊆ B and σ(B) ⊆ A},

N = {0, 1, · · · ,n, · · · }, N+ = {1, 2, · · · ,n, · · · }, R+ = [0,∞), and I = [0, 1]. If (X,�) is a partially or-
dered metric space, it is easy to know that (Xn,�) is a partially ordered metric space when ai � bi for
(a1, · · · ,an), (b1, · · · ,bn) ∈ Xn and i ∈ {1, 2, · · · ,n}. We use the following notation from [14], for y, v ∈ X
and i ∈ Λn

y �i v⇔

{
y � v, if i ∈ A,
y � v, if i ∈ B.

Consider on Xn the next natural k-partial order: for Y,V ∈ Xn

Y �l V ⇔ (yik+1, · · · ,yik+k) �i+1 (vik+1, · · · , vik+k)⇔ yik+s �i+1 vik+s, (2.1)

for i ∈ {0, · · · , l− 1}, s ∈ {1, · · · ,k} and l = n
k ∈ N. If Y �l V or Y �l V , then two points Y and V are

comparable (denoted by Y �l V). It has been considered by Wang [19] for k = 1.

Definition 2.1. Let (Xn,�l) be a k-partially ordered set for k = n
l ∈N, and T , G are self-mappings of Xn.

It is said that T is a Gk-isotone mapping, if for any Y1, Y2 ∈ Xn,

G(Y1) �l G(Y2)⇒ T(Y1) �l T(Y2).

Definition 2.1 is equivalent to [19, Definition 3.2] for k = 1.

Definition 2.2. Let (Xn,�) be a partially ordered space, and F : Xn → Xk and G : Xk → Xk are two
mappings. We say that F has the mixed gk-monotone property, if F is gk-monotone non-decreasing in
arguments of A and gk-monotone non-increasing in arguments of B, i.e., for x1, x2, · · · , xn,y1, · · · ,yk,
z1, · · · , zk ∈ X and i ∈ {0, · · · , l− 1} where l = n

k ,

g(y1, · · · ,yk) � g(z1, · · · , zk)⇒ F(x1, · · · , xik,y1, · · ·yk, xik+k+1, · · · , xn)
�i+1 F(x1, · · · , xik, z1, · · · , zk, xik+k+1, · · · , xn).

Definition 2.2 is equivalent to [14, Definition 5] for k = 1.
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Definition 2.3 ([19]). An element Y ∈ Xn is called a coincidence point of the mappings T : Xn → Xn and
G : Xn → Xn if T(Y) = G(Y). Furthermore, if T(Y) = G(Y) = Y, then we say that Y is a common fixed
point of T and G.

Definition 2.4. Let F : Xn → Xk and g : Xk → Xk be two mappings where l = n
k ∈ N. A point

(x1, x2, · · · , xn) ∈ Xn is a Υk-coincidence point of F and g, if

F(xσi(1), xσi(2), · · · , xσi(n)) = g(xik+1, xik+2, · · · , xik+k),

for i ∈ {0, 1, · · · , l− 1}.

Definition 2.4 is equivalent to [12, Definition 5] for k = 1.

Definition 2.5. A triple (Xk, τMk ,�) is called a partially ordered topological space, if τMk is a Hausdorff
topology on Xk and � is partial order on Xk. g is a self-mapping on Xk. A partially ordered topological
space (Xk, τMk ,�) is said to have the sequential gk-monotone property, if it verifies:

(i) If {(x1
m, · · · , xkm)} is a non-decreasing sequence and {(x1

m, · · · , xkm)}→ (x1, · · · , xk), then

g(x1
m, x2

m, · · · , xkm) � g(x1, · · · , xk), for m ∈N+.

(ii) If {y1
m, · · · ,ykm} is a non-increasing sequence and {y1

m, · · · ,ykm}→ (y1, · · · ,yk), then

g(y1
m,y2

m, · · · ,ykm) � g(y1, · · · ,yk), for m ∈N+.

If g is the identity mapping, then Xk is said to have the sequential monotone property. It is easy to see
that Definition 2.5 is equivalent to [20, Definition 2.7] for k = 1.

Definition 2.6 ([17]). A triangular norm is a map ∗ : I× I → I that is associative, commutative, non-
decreasing in both arguments and has 1 as identity. A t-norm is continuous if it is continuous in I2 as
mapping. If a1,a2, · · · ,am ∈ I, then

∗mi=1ai = a1 ∗ a2 ∗ · · · ∗ am.

For each a ∈ [0, 1], the sequence {∗ma}∞i=1 is defined inductively by ∗1a = a and ∗m+1a = (∗ma) ∗ a
for all m > 1.

Definition 2.7 ([13]). Let (X,M, ∗) be a fuzzy metric spaces (for short, FMS), if X is an arbitrary non-empty
set, ∗ is a continuous t-norm, M : X×X×R→ I, where M : X×X×R+ → I is a fuzzy set, satisfying for
x,y, z ∈ X and t, s > 0,

(FM− 1)M(x,y, 0) = 0 and M(x,y, t) > 0;

(FM− 2)M(x,y, t) = 1, if and only if x = y;

(FM− 3)M(x,y, t) =M(y, x, t);

(FM− 4)M(x, z, t+ s) >M(x,y, t) ∗M(y, z, s);

(FM− 5)M(x,y, ·) : R+ → I is left continuous for i = 1, · · · ,n.

Definition 2.8. Let (Xn,Mn, ∗,�l) be a k-partially ordered fuzzy metric spaces (for short, k-poFMS), if
X is an arbitrary non-empty set, ∗ is a continuous t-norm, Mn : Xn × Xn ×R → I is a mapping defined
by Mn = ∗ni=1M(xi,yi, t) where M : X× X×R+ → I is a fuzzy set, and �l is a k-partial order on Xn,
satisfying for x = (x1, · · · , xn),y = (y1, · · · ,yn), z = (z1, · · · , zn) ∈ Xn and t, s > 0,



J. M. Jin, C. X. Zhu, Z. Q. Wu, H. C. Wu, J. Nonlinear Sci. Appl., 10 (2017), 2052–2065 2055

(POF− 1)Mn(x,y, 0) = 0 and Mn(x,y, t) > 0;

(POF− 2)Mn(x,y, t) = 1, if and only if x = y;

(POF− 3)Mn(x,y, t) =Mn(y, x, t);

(POF− 4)Mn(x, z, t+ s) >Mn(x,y, t) ∗Mn(y, z, s);

(POF− 5)Mn(x,y, ·) : R+ → I is left continuous for i = 1, · · · ,n.

