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Abstract

This paper, mainly concerns the adaptive projective reduce order synchronization behavior of uncertain chaotic system.
By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two
chaotic and hyperchaotic systems asymptotically synchronized up to a desired identical and different scaling matrix. Numerical
simulation results show that the proposed method is effective, convenient, and also faster for projective dual synchronization of
chaotic and hyperchaotic systems. c©2017 All rights reserved.
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1. Introduction

The applications of fractional order chaotic and hyperchaotic systems are bountiful all around us and
its interest is fast gaining momentum. The science of fractional chaos is an interdisciplinary field which
crosses boundaries in the academic world such as economics, engineering, biology, chemistry, physics,
and etc. Issues in topics such as, the synchronization of order chaotic systems in a broad variety of
situations and the use of fractional order chaotic dynamics for various purposes, are at the forefront
of recent application topics in nonlinear science. These topics unites the knowledge of basic mathe-
matical properties of fractional order chaos and specific practical considerations of various applications
[7, 15, 19, 26, 27, 31, 32]. Synchronization of chaotic system with integer order is understood well since the
pioneering work by Pecora and Carrol [18]. Studies on chaos synchronization for the fractional order sys-
tems are just beginning to attract some attention due to its potential applications in secure communication
and control processing. There are many different methods and strategies of fractional order continuous
and discrete chaos synchronization have been developed such as activation feedback method, linear and
nonlinear feedback synchronization [3, 4, 8, 13, 20, 25, 29], sliding mode control [12, 16, 22, 23, 30, 34],
adaptive control [1, 2, 5, 9, 14, 21, 33], and projective synchronization [10, 17, 24]. To the best of our
knowledge, most of research efforts mentioned above have concentrated on studying the synchronization
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of fractional order chaotic systems whose models are identical, different. However, synchronization of
fractional order chaotic systems also can be induced even in strictly different order or reduced order syn-
chronization [6], especially the systems in biological science and social science. So, the study of reduced
order synchronization is very important from the perspective of control theory and very necessary from
the perspective of practical application. Reduced order synchronization is the problem of synchronizing a
slave system with projections of a master system. In this paper, we will show that the projective reduced
order synchronization between different fractional order chaotic systems may be used to manipulate the
scaling factor such that the drive and response systems could be synchronized up to a desired scaling
matrix, on the other hand, since the fractional order chaotic systems have uncertain parameters, it is dif-
ficult to find the projective reduced order synchronization. In this case, modified adaptive control is an
effective method for synchronizing the fractional order chaotic systems with uncertain parameters in the
sense of projective reduced order synchronization.

The rest of the paper is organized as follows. In Section 2, we briefly describe the problem. In Sections
3 and 4 we describe adaptive projective reduced-order synchronization strategies in different projection
with parameter update law for fourth order fractional order hyperchaotic Chen system and third order
fractional order Genesio-Tesi system. Conclusions are given in Section 5.

2. Problem description and control design for the projective reduce order synchronization

2.1. Problem description
Given the fractional order chaotic system, i.e., the drive system is

D
q
t x = f(x) + F(x)α,

where x = (x1, x2, ..., xm)T ∈ Rm is the state vector of the system, α ∈ Rk is the unknown parameter vector
of the system, and f(x) : Rm → Rm, F(x) : Rm → Rm×k. On the other hand, the controlled response
system is given by:

D
q
t y = g(y) +G(y)β+U, (2.1)

where y = (y1,y2, ...,yn)T ∈ Rn is the state vector of the system, β ∈ R` is the unknown parameter
vector of the system, and g(y) : Rn → Rn, G(y) : Rn → Rn×`, U ∈ Rn. When order n = m, ` = k

and the functions f = g, F = G, the response system is identical to the drive system, and the projective
synchronization problem has been well studied [10, 17, 24]. When two systems satisfy the condition
m < n (of course f 6= g, and F 6= G), that is, the order of the response system is lower than that of the
drive system, the projective synchronization is only attained in reduce-order. Therefore, we can divide
the master system into two parts. The projection:

D
q
t xi = fi(x) + Fi(x)α, (2.2)

where xi ∈ Rn, fi : Rm → Rn, and Fi : Rm → Rn×k, and the rest:

D
q
t xj = fj(x) + Fj(x)α,

where xj ∈ Ru, fj : Rm → Ru, and Fj : Rm → Ru×k, and orders n,u satisfy n+ u = m. The purpose of the
reduce order synchronization is to design a controller U, which is able to synchronize the two identical
or different chaotic (hyper-chaotic) systems with a scaling matrix, i.e.,

lim
t→∞ ‖y(t) −Hxi(t)‖ = 0,

where H is called the scaling matrix and ‖.‖ represents the Euclidean norm.
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Lemma 2.1 ([1, 2, 19]). If p > q > 0,m and n are integers such that 0 6 m− 1 6 p < m, 0 6 n− 1 6 q < n,
then we obtain

aD
q
t

(
aD

−q
t f (t)

)
= aD

p−q
t f (t) .

Lemma 2.2 ([1, 2, 19]). If p,q > 0, then there exist integers m and n such that 0 6 m− 1 6 p < m, 0 6 n− 1 6
q < n, then

aD
p
t

(
aD

q
t f (t)

)
= aD

p+q
t f (t) −

n∑
j=1

[
aD

q−j
t f (t)

]
t=a

(t− a)−p−j

Γ (1 − p− j)
.

Lemma 2.3 ([1, 2, 19]). Suppose f(t) has a continuous kth derivative in [0, t](k ∈ N, t > 0) and let p,q > 0, then
there exists some n ∈ N with n 6 k and p,p+ q ∈ [n− 1,n], then

aD
q
t aD

q
t f (t) = aD

p+q
t f (t) .

2.2. Projective reduce order synchronization controller design
The error vector between the systems (2.1) and (2.2) can be expressed as

D
q
t e(t) = g(y) +G(y)β−Hfi(x) −HFi(x)α+U. (2.3)

Here, let the control function U be

U = Hfi(x) +HFi(x)α− g(y) −G(y)β

+Dq−1
t

[
HFi(x)α̂−G(y)β̂− (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
− e

]
(2.4)

and adaptive laws of parameters are taken as

˙̂α = −[Fi(x)]
THe, ˙̂β =[G(y)]Te, (2.5)

where, α̂, β̂ are estimated values of α,β, respectively.

Theorem 2.4. For given synchronization scaling matrix H = diag(h1,h2, ...,hn) and any initial conditions,
projective reduce order synchronization between system (2.1) and system (2.2) will occur by the control law (2.4)
and the updating law of parameters (2.5).

Proof. Inserting (2.4) into (2.3) yields the following:

D
q
t e(t) = D

q−1
t

[
HFi(x)(α̂−α) −G(y)(β̂−β) − (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
− e

]
. (2.6)

Construct a positive Lyapunov function candidate in the form of:

V =
1
2

[
eTe+ α̃T α̃+ β̃T β̃

]
,

where α̃ = α̂− α, β̃ = β̂−β. The time derivative of V along the trajectory of the error dynamical system
(2.6) is as follows

V̇ =

[
eT ė+ ˙̃αT α̃+ ˙̃βT β̃

]
. (2.7)



M. M. Al-sawalha, J. Nonlinear Sci. Appl., 10 (2017), 2103–2114 2106

Using Lemma 2.2 in Eq. (2.7) we get

V̇ = eT

[
D

q−1
t (Dq

t e(t)) + (Dq−1
t e(t))

(t)−(q−1)−1

Γ(−(q− 1))

]
+ ˙̃αT α̃+ ˙̃βT β̃.

From Eqs. (2.5) and (2.7), we get

V̇ = eT

[
D

q−1
t

(
D

q−1
t

[
HFi(x)α̃−G(y)β̃− (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
−e
])

+ (Dq−1
t e(t))

(t)−(q−1)−1

Γ(−(q− 1))

]
+ ˙̃αT α̃+ ˙̃βT β̃.