Definition 2.8 is equivalent to [4, Definition 2.15], for n = 1.

Definition 2.9. Let (Xn,Mn, ∗,�l) be a k-poFMS for l = n
k . A sequence {(x1

m, · · · , xnm)} in Xn is said to be
convergent to (x1, · · · , xn) ∈ X, if limm→∞ ∗ni=1M(xnm, xn, t) = 1 for t > 0. A sequence {(x1

m, · · · , xnm)} in
Xn is said to a Cauchy sequence, if for ε∈(0, 1) and t > 0, there exists n0 ∈N, such that ∗ni=1M(xip, xiq, t) >
1 − ε for p,q > n0. A k-poFMS is called complete, if every Cauchy sequence is convergent in Xn.

Definition 2.10. Let (Xn,Mn, ∗,�l) be a k-poFMS for l = n
k . A mapping G : Xn → Xk is said to

be continuous at a point Y0 ∈ Xn, if for any sequence {Ym}m>0 in Xn converging to Y0, the sequence
{G(Ym)}m>0 converges to G(Y0). If G is continuous at each Y0 ∈ Xn, then G is said continuous on Xn.

Definition 2.10 is equivalent to [15, Definition 2.16] for k = 1.

Definition 2.11. Let (Xn,Mn, ∗,�l) be k-poFMS for l = n
k ∈N. The mappings T ,G : Xk → Xk are said to

be J-compatible if for t > 0,
lim
n→∞Mk(GT(Xn), TG(Xn), t) = 1,

for {Xn} ⊂ Xk, such that limn→∞ T(Xn) = limn→∞G(Xn) = X for X ∈ Xk.

Remark 2.12. Definition 2.11 is equivalent to [20, Definition 2.18] for n = 1.

Definition 2.13. Let (Xn,Mn, ∗,�l) be a k-poFMS for k = n
k ∈ N. Let Φ = (σ1,σ2, · · · ,σl) be an l-

tuple of mappings from Λn into itself. Two mappings F : Xn → Xk and g : Xk → Xk are said to
be Φl-compatible, if {g(x1

m, · · · , xkm)}m>0, · · · , {g(xik+1
m , · · · , xik+km )}m>0, · · · , {g(xn−k+1

m , · · · , xnm)}m>0 are
monotone for sequences {x1

m}m>0, {x2
m}m>0, · · · , {xnm}m>0 ⊂ X and

∃ lim
m→∞ F(xσi+1(1)

m , · · · , xσi+1(n)
m ) = lim

m→∞g(xik+1
m , · · · , xik+km ) ∈ Xk, for i ∈ {0, · · · , l− 1},

we have

lim
m→∞Mk(gF(x

σi+1(1)
m , · · · , xσi+1(n)

m ), F(g(xσi+1(1)
m , · · · , xσi+1(k)

m ), · · · ,g(xσi+1(n−k+1)
m , · · · , xσi+1(n)

m )), t) = 1,

for all t > 0.

It is easy to know that Definition 2.13 is equivalent to [20, Definition 2.18] for k = 1.

Definition 2.14. We will say that the maps f,g are weakly compatible, if fg(x1, · · · , xk) = gf(x1, · · · , xk)
for (x1, · · · , xk) ∈ Xk such that f(x1, · · · , xk) = g(x1, · · · , xk) for f,g : Xk → Xk.

Definition 2.14 is equivalent to a Definition in [4].

Lemma 2.15 ([11]). Let ϕ ∈ Φk be given. Then for each t1 > 0 and T = {{tm}|tm+1 = ϕN(t
(m)
0 )(t

(m)
0 ), t(m)

0 ∈
Ltm , m ∈N+}, we have inf{tm}∈T{t0| limm→∞ tm = t0} = 0.

Lemma 2.16 ([11]). Let ϕ ∈ Φk be a function. For any t > 0 and each r ∈ Lt, there exists N′(r) ∈N+ such that
ϕN

′(r)(r) < t 6 ϕN
′(r)−1(r) and ϕn(r) < t for n > N′(r).
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3. Main results

In this section, we give the main results of this paper.

Lemma 3.1. If (Xn,Mn, ∗,�l) is a k-poFMS under some t-norm and x,y ∈ Xn, then Mn(x,y, ·) is a non-
decreasing function on (0,∞).

Proof. Since 1 ∗ a > a, by (POF− 4), we obtain

Mn(x,y, t+ s) >Mn(x,y, t) ∗Mn(y,y, s)
>Mn(x,y, t) ∗ 1 =Mn(x,y, t),

for t, s > 0, which implies that Mn is a non-decreasing function.

Lemma 3.2. If (Xn,Mn, ∗,�l) is a k-poFMS with Mn(x,y, ·) : R+ → I is continuous, then Mn is a continuous
mapping on Xn ×Xn × (0,∞).

Proof. Let x,y ∈ Xn and t > 0 be given. Let {(x′m,y′m, t′m)} be a sequence in Xn × Xn × (0,∞) such
that converges to (x,y, t). Since {Mn(x′m,y′m, t′m)} is a sequence in (0, 1], there exists a subsequence
{(xm,ym, tm)} of {(x′m,y′m, t′m)} converges to some point of [0, 1].

For σ > 0 such that σ < t
2 , there is n0 ∈N such that |t− tm| < σ for m > n0. Hence,

Mn(xm,ym, tm) >Mn(xm, x,
σ

2
) ∗Mn(x,y, t− 2σ) ∗Mn(y,ym,

σ

2
),

and
Mn(x,y, t+ 2σ) >Mn(xm, x,

σ

2
) ∗Mn(xm,ym, tm) ∗Mn(ym,y,

σ

2
),

for m > n0. By taking limit when m→∞, we obtain

lim
m→∞Mn(xm,ym, tm) > 1 ∗Mn(x,y, t− 2σ) ∗ 1 =Mn(x,y, t− 2σ),

and
Mn(x,y, t+ 2σ) > 1 ∗ lim

m→∞Mn(xm,ym, tm) ∗ 1 = lim
m→∞Mn(xm,ym, tm).

Since Mn(x,y, t) is continuous on t ∈ (0,∞), we immediately deduce that Mn(x,y, t) = limn→∞Mn(xm,
ym, tm). Therefore Mn is continuous on Xn ×Xn × (0,∞).

Lemma 3.3. Let (Xn,Mn, ∗,�l) be a k-poFMS such that ∗ is a continuous t-norm. LetMn : Xn×Xn×R+ → I

be defined by
Mn(A,B, t) = ∗ni=1M(ai,bi, t),

for A = (a1,a2, · · · ,an),B = (b1,b2, · · · ,bn) ∈ Xn, and t > 0. Then the following properties hold:

(i) (Xn,Mn, ∗,�l) is also FMS.

(ii) Let {Am = (a1
m,a2

m, · · · ,anm)} be a sequence on Xn and A = (a1,a2, · · · ,an) ∈ Xn be given. Then
{Am}→ A, if and only if {aim}→ ai for i ∈ {1, 2, · · · ,n}.

(iii) If (X,M, ∗) is complete, then (Xn,Mn, ∗) is complete.

Proof. The proof of Lemma 3.3 is similar to [16, Lemma 13], by Definition 2.7.

Lemma 3.4. If X �l Y for nl ∈N, we have (xσ(1), · · · , xσ(n)) �l (yσ(1), · · · ,yσ(n)) for σ ∈ ΩAB,
(xσ(1), · · · , xσ(n)) �l (yσ(1), · · · ,yσ(n)) for σ ∈ Ω′AB.

Proof. Let k = n
l and i ∈ {0, 1, · · · , l− 1} be given. Fix σ ∈ ΩAB. Then, for i+ 1 ∈ A, we have σ(i+ 1) ∈ A,

and xσ(ik+j) �σ(i+1) yσ(ik+j) implies that xσ(ik+j) � yσ(ik+j), which means that xσ(ik+j) �i+1 yσ(ik+j)
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for j = 1, 2, · · · ,k.
For i+ 1 ∈ B, we have σ(i+ 1) ∈ B, and xσ(ik+j) �σ(i+1) yσ(ik+j) implies that xσ(ik+j) � yσ(ik+j),

which means that xσ(ik+j) �i+1 yσ(ik+j) for j = 1, 2, · · · ,k.
In any case, if σ ∈ ΩAB, then xσ(ik+j) �i+1 yσ(ik+j) for i ∈ {0, 1, · · · , l− 1}. It follows that

(xσ(1), · · · , xσ(n)) � (yσ(1), · · · ,yσ(n)).

Now, fix σ ∈ Ω′AB. For i + 1 ∈ A, then σ(i + 1) ∈ B, and xσ(ik+j) �σ(i+1) yσ(ik+j) implies that
xσ(ik+j) � yσ(ik+j), which means that xσ(ik+j) �i+1 yσ(ik+j). For i ∈ B, we have σ(i+ 1) ∈ A. And
xσ(ik+j) �σ(i+1) yσ(ik+j) implies xσ(ik+j) � yσ(ik+j), which means that xσ(ik+j) �i+1 yσ(ik+j).

In any case, if σ ∈ Ω′AB, then xσ(ik+j) �i+1 yσ(ik+j) for i ∈ {0, 1, · · · , l− 1}. It follows that

(xσ(1), · · · , xσ(n)) �l (yσ(1), · · · ,yσ(n)).

Lemma 3.5. Let (Xn,Mn, ∗,�l) be a k-poFMS such that ∗ is a t-norm of H-type. Let {Xm} ⊆ Xn be a sequence
in (Xn,Mn, ∗,�l). If there exists a function ϕ ∈ Φk satisfying

(i) ϕ(t) > 0 for t > 0;

(ii) Mn(Xi,Xj,ϕ(t)) >Mn(Xi−1,Xj−1, t) for i, j ∈N and t > 0;

(iii) limt→∞Mn(X0,X1, t) = 1,

then {Xm} is a Cauchy sequence.

Proof. By Lemma 3.3, it is easy to know that (Xn,Mn, ∗, ) is a FMS. Next, we proceed with the following
steps:

Step 1. We claim that for any t > 0,

Mn(Xm,Xm+1, t)→ 1 as m→∞. (3.1)

By (iii), for any ε ∈ (0, 1), there exists t1 > 0 such that Mn(X0,X1, t1) > 1 − ε. For t1 > 0, since ϕ ∈ Φk
and Lemma 2.15, we have inf{tm}∈T{t0| limm→∞ tm = t0} = 0 for

T = {{tm}|tm+1 = ϕN(t
(m)
0 )(t

(m)
0 ), t(m)

0 ∈ Ltm , m ∈N+}.

For each t > 0, there exists {xm} ∈ T such that limm→∞ xm < t. So, there exists n0 ∈N such that t > xm
for each m > n0. Since Mn(X, Y, ·) is non-decreasing and satisfies (ii), we obtain

1 − ε < Mn(X0,X1, t1) 6M
n(X1,X2,ϕ(t(1)

0 )) 6 · · · 6Mn(Xn1 ,Xn1+1,ϕn1(t
(1)
0 ))

6Mn(Xn1 ,Xn1+1, t(2)
0 ) 6 · · · 6Mn(Xn1+n2 ,Xn1+n2+1,ϕn2(t

(2)
0 ))

...

6Mn(Xn1···+nn0+i
,Xn1+···+nn0+i+1,ϕnn0+i(t

(n0)
0 )) 6Mn(Xm,Xm+1, t),

for m = n1 + · · ·+nn0 + i, i ∈N, and nj > N(t
(j)
0 ), j ∈ {1, · · · ,nn0}, which implies that (3.1) holds.