(2.8)

Now, using Lemma 2.1 and Eq. (2.5), Eq. (2.8) reduces to

V̇ = eT

[
HF(x)α̃−G(y)β̃− (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
−e

+ (Dq−1
t e(t))

(t)−(q−1)−1

Γ(−(q− 1))

]
− eTHF(x)α̃+ eTG(y)β̃ = −eTe < 0.

According to the Lyapunov stability theory, the error variable becomes zero as time t tends to infinity,
i.e., lim

t→∞ ‖e(t)‖ = 0. This means that the drive system (2.1) and the response system (2.2) achieved the

projective reduce order synchronization about the scaling matrix H. This completes the proof.

3. Projective reduce order synchronization between the projection (xyz) of the fractional-order hyper-
chaotic Chen and Genesio-Tesi systems

In this section, we take the projection (xyz) of the fractional-order hyperchaotic Chen system [28] and
Genesio-Tesi system [11] into consideration. The fractional-order hyperchaotic Chen system is described
as follows:

D
q1
t x1 = a1(y1 − x1) +w1,

D
q2
t y1 = d1x1 − x1z1 + c1y1,
D

q3
t z1 = x1y1 − b1z1,

D
q4
t w1 = y1z1 + r1w1,

(3.1)

and the fractional-order Genesio-Tesi system is described as follows:

D
q1
t x2 = y2 + u1,

D
q2
t y2 = z2 + u2,

D
q3
t z2 = −a2x2 − b2y2 − c2z2 + x

2
2 + u3,

(3.2)

where q is the fractional-order satisfying 0 < q 6 1 and u1,u2,u3 are three control functions to be
designed and all parameters a1,d1, c1,b1, r1,a2,b2, c2 are unknown. The error system between system
(3.1) and system (3.2) can be defined as

D
q1
t e1(t) = (e2 + h2y1) − h1a1(y1 − x1) − h1w1 + u1,

D
q2
t e2(t) = (e3 + h3z1) − h2d1x1 + h2x1z1 − h2c1y1 + u2,

D
q3
t e3(t) = −a2(e1 + h1x1) − b2(e2 + h2y1) − c2(e3 + h3z1) + (e1 + h1x1)

2 − h3x1y1 + h3b1z1 + u3,

(3.3)
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where e1 = x2 −h1x1, e2 = y2 −h2y1, e3 = z2 −h3z1 and h = dig(h1,h2,h3) is the scaling matrix. Our goal
is to derive the controller U with a parameter estimation update law such that Eqs. (3.1) synchronize Eqs.
(3.2), the controllers are taken as

u1 = −(e2 + h2y1) + h1a1(y1 − x1) + h1w1 +D
q1−1
t

[
h1â1(y1 − x1)

− (Dq1−1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

]
,

u2 = −(e3 + h3z1) + h2d1x1 − h2x1z1 + h2c1y1 +D
q2−1
t

[
h1d̂1x1 + h2ĉ1y1

− (Dq2−1
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

]
,

u3 = a2(e1 + h1x1) + b2(e2 + h2y1) + c2(e3 + h3z1) − (e1 + h1x1)
2 + h3x1y1

− h3b1z1 +D
q3−1
t

[
â2(e1 + h2x1) + b̂2(e2 + h2y1) + ĉ2(e3 + h3z1) − h3b̂1z1

− (Dq3−1
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

]
,

(3.4)

and parameter update rules are

˙̂a1 = −h1(y1 − x1)e1,
˙̂d1 = −h2x1e2,
˙̂c1 = −h2y1e2,
˙̂b1 = h3z1e3,
˙̂a2 = −(e1 + h1x1)e3,
˙̂b2 = −(e2 + h2y1)e3,
˙̂c2 = −(e3 + h3z1)e3,

(3.5)

where, â1, d̂1, ĉ1, b̂1, â2, b̂2, ĉ2 are estimates of a1,d1, c1,b1,a2,b2, c2, respectively.