Step 2. We claim that for any t > 0,

Mn(Xi,Xj, t) > ∗j−iMn(Xi,Xi+1, t−ϕN
′(r)(r)), for j > i+ 1, (3.2)

where r > t. Since ϕ ∈ Φk, for any t > 0, there exist r > t and N′(r) ∈ N such that ϕN
′(r)(r) < t, by
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Lemma 3.1. By (POF− 4), (ii) and the monotonicity of ∗, we get

Mn(Xi,Xj+1, t) =Mn(Xi,Xj+1, t−ϕN
′(r)(r) +ϕN

′(r)(r))

>Mn(Xi,Xi+1, t−ϕN
′(r)(r)) ∗Mn(Xi+1,Xj+1,ϕN

′(r)(r))

>Mn(Xi,Xi+1, t−ϕN
′(r)(r)) ∗Mn(Xi,Xj,ϕN

′(r)−1(r))

>Mn(Xi,Xi+1, t−ϕN
′(r)(r)) ∗Mn(Xi,Xj, t)

>Mn(Xi,Xi+1, t−ϕN
′(r)(r)) ∗ (∗j−iMn(Xi,Xi+1, t−ϕN

′(r)(r))

= ∗j+1−iMk(Xi,Xi+1, t−ϕN
′(r)(r)).

Thus, we prove that if (3.2) holds for j > i+ 1, then it also holds for j+ 1.
Step 3. We claim that {Xm} is a Cauchy sequence. As ∗ is equi-continuous at a = 1, for ε ∈ (0, 1) there
exists η ∈ (0, 1) such that

if a ∈ (1 − η, 1], then ∗n a > 1 − ε, for n ∈N. (3.3)

It follows from (3.1) that there exists n1 ∈N such that Mn(Xm,Xm+1, t−φ(r)) > 1− η for m > n1. So,
by (3.3), we have

∗j−iMn(Xi,Xi+1, t−φ(r)) > 1 − ε, (3.4)

for j > i+ 1. By (3.2) and (3.4), we get for each t > 0 and ε ∈ (0, 1), Mn(Xi,Xj, t) > 1− ε for j > i+ 1 > n1,
which implies that {Xm} is a Cauchy sequence.

Theorem 3.6. Let (Xk,Mk, ∗,�1) be a complete k-poFMS such that ∗ is a continuous t-norm of H-type. Let
T : Xk → Xk and G : Xk → Xk be two mappings such that T is a Gk-isotone mapping and T(Xk) ⊆ G(Xk).
Assume that there exists ϕ ∈ Φk such that, for t > 0 and (y1, · · · ,yk), (v1, · · · , vk) ∈ Xk with G(y1, · · · ,yk) �1
G(v1, · · · , vk),

Mk(T(y1, · · · ,yk), T(v1, · · · , vk),ϕ(t)) >Mk(G(y1, · · · ,yk),G(v1, · · · , vk), t). (3.5)

Also suppose that either

(C1) T and G are continuous and J-compatible and Mk(X, Y, ·) : R+ → I is continuous; or

(C2) (Xk, τMk ,�) has the sequential monotone property and G(Xk) is closed.

If there exists (y1
0, · · · ,yk0 ) ∈ Xk such that G(y1

0,y2
0, · · · ,yk0 ) �1 T(y

1
0,y2

0, · · · ,yk0 ) and

lim
t→∞Mk(G(y1

0,y2
0, · · · ,yk0 ), T(y

1
0,y2

0, · · · ,yk0 ), t) = 1,

then T and G have a coincidence point.

Proof. Since (Xk,Mk, ∗,�1) is a complete k-poFMS such that ∗ is a continuous t-norm of H-type. Let
Y0 = (y1

0,y2
0, · · · ,yk0 ) ∈ Xk such that G(Y0) �1 T(Y0) and limt→∞Mk(G(Y0), T(Y0), t) = 1. Since T(Xk) ⊆

G(Xk), there exists Y1 = (y1
1, · · · ,yk1 ) ∈ Xk such that G(Y1) = T(Y0). Recursively, we see that, for every

m ∈ N, there exists Ym+1 = (y1
m+1, · · · ,ykm+1) ∈ Xk such that G(Ym+1) = T(Ym). Set Z0 = G(Y0) and

Zm+1 = G(Ym+1) = T(Ym) for every m ∈N.
Since G(Y0) �1 T(Y0), we suppose that G(Y0) �1 T(Y0), i.e., Z0 �1 Z1. Assume that Zm−1 �1 Zm for

some m ∈ N0, that is, G(Ym−1) �1 G(Ym). Since T is a Gk-isotone mapping, we get Zm = T(Ym−1) �1
T(Ym) = Zm+1. This actually means that the sequence {Zm} is non-decreasing. Using (3.5) and mono-
tonicity of {Zm}, we get

Mk(Zn,Zm,ϕ(t)) =Mk(T(Yn−1), T(Ym−1),ϕ(t))



J. M. Jin, C. X. Zhu, Z. Q. Wu, H. C. Wu, J. Nonlinear Sci. Appl., 10 (2017), 2052–2065 2059

>Mk(G(Yn−1),G(Ym−1), t)

=Mk(Zn−1,Zm−1, t),

for m,n ∈ N and t > 0. Obviously, the inequality (3.5) implies that ϕ(t) > 0 for t > 0. Indeed, if there
exists some t0 > 0 such that ϕ(t0) = 0, then it follows from (3.5) that

0 =Mk(T(Y), T(Y),ϕ(t0)) >M
k(G(Y),G(Y), t0) = 1,

which is a contradiction. Since limt→∞Mk(G(Y0), T(Y0), t) = 1, we have limt→∞Mk(Z0,Z1, t) = 1. By
Lemma 3.5, {Zm} is a Cauchy sequence.