Theorem 3.1. For given synchronization scaling matrix h = diag(h1,h2, ...,hn) and any initial conditions, pro-
jective reduce order synchronization between system (3.1) and system (3.2) will occur by the control law (3.4) and
the updating law of parameters (3.5).

Proof. Inserting (3.4) into (3.3) yields the following:

D
q1
t e1(t) = D

q1−1
t

[
h1ã1(y1 − x1) − (Dq1−1

t e1(t))
(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

]
,

D
q2
t e2(t) = D

q2−1
t

[
h2d̃1x1 + h2c̃1y1 − (Dq2−1

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

]
,

D
q3
t e3(t) = D

q3−1
t

[
ã2(e1 + h1x1) + b̃2(e2 + h2y1) + c̃2(e3 + h3z1) − h3b̃1z1

− (Dq3−1
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

]
,

(3.6)

where ã1 = â1 − a1, d̃1 = d̂1 − d1, c̃1 = ĉ1 − c1, b̃1 = b̂1 − b1, ã2 = â2 − a2, b̃2 = b̂2 − b2, c̃2 = ĉ2 − c2.
Consider the following Lyapunov function candidate:

V =
1
2

(
eTe+ ã2

1 + d̃
2
1 + c̃

2
1 + b̃

2
1 + ã

2
2 + b̃

2
2 + c̃

2
2

)
. (3.7)
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The time derivative of V along the solution of error dynamical system equation (3.7) gives

V̇ =
(
e1ė1 + e2ė2 + e3ė3 + ã1 ˙̃a1 + d̃1

˙̃d1 + c̃1 ˙̃c1 + b̃1
˙̃b1 + ã2 ˙̃a2 + b̃2

˙̃b2 + c̃2 ˙̃c2

)
. (3.8)

Using Lemma 2.2 in Eq. (3.8) we get

V̇ =

(
e1

[
D

1−q1
t (Dq1

t e1(t)) + (Dq1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))

]

+ e2

[
D

1−q2
t (Dq2

t e2(t)) + (Dq2
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))

]

+ e3

[
D

1−q3
t (Dq3

t e3(t)) + (Dq3
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))

]

+ ã1 ˙̃a1 + d̃1
˙̃d1 + c̃1 ˙̃c1 + b̃1

˙̃b1 + ã2 ˙̃a2 + b̃2
˙̃b2 + c̃2 ˙̃c2

)
,

=

(
e1

[
D

1−q1
t

(
D

q1−1
t

[
h1ã1(y1 − x1) − (Dq1−1

t e1(t))
(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

])
+ (Dq1

t e1(t))
(t)−(q1−1)−1

Γ(−(q1 − 1))

]

+ e2

[
D

1−q2
t

(
D

q2−1
t

[
h2d̃1x1 + h2c̃1y1 − (Dq2−1

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

])
+ (Dq2

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))

]

+ e3

[
D

1−q3
t

(
D

1−q3
t

[
ã2(e1 + h1x1) + b̃2(e2 + h2y1) + c̃2(e3 + h3z1)

− h3b̃1z1 − (D1−q3
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

])
+ (Dq3

t e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))

]

+ ã1 ˙̃a1 + d̃1
˙̃d1 + c̃1 ˙̃c1 + b̃1

˙̃b1 + ã2 ˙̃a2 + b̃2
˙̃b2 + c̃2 ˙̃c2

)
.

(3.9)

Now, using Lemma 2.1, Eq. (3.9) reduces to

V̇ = e1

[
h1ã1(y1 − x1) − e1

]
+ e2

[
h2d̃1x1 + h2c̃1y1 − e2

]
+ e3

[
ã2(e1 + h2x1)

+ b̃2(e2 + h2y1) + c̃2(e3 + h3z1) − h3b̃1z1 − e3

]
+ ã1

(
− h1(y1 − x1)e1

)
+ d̃1

(
− h2x1e2

)
+ c̃1

(
− h2y1e2

)
+ b̃1

(
h3z1e3

)
+ ã2

(
− (e1 + h1x1)e3

)
+ b̃2

(
− (e2 + h2y1)e3

)
+ c̃2

(
− (e3 + h3z1)e3

)
,

= −e2
1 − e

2
2 − e

2
3 < 0.