Now suppose that the condition (C1) holds. Since (Xk,Mk, ∗,�1) is complete, there exists Ẑ ∈ Xk such
that limm→∞ Zm = Ẑ, that is,

lim
m→∞ T(Ym) = lim

m→∞G(Ym) = Ẑ. (3.6)

Since T and G are J-compatible, we have

lim
m→∞Mk(G(G(Ym+1)), T(G(Ym)), t) = lim

m→∞Mk(G(T(Ym)), T(G(Ym)), t) = 1, (3.7)

for t > 0. As G is continuous, we have

lim
m→∞G(G(Ym)) = G(Ẑ). (3.8)

Using Lemma 3.2, we find that Mk is a continuous mapping on Xk×Xk× (0,∞). By the continuity of Mk

and (3.6), (3.7), (3.8), we have 1 = limm→∞Mk(G(G(Ym+1)), T(G(Ym)), t) = Mk(G(Ẑ), T(Ẑ), t) for t > 0,
which implies G(Ẑ) = T(Ẑ), i.e., Ẑ is a coincidence point of T and G.

Now, suppose that the condition (C2) holds. Since (Xk,Mk, ∗,�1) is complete and G(Xk) is closed,
there exists Z ∈ Xk such that limm→∞ T(Ym) = limm→∞G(Ym) = G(Z). Since (Xk, τMk ,�) has the
sequential monotone property, we have G(Ym) �1 G(Z) for m ∈ N0. Since ϕ ∈ Φk, for each t > 0
there exist r > t and N(r) ∈ N such that ϕn(r) < t, for n > N(r), by Lemma 2.16. So, by (3.5) and the
monotonicity of Mk(X, Y, ·), we have

Mk(T(Ym), T(Z), t) >Mk(T(Ym), T(Z),ϕN(r)(r))

>Mk(G(Ym),G(Z),ϕN(r)−1(r))

>Mk(G(Ym),G(Z), t),

for t > 0 and m ∈ N0. Letting m→∞ in the above inequality, we get T(Ym)→ T(Z). By the uniqueness
of the limit, we conclude that G(Z) = T(Z), i.e., Z is a coincidence point of T and G.

Theorem 3.7. In addition to the hypotheses of Theorem 3.6, let G be weakly compatible with T if assumption (C2)
holds. Suppose that for all coincidence points Y,V ∈ Xk of mappings T and G, there exists U ∈ Xk such that

(C3) G(U) is comparable to G(Y) and G(V);

(C4) limt→∞Mk(G(U),G(Y), t) = limt→∞Mk(G(U),G(V), t) = 1.

Then T and G have a unique common fixed point.

Proof. Let U0 = U and define a sequence {G(Um)} by G(Um+1) = T(Um) for m ∈ N. We assume that
G(Y) �1 G(U0). Since T is a Gk-isotone mapping, we have G(Y) = T(Y) �1 T(U0) = G(U1). By induction
we obtain G(Y) �1 G(Um) for m ∈ N. Owing to limt→∞Mk(G(U0),G(Y), t) = 1, for any ε ∈ (0, 1),
there exists t1 > 0 such that Mk(G(U0),G(Y), t1) > 1 − ε. For each t1 > 0, by Lemma 2.15, we obtain

inf{tm}∈T {t0| limm→∞ tm = t0} = 0 for T = {{tm}|tm+1 = ϕN(t
(m)
0 )(t

(m)
0 ), t(m)

0 ∈ Ltm , m ∈ N+}. For each
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t > 0, there exist {tm} ∈ T and N(t
(m0)
0 ) ∈ N such that ϕn(t(m0)

0 ) < t for n > N(t
(m0)
0 ). So, by (3.5) and

the monotonicity of Mk(X, Y, ·), we get

1 − ε < Mk(G(U0),G(Y), t1) 6M
k(G(U0),G(Y), t

(1)
0 ) 6Mk(T(U0), T(Y),ϕ(t

(1)
0 ))

6Mk(G(U1),G(Y),ϕ(t
(1)
0 )) 6 · · · 6Mk(G(U

N(t
(1)
0 )

,G(Y),ϕN(t
(1)
0 )(t

(1)
0 ))

6Mk(G(U
N(t

(1)
0 )

,G(Y), t(2)
0 ) 6 · · · 6Mk(G(Um),G(Y),ϕN(t

(m0)
0 )+i(t

(m0)
0 ))

6Mk(G(Um),G(Y), t),

for m = N(t
(1)
0 ) + · · ·+N(tm0

0 ) + i and i ∈N. Since ε, t > 0 are arbitrary, we deduce that

Mk(G(Um),G(Y), t)→ 1 as m→∞.

This shows that limm→∞G(Um) = G(Y). Similarly, we find that limm→∞G(Um) = G(V). The uniqueness
of the limit proves that limm→∞G(Um) = G(Y) = G(V).

Denote W = T(Y) = G(Y). Since T and G are weakly compatible mappings, we have T(W) = TG(Y) =
GT(Y) = G(W). So, W is also a coincidence point of T and G. Therefore, G(W) = G(Y) = W and W is a
common fixed point of T and G. In order to prove the uniqueness, assume that W∗ is another common
fixed point of T and G. Then we have W∗ = G(W∗) = G(W) =W. This completes the proof.

Definition 3.8. Let F : Xn → Xk and g : Xk → Xk be two mappings, where l = n
k ∈ N. A point

(x1, x2, · · · , xn) ∈ Xn is a common fixed point of F and g if

F(xσi+1(1), xσi+1(2), · · · , xσi+1(n)) = g(xik+1, · · · , xik+k) = (xik+1, · · · , xik+k), for i ∈ {0, 1, · · · , l− 1}.

Definition 3.9. Given n > 2, the mappings F : Xn → Xk and g : Xk → Xk are weakly compatible for
l = n

k ∈N, if

F(xσi+1(1), · · · , xσi+1(n)) = g(xik+1, · · · , xik+k), for i ∈ {0, 1, · · · , l− 1}⇒
gF(xσi+1(1), · · · , xσi+1(n)) = F(g(xσi+1(1), · · · , xσi+1(k)), · · · ,g(xσi+1(jk+1) · · · ,

xσi+1(jk+k)), · · · ,g(xσi+1(n−k+1), · · · , xσi+1(n)), for i ∈ {0, 1, · · · , l− 1}.