Since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of system equa-
tion (3.6), it follows lim

t→∞ ‖e (t)‖ = 0. Therefore system (3.2) can synchronize system (3.1) asymptotically.

This completes the proof.
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Figure 1: (a): Error signals between drive and response systems, (b)-(c): Estimated values for unknown parameters with same
scaling factors in (xyz) projection.
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Figure 2: (a): Error signals between drive and response systems, (b)-(c): Estimated values for unknown parameters with different
scaling factors in (xyz) projection.

To verify and demonstrate the effectiveness and the feasibility of the presented projective reduce
order synchronization method, the simulation results have been performed. In the numerical simulation,
the Adams-Bashforth-Moulton method is used to solve the systems. The fractional order is chosen as
qi = 0.94, i = 1, 2, 3, 4 to ensure the hyperchaotic and chaotic behavior. The parameters are always
chosen as a1 = 35,d1 = 7, c1 = 12,b1 = 3, a2 = 6, c2 = 1.2,b2 = 2.92. The initial conditions are
(x1(0) = 12,y1(0) = 22, z1(0) = 31,w1(0) = 4) and (x2(0) = 0.3,y2(0) = 0.7, z2(0) = 1.2). In addition, the
initial condition of the parameter update law is (a1(0) = 0.2,d1(0) = 0.2, c1(0) = 0.2,b1(0) = 0.2) and
(a2(0) = 10,b2(0) = 0.2, c2(0) = 0.2). Fig. 1 displays the time evolutions of the dynamics errors and
depicts the dynamics of the parameters estimation of the systems (3.1) and (3.2) with the scaling factor
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hi = −1, i = 1, 2, 3. Fig. 2 displays the time evolutions of the dynamics errors and depicts the dynamics of
the parameters estimation of the systems (3.1) and (3.2) with different scaling factors h1 = 2,h2 = −3,h3 =
1. Obviously, the projective reduce order synchronization errors converge asymptotically to zero and two
systems (3.1) and (3.2) are indeed achieved with projective reduce order synchronization. Furthermore,
the estimated values of unknown converge to a1 = 35,d1 = 7, c1 = 12,b1 = 3, a2 = 6, c2 = 1.2,b2 = 2.92
as t→∞.

4. Projective reduce order synchronization between the projection (xyw) of the fractional order hy-
perchaotic Chen and Genesio-Tesi systems

In order to investigate the projective reduce order synchronization behavior between the projection
(xyw) of the fractional order hyperchaotic Chen Eqs. (3.1) and the fractional order Genesio-Tesi systems
Eqs. (3.2), we assume that the (xyw) projection of the fractional order hyperchaotic Chen systems is the
master system, therefore, the error system can be presented in the form of

D
q1
t e1(t) = (e2 + h2y1) − h1a1(y1 − x1) − h1w1 + u1,

D
q2
t e2(t) = (e3 + h3z1) − h2d1x1 + h2x1z1 − h2c1y1 + u2,

D
q3
t e3(t) = −a2(e1 + h1x1) − b2(e2 + h2y1) − c2(e3 + h3z1) + (e1 + h1x1)

2

− h3y1z1 − h3r1w1 + u3,

(4.1)

where e1 = x2 − h1x1, e2 = y2 − h2y1, e3 = z2 − h3w1 and h = dig(h1,h2,h3) is the scaling matrix. Our
goal is to derive the controller U with a parameter estimation update law such that Eqs. (3.1) synchronize
Eqs. (3.2), the controllers are taken as

u1 = −(e2 + h2y1) + h1a1(y1 − x1) + h1w1 +D
q1−1
t

[
h1â1(y1 − x1)

− (D
q1−1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

]
,

u2 = −(e3 + h3z1) + h2d1x1 − h2x1z1 + h2c1y1 +D
q2−1
t

[
h1d̂1x1 + h2ĉ1y1

− (Dq2−1
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

]
,

u3 = a2(e1 + h1x1) + b2(e2 + h2y1) + c2(e3 + h3z1) − (e1 + h1x1)
2 + h3y1z1

+ h3r1w1 +D
q3−1
t

[
â2(e1 + h2x1) + b̂2(e2 + h2y1) + ĉ2(e3 + h3z1) + h3r̂1w1

− (D
q3−1
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

]
,

(4.2)

and parameter update rules are
˙̂a1 = −h1(y1 − x1)e1,
˙̂d1 = −h2x1e2,
˙̂c1 = −h2y1e2,
˙̂r1 = −h3w1e3,
˙̂a2 = −(e1 + h1x1)e3,
˙̂b2 = −(e2 + h2y1)e3,
˙̂c2 = −(e3 + h3z1)e3,

(4.3)

where, â1, d̂1, ĉ1, r̂1, â2, b̂2, ĉ2 are estimates of a1,d1, c1, r1,a2,b2, c2, respectively.

Theorem 4.1. For given synchronization scaling matrix h = diag(h1,h2, ...,hn) and any initial conditions, pro-
jective reduce order synchronization between system (3.1) and system (3.2) will occur by the control law (4.2) and
the updating law of parameters (4.3).
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Proof. Inserting (4.2) into (4.1) yields the following:

D
q1
t e1(t) = D

q1−1
t

[
h1ã1(y1 − x1) − (D

q1−1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

]
,

D
q2
t e2(t) = D

q2−1
t

[
h2d̃1x1 + h2c̃1y1 − (Dq2−1

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

]
,

D
q3
t e3(t) = D

q3−1
t

[
ã2(e1 + h1x1) + b̃2(e2 + h2y1) + c̃2(e3 + h3z1) + h3r̃1w1

− (D
q3−1
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

]
,

(4.4)

where ã1 = â1 − a1, d̃1 = d̂1 − d1, c̃1 = ĉ1 − c1, r̃1 = r̂1 − r1, ã2 = â2 − a2, b̃2 = b̂2 − b2, c̃2 = ĉ2 − c2.
Consider the following Lyapunov function candidate:

V =
1
2

(
eTe+ ã2

1 + d̃
2
1 + c̃

2
1 + r̃

2
1 + ã

2
2 + b̃

2
2 + c̃

2
2

)
,

The time derivative of V along the solution of error dynamical system equation (3.7) gives

V̇ =
(
e1ė1 + e2ė2 + e3ė3 + ã1 ˙̃a1 + d̃1

˙̃d1 + c̃1 ˙̃c1 + r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2
˙̃b2 + c̃2 ˙̃c2

)
. (4.5)

Using Lemma 2.2 in Eq. (4.5) we get

V̇ =

(
e1

[
D

1−q1
t (D

q1
t e1(t)) + (D

q1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))

]

+ e2

[
D

1−q2
t (Dq2

t e2(t)) + (Dq2
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))

]

+ e3

[
D

1−q3
t (D

q3
t e3(t)) + (D

q3
t e3(t))×

(t)−(q3−1)−1

Γ(−(q3 − 1))

]

+ ã1 ˙̃a1 + d̃1
˙̃d1 + c̃1 ˙̃c1 + r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2

˙̃b2 + c̃2 ˙̃c2

)
,

=

(
e1

[
D

1−q1
t

(
D

q1−1
t

[
h1ã1(y1 − x1) − (D

q1−1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

])
+ (D

q1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))

]

+ e2

[
D

1−q2
t

(
D

q2−1
t

[
h2d̃1x1 + h2c̃1y1 − (Dq2−1

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

])
+ (Dq2

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))

]

+ e3

[
D

1−q3
t

(
D

1−q3
t

[
ã2(e1 + h1x1) + b̃2(e2 + h2y1) + c̃2(e3 + h3z1)

+ h3r̃1w1 − (D
1−q3
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

])
+ (D

q3
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))

]

+ ã1 ˙̃a1 + d̃1
˙̃d1 + c̃1 ˙̃c1 + r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2

˙̃b2 + c̃2 ˙̃c2

)
.