Theorem 3.10. Let (Xn,Mn, ∗,�l) be a complete k-poFMS with continuous t-norm ∗ of H-type for n
k and

n,k ∈ N. Let Φ = (σ1,σ2, · · · ,σl) be an l-tuple of mappings from Λn into itself verifying σi+1 ∈ ΩAB,
if i+ 1 ∈ A and σi+1 ∈ Ω′AB, if i+ 1 ∈ B. Suppose that F : Xn → Xk and g : Xk → Xk are two mappings,
satisfying that F has the mixed gk-monotone property on Xk and F(Xn) ⊆ g(Xk). Assume that there exists ϕ ∈ Φk
such that

Mk(F(x1, · · · , xn), F(y1, · · · ,yn),ϕ(t)) > γ(∗l−1
i=0M

k(g(xik+1, · · · , xik+k),g(yik+1, · · · ,yik+k), t), (3.9)

for t > 0 and x1, · · · , xn, y1, · · · ,yn ∈ X with

g(xik+1, · · · , xik+k) �i+1 g(yik+1 · · · ,yik+k) for i ∈ {0, 1, · · · , l− 1},

where γ : [0, 1]→ [0, 1] is a mapping such that ∗lγ(a) > a for a ∈ [0, 1]. Suppose that

γ(∗l−1
i=0M

k(g(xσj+1(ik+1), · · · , xσj+1(ik+k)),g(yσj+1(ik+1), · · · ,yσj+1(ik+k)), t))

> γ(∗l−1
i=0M

k(g(xik+1, · · · , xik+k),g(yik+1, · · · ,yik+k), t)), (3.10)

for j ∈ {0, 1, · · · , l− 1} and x1, x2, · · · , xn, y1,y2, · · · ,yn ∈ X, with

g(xik+1, · · · , xik+k) �i+1 g(yik+1, · · · ,yik+k), for i ∈ {0, 1, · · · , l− 1}.

Suppose that either
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(C5) F and g are continuous and Φl-compatible and Mk(X, Y, ·) : R+ → I is continuous; or

(C6) (Xk, τMk ,�l) has the sequential monotone property and g(Xk) is closed.

If there exist x1
0, x2

0, · · · , xn0 ∈ X such that

g(xik+1
0 , · · · , xik+k0 ) �i+1 F(x

σi+1(1)
0 , · · · , xσi+1(n)

0 ),

and
lim
t→∞Mk(g(xik+1

0 , · · · , xik+k0 ), F(xσi+1(1)
0 , · · · , xσi+1(n)

0 ), t) = 1, (3.11)

for i ∈ {0, 1, · · · , l− 1}, then F and g have, at least one Υk-coincidence point.
Furthermore, assume that for all pairs of Υk-coincidence points (x1, x2, · · · , xn), (y1,y2, · · · ,yn) ∈ Xn of F and g,
there exists (u1,u2, · · · ,un) ∈ Xn such that

(C7) (g(u1,u2, · · · ,uk), · · ·,g(un−k+1, · · · ,un)) is comparable to (g(x1, · · · , xk), · · · ,g(xn−k+1, · · · , xn))
and (g(y1, · · · ,yk), · · · ,g(yn−k+1, · · · ,yn));

(C8) lim→∞Mk(g(uik+1, · · · ,uik+k),g(xik+1, · · · , xik+k), t) = limt→∞Mk(g(uik+1,· · · ,uik+k),g(yik+1,
· · · ,yik+k), t) = 1 for i ∈ {0, 1, · · · , l− 1}.

Also, assume that F is weakly compatible with g if assumption (C6) holds. Then F and g have a unique common
fixed point.

Proof. Let T : Xn → Xn and G : Xn → Xn be two mappings defined by

T(Y) = (F(yσ1(1), · · · ,yσ1(n)), · · · , F(yσl(1), · · · ,yσl(n))), (3.12)

and
G(Y) = (g(y1, · · · ,yk), · · · ,g(yn−k+1, · · · ,yn)), (3.13)

for Y ∈ Xn. It follows from F(Xn) ⊆ g(Xk) that T(Xn) ⊆ G(Xn). By (3.11), definition of Mn and the
continuity of ∗, there exists Y0 such that G(X0) �l T(x0) and limt→∞Mn(G(x0), T(x0), t) = 1. Suppose
that {Ym}m>0 ⊂ Xn such that {G(Ym)}m>0 is monotone and the following limit exists

lim
m→∞ T(Ym) = lim

m→∞G(Ym) ∈ Xn.

From (3.12) and (3.13), we see that, for sequences {y1
m}m>0, {y2

m}m>0, · · · , {ynm}m>0 ⊆ X such that
{g(y1

m, · · · ,ykm)}m>0, · · · , {g(yik+1
m , · · · ,uik+km )}m>0, · · · , {g(yn−k+1

m , · · · ,ynm)}m>0 are monotone and the
following limit exists:

lim
m→∞ F(yσi+1(1)

m ,yσi+1(2)
m , · · · ,yσi+1(n)

m ) = lim
m→∞g(yik+1

m ,yik+2
m , · · · ,yik+km ) ∈ Xk,

for i ∈ {0, 1, · · · , l− 1}. Since F and g are Φl-compatible, we have

lim
m→∞Mn(GT(Ym), TG(Ym), t) = lim

m→∞ ∗l−1
i=0M

k(gF(y
σi+1(1)
m , · · · ,yσi+1(n)

m ),

F(g(y
σi+1(1)
m , · · · ,yσi+1(k)

m ), · · · ,g(yσi+1(n−k+1)
m , · · · ,yσi+1(n)

m )), t) = 1.

Therefore, T and G are compatible.
Now, we show that T is a Gk-isotone mapping. Suppose that G(Y) �l G(V) for Y,V ∈ Xn. By (2.1) and

(3.13), we have g(yjk+1, · · · ,yjk+k) � g(vjk+1, · · · , vjk+k) when j + 1 ∈ A and g(yjk+1, · · · ,yjk+k) �
g(vjk+1, · · · , vjk+k) when j + 1 ∈ B. For each i + 1 ∈ A, we have σi+1 ∈ ΩAB. So, for fixed i +
1 ∈ A, we have g(yσi+1(jk+1), · · · ,yσi+1(jk+k)) � g(vσi+1(jk+1), · · · , vσi+1(jk+k)) when j + 1 ∈ A and
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g(yσi+1(jk+1), · · · ,yσi+1(jk+k)) � g(vσi+1(jk+1), · · · , vσi+1(jk+k)) when j+ 1 ∈ B. Thus, by the mixed gk-
monotone property of F, for fixed i+ 1 ∈ A, we have

F(yσi+1(1), · · · ,yσi+1(jk),yσi+1(jk+1), · · · ,yσi+1(jk+k),yσi+1(jk+k+1), · · · ,yσi+1(n))

� F(yσi+1(1), · · · ,yσi+1(jk), vσi+1(jk+1), · · · , vσi+1(jk+k),yσi+1(jk+k+1), · · · ,yσi+1(n)), (3.14)

for j+ 1 ∈ A. Similarly, if j+ 1 ∈ B, then inequality (3.14) holds for fixed i+ 1 ∈ A. So, for fixed i+ 1 ∈ A,
inequality (3.14) holds for all j ∈ {0, 1, · · · , l− 1}. From this, we have

F(yσi+1(1),yσi+1(2), · · · ,yσi+1(n)) � F(vσi+1(1), · · · , vσi+1(k),yσi+1(k+1), · · · ,yσi+1(n))

� F(vσi+1(1), · · · , vσi+1(2k),yσi+1(2k+1), · · · ,yσi+1(n))

� · · ·
� F(vσi+1(1), · · · , vσi+1(n)),

(3.15)

for i+ 1 ∈ A. Similarly, we have

F(yσi+1(1),yσi+1(2), · · · ,yσi+1(n)) � F(vσi+1(1), vσi+1(2), · · · , vσi+1(n)), (3.16)

for i+ 1 ∈ B. Thus, by (3.12), (3.15), and (3.16), we deduce that T is a Gk-isotone mapping.
The conditions (C7) and (C8) imply that (C3) and (C4) hold. It is easy to deduce that T and G are

weakly compatible if assumption (C2) holds. If F and g are continuous, then T and G are continuous.
Given G(Y) �l G(V), by Lemma 3.4, (g(yσi+1(1), · · · ,yσi+1(k)), · · · ,g(yσi+1(lk+1), · · · ,yσi+1(lk+k))) and

(g(vσi+1(1), · · · , vσi+1(k)), · · · ,g(vσi+1(n−k+1), · · · , vσi+1(n))) are comparable by �l. Therefore, (3.9) and
(3.10) can be applied to these points, and it follows that for t > 0,

Mn(T(Y), T(V),ϕ(t)) = ∗l−1
i=0M

k(F(yσi(1), · · · ,yσi(n)), F(vσi(1), · · · , vσi(n)),ϕ(t))

> ∗l−1
i=0γ(∗

l−1
j=0M

k(g(yσi(jk+1), · · · ,yσi(jk+k)),g(vσi(jk+1), · · · , vσi(jk+k)), t))

> ∗l−1
i=0γ(∗

l−1
j=0M

k(g(yjk+1, · · · ,yjk+k),g(vjk+1, · · · , vjk+k), t))

= ∗l−1
i=0γ(M

n(G(Y),G(V), t)) = ∗lγ(Mn(G(Y),G(V), t))
>Mn(G(Y),G(V), t).

Next we shall prove that the condition (C2) holds. Since g(Xk) is closed, so is G(Xn). Suppose that
{Zm} is non-decreasing sequence in Xn such that Zm → Z as m → ∞. Using Lemma 3.3, we have
zik+sm → zik+s(m → ∞) for i+ 1 ∈ Λn and s ∈ {1, 2, · · · , s}. Since Zm �l Zm+1 for all m ∈ N0, then
(zik+1
m , · · · , zik+km )m∈N0 is a non-decreasing sequence when i + 1 ∈ A and (zik+1

m , · · · , zik+km )m∈N0 is a
non-decreasing sequence when i + 1 ∈ B. If i + 1 ∈ A, as (Xk, τMk ,�) has the sequential monotone
property, then we have zik+sm � zik+s for all m ∈ N0 and s ∈ {1, · · · ,k}. Similarly, if i + 1 ∈ B, then
(zik+1
m , · · · , zik+km ) � (zik+1, · · · , zik+k) for all m ∈ N0. That is, Zm �l Z for every m ∈ N0. The other

case is treated similarly.
Therefore, all conditions of Theorems 3.6 and 3.7 hold. Theorem 3.6 implies that T and G have a

coincidence point, which is a Υk-coincidence point of F and g. Moreover, it follows from Theorem 3.7 that
T and G have a unique common fixed point, which is a unique common fixed point of F and g.

4. An example

Example 4.1. Let (X,�) be the partially ordered set with X = [0, 1] and the natural ordering 6 of the real
numbers as the partially ordering �. Define M : X×X×R+ → I by

M(x,y, t) =

{
0, t = 0,

e−
|x−y|
t , t > 0.
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Then M(x,y, ·) : R+ → I is continuous. Let x ∗ y = min{x,y} for x,y ∈ X. Then (X,M, ∗) is complete FMS,
which have been proved in [20]. By the same way, we define (x1, x2) � (y1,y2) if and only if x1 � y1 and
x2 � y2. Then we have (X2,�) is a partially ordered set. Consider t,g : X → X defined by t(x) = x2

3 + 2
3

and g(x) = x. Let T ,G : X2 → X2 define by T(x1, x2) = (t(x1), t(x2)) and G(x1, x2) = (g(x1),g(x2)).
It is easy to verify the following statements.

(i) T(X2) ⊆ G(X2) and T is a G2-isotone mapping.

(ii) The condition (C1) holds.

(iii) There exists (y1,y2) = (0, 0) such that G(y1,y2) = (0, 0) � ( 2
3 , 2

3) = T(Y0).