Now, using Lemma 2.1, Eq. (3.9) reduces to

V̇ = e1

[
h1ã1(y1 − x1) − e1

]
+ e2

[
h2d̃1x1 + h2c̃1y1 − e2

]
+ e3

[
ã2(e1 + h2x1)
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+ b̃2(e2 + h2y1) + c̃2(e3 + h3z1) + h3r̃1w1 − e3

]
+ ã1

(
− h1(y1 − x1)e1

)
+ d̃1

(
− h2x1e2

)
+ c̃1

(
− h2y1e2

)
+ r̃1

(
− h3w1e3

)
+ ã2

(
− (e1 + h1x1)e3

)
+ b̃2

(
− (e2 + h2y1)e3

)
+ c̃2

(
− (e3 + h3z1)e3

)
= −e2

1 − e
2
2 − e

2
3 < 0.

Since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of system equa-
tion (4.4), it follows lim

t→∞ ‖e (t)‖ = 0. Therefore system (3.2) can synchronize system (3.1) asymptotically.

This completes the proof.
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Figure 3: (a): Error signals between drive and response systems, (b)-(c): Estimated values for unknown parameters with same
scaling factors in (xyw) projection.
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Figure 4: (a): Error signals between drive and response systems, (b)-(c): Estimated values for unknown parameters with different
scaling factors in (xyw) projection.
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To verify and demonstrate the effectiveness and the feasibility of the presented projective reduce
order synchronization method, the simulation results have been performed. In the numerical simulation,
the Adams-Bashforth-Moulton method is used to solve the systems. The fractional order is chosen as
qi = 0.94, i = 1, 2, 3, 4 to ensure the hyperchaotic and chaotic behavior. The parameters are always
chosen as a1 = 35,d1 = 7, c1 = 12, r1 = 0.5, a2 = 6, c2 = 1.2,b2 = 2.92. The initial conditions are
(x1(0) = 12,y1(0) = 22, z1(0) = 31,w1(0) = 4) and (x2(0) = 0.3,y2(0) = 0.7, z2(0) = 1.2). In addition,
the initial condition of the parameter update law is (a1(0) = 0.2,d1(0) = 0.2, c1(0) = 0.2, r1(0) = 0.2) and
(a2(0) = 10,b2(0) = 0.2, c2(0) = 0.2). Fig. 3 displays the time evolutions of the dynamics errors and
depicts the dynamics of the parameters estimation of the systems (3.1) and (3.2) with the scaling factor
hi = −1, i = 1, 2, 3. Fig. 4 displays the time evolutions of the dynamics errors and depicts the dynamics of
the parameters estimation of the systems (3.1) and (3.2) with different scaling factors h1 = 2,h2 = −3,h3 =
1. Obviously, the projective reduce order synchronization errors converge asymptotically to zero and two
systems (3.1) and (3.2) are indeed achieved with projective reduce order synchronization. Furthermore,
the estimated values of unknown converge to a1 = 35,d1 = 7, c1 = 12, r1 = 0.5, a2 = 6, c2 = 1.2,b2 = 2.92
as t→∞.

5. Conclusion

We have studied the projective reduce order synchronization of uncertain chaotic systems with dif-
ferent order. A novel adaptive reduce order synchronization controllers with corresponding parameter
update laws is proposed to projective synchronize the projection of the fourth-order fractional order hy-
perchaotic Chen system with the third order fractional order chaotic Genesio-Tesi system even though
their parameters are unknown. This technique has been successfully applied to several examples. The-
oretical analysis via the Lyapunov stability theory and numerical simulations have been shown to verify
our results for the projective reduce order synchronization of the proposed method.
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