Let (y1,y2), (v1, v2) ∈ X2 such that G(y1,y2) � G(v1, v2), that is, y1 6 v1 and y2 6 v2.
Next, we show that the inequality (3.5) is satisfied with ϕ(t) = 3t

4 for t > 0. If (3.5) does not hold, then
there exists t > 0 such that

M2(T(y1,y2), T(v1, v2),
3t
4
) < M2(G(y1,y2),G(v1, v2), t),

that is,

min{e−|
y2

1
3 −

v2
1

3 |/ 3t
4 , e−|

y2
2

3 −
v2

2
3 |/ 3t

4 } 6 min{e−|y1−v1|/t, e|y2−v2|/t},

i.e.,

min{
4
9
|y2

1 − v
2
1|,

4
9
|y2

2 − v
2
2|} > min{|y1 − v1|, |y2 − v2|}.

Since y, v ∈ [0, 1],

|y− v| <
4
9
|y2 − v2| =

4
9
|y− v|(y+ v) 6

8
9
|y− v|,

which is impossible. Hence (3.5) holds. By Theorem 3.6, T and G have a unique common fixed point,
which is Z = (1, 1).

Example 4.2. Let X = {0, 0.25, 0.5, 1.5, 1.75, 2} and M : X×X×R+ → I as follows:

M(x,y, t) =

{
1, |x− y| < t,

t
|x−y|+t , |x− y| > t.

(4.1)

As Gregori et al. have pointed out in [6], any FMS (X,M) is equivalent to Menger space in the sense that
M(x,y, t) = Fx,y(t) for all x,y ∈ X and t > 0. Thus, (X,M) is a complete FMS under ∗ = min.

Endow X with the following partial order:

x,y ∈ X, x � y⇔ x = y or (x,y) ∈ {(0, 0.5), (0, 0.25)}.

Endow X2 with the following partial order:

(x1, x2), (y1,y2) ∈ X2 or (x1,y1), (x2,y2) ∈ {(0, 0.5), (0, 0.25)}.

Let ϕ : R+ → R+ be defined by

ϕ(t) =


t

1+t , 0 6 t 6 1,
−t3 + 4

3 , 1 < t 6 2,
t− 4

3 , 2 < t <∞.

It is easy to see that ϕ(t) > t
1+t . Consider f,g : X→ X defined by

f(x) =

{
0, x ∈ {0, 0.25, 0.5, 1.75, 2},
0.25, x = 1.5.
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g(x) =


0, x ∈ {0, 0.5},
0.5, x = 1.5,
0.25, x ∈ {0.25, 1.75, 2}.

T(x1, x2) = (t(x1), t(x2)) and G(y1,y2) = (g(y1),g(y2)). It is not difficult to prove the following statements.

(i) T(X2) ⊆ G(X2).

(ii) The condition (C2) holds (Since τM2 is the discrete topology on X2).

(iii) There exists (y1,y2) = (0, 0) such that G(y1,y2) = (g(y1),g(y2)) � (t(y1), t(y2)) = T(y1,y2) and
limt→∞M2(G(y1,y2), T(y1,y2), t) = 1.

(iv) All conditions of Theorem 3.7 hold.

In fact, (0, 0), (0.5, 0.5), (0, 0.5) and (0.5, 0) are all coincidence points of T and G. Since T(G(ȳ1, ȳ2)) =
GT((ȳ1, ȳ2)), where ȳ1 ∈ {0, 0.5}, ȳ2 ∈ {0, 0.5}, by Definition 2.11, G is weakly compatible with T . In
addition, there exists (u1,u2) = (1.5, 1.5) such that G(ȳ1, ȳ2) 6 G(u1,u2) and G(ȳ1

′, ȳ2
′) 6 G(u1,u2). It

follows from (4.1) and (C4) holds.

(v) T is a G2-isotone mapping. Indeed, let (y1,y2),(v1, v2) ∈ X2 such that G(y1,y2) � G(v1, v2), i.e.,
g(y1) � g(v1) and g(y2) � g(v2).

(a) If g(y) = g(v) then y = v or y, v ∈ {0.25, 1.75, 2}, {0, 0.5}. Thus t(y) = t(v). If (g(y),g(v)) = (0, 0.25),
then y ∈ {0, 0.5}, v ∈ {0.25, 1.75, 2}. Thus t(y) = t(v).

(b) If (g(y),g(v)) = (0, 0.25), then y ∈ {0, 0.5} and v ∈ {0.25, 1.75, 2}. Thus t(y) = t(v).

(c) If (g(y),g(v)) = (0, 0.5), then, y ∈ {0, 0.5} and v = 1.5. Thus (t(y), t(v)) = (0, 0.25), i.e., t(y) � t(v).

Next, we shall prove that (3.5) holds. Let (y1,y2), (v1, v2) ∈ X2 such that G(y1,y2) � G(v1, v2), i.e.,
g(y1) � g(v1) and g(y2) � g(v2). Wang [20] have proved that if g(y) � g(v) holds, we obtain

M(t(y), t(v),ϕ(t)) >M(g(y),g(v), t).

By ∗ = min, for G(y1,y2) � G(v1, v2), we obtain

M2(T(y1,y2), T(v1, v2),ϕ(t)) >M2(G(y1,y2),G(v1, v2), t),

which implies (3.5) holds.
By Theorem 3.7, T and G have a unique common fixed point, which is Z = (0, 0).
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[2] L. Ćirić, Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces, Nonlinear Anal.,
72 (2010), 2009–2018.1



J. M. Jin, C. X. Zhu, Z. Q. Wu, H. C. Wu, J. Nonlinear Sci. Appl., 10 (2017), 2052–2065 2065

[3] J.-X. Fang, On ϕ-contractions in probabilistic and fuzzy metric spaces, Fuzzy Sets and Systems, 267 (2015), 86–99. 1
[4] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395–399. 2, 2
[5] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Non-

linear Anal., 65 (2006), 1379–1393. 1
[6] V. Gregori, S. Morillas, A. Sapena, On a class of completable fuzzy metric spaces, Fuzzy Sets and Systems, 161 (2010),

2193–2205 . 4.2
[7] D. J. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11

(1987), 623–632 . 1
[8] X.-Q. Hu, Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces, Fixed Point Theory

Appl., 2011 (2011), 14 pages. 1
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