
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 10 (2017), 2115–2132

Research Article

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

A cooperative coevolution PSO technique for complex bilevel programming
problems and application to watershed water trading decision making
problems

Tao Zhanga,∗, Zhong Chena, Jiawei Chenb,∗

aSchool of Information and Mathematics, Yangtze University, Jingzhou 434023, China.
bSchool of Mathematics and Statistics, Southwest University, Chongqing 400715, China.

Communicated by Y. J. Cho

Abstract
The complex bilevel programming problem (CBLP) in this paper mainly refers to the optimistic BLP in which the high-

dimensional decision variables at both levels. A cooperative coevolutionary particle swarm optimization (CCPSO) is proposed
for solving the (CBLP), in which the evolutionary paradigm can efficiently prevent the premature convergence of the swarm.
Furthermore, the stagnation detection strategy in our algorithm can further accelerate the convergence speed. Finally, we use the
test problems from the reference and practical example about watershed water trading decision-making problem to measure and
evaluate the proposed algorithm. The presented results indicate that the proposed algorithm can effectively solve the complex
bilevel programming problems. c©2017 All rights reserved.

Keywords: Complex bilevel programming, cooperative coevolutionary particle swarm optimization, watershed water trading
decision making problems, elite strategy.
2010 MSC: 65K10, 90C25.

1. Introduction and preliminaries

The bilevel programming problem (BLP) is a nested optimizations problem with two levels in a hi-
erarchy: the upper and lower level decision-makers. The upper level maker makes his decision firstly,
followed by the lower level decision maker. The objective function and constraint of the upper level prob-
lem not only rely on their own decision variables but also depend on the optimal solution of the lower
level problem. The lower level has to optimize its own objective function under the given parameters
from the upper level and the upper lever selects the parameters which feedback from the lower level to
optimize the whole problem. Since many practical problems, such as engineering design, management,
economic policy and traffic problems, can be formulated as hierarchical problems, BLP has been studied
and received increasing attention in the literatures. During the past decades, some surveys and biblio-
graphic reviews were given by several authors [11, 12, 15, 41]. Reference books on bilevel programming
and related issues have emerged [5, 10, 14, 34, 39].

∗Corresponding authors
Email addresses: zt_math981@126.com (Tao Zhang), j.w.chen713@163.com (Jiawei Chen)

doi:10.22436/jnsa.010.04.65

Received 2016-12-31

http://dx.doi.org/10.22436/jnsa.010.04.65

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2116

The bilevel programming problem is a nonconvex problem, which is extremely difficult to solve. As
we know, BLP is a NP-Hard problem [4, 7, 24]. Vicente et al. [42] also showed that even the search
for the local optima to the bilevel linear programming is NP-Hard. Even so, many researchers are de-
voted to develop the algorithms for solving BLP and propose many efficient algorithms. To date a few
algorithms exist to solve BLP, and they can be classified into four types: Karus-Kuhn-Tucker approach
(KKT) [2, 3, 16, 17], Branch-and-bound method [6], penalty function approach [1, 23, 31, 38] and descent
approach [18, 37]. The properties such as differentiation and continuity are necessary when proposing the
traditional algorithms. Unfortunately, the bilevel programming problem is nonconvex. Many researchers
tend to propose the heuristic algorithms for solving BLP because of their key characteristics of minimal
problem restrictions such as differentiation. Mathieu et al. [33] firstly developed a genetic algorithm
(GA) for bilevel linear programming problem because of its good characteristics such as simplicity, min-
imal problem restrictions, global perspective and implicit parallelism. Motivated by the same reason,
other kinds of genetic algorithm for solving bilevel programming were also proposed in [8, 22, 44, 45].
Because of the prominent advantage that neural computing can converge to the equilibrium point (op-
timal solution) rapidly, the neural network approach was used to solve bilevel programming problem
in [29, 32, 49]. Tabu search [21, 35, 46], simulated annealing [36], ant colony optimization [9] and λ-
cut and goal-programming-based algorithm [20] are also typical intelligent algorithms for solving bilevel
programming problem.

Particle swarm optimization (PSO) is a relatively novel heuristic algorithm inspired by the choreog-
raphy of a bird flock, which has been found to be quite successful in a wide variety of optimization
tasks [26]. Due to its high speed of convergence and relative simplicity, the PSO algorithm has been
employed for solving BLP problems. For example, Li et al. [30] proposed a hierarchical PSO for solving
BLP problem. Kuo and Huang [28] applied the PSO algorithm for solving bilevel linear programming
problem. Jiang et al. [25] presented the PSO based on CHKS smoothing function for solving nonlinear
bilevel programming problem. Gao et al. [19] presented a method to solve bilevel pricing problems in
supply chains using PSO. Zhang et al. [50] presented a new strategic bidding optimization technique
which applies bilevel programming and swarm intelligence. In addition, the hybrid algorithms based
on PSO are also proposed to solve the bilevel programming problems [27, 43, 48]. However, it is worth
noting that the mentioned above only for the relatively simple BLP and the complex bilevel programming
problem (CBLP) has seldom been studied using PSO so far. The main reason lies in the complexity of
the CBLP, namely that the high-dimensional decision variables at both levels. The difficulty for solving
CBLP is that the increasing dimensional lead to the solution space of CBLP increased dramatically, thus
the global convergence of the algorithm for CBLP is hard to be guaranteed and the convergence speed of
the algorithm becomes slow.

Though Sinha et al. [40] proposed a nested bilevel evolutionary algorithm for CBLP recently, there
still exist two problems: (a) for 10-dimensional test problems, the method in [40] can solve the first five
test problems successfully in all the runs, but it can hardly solve the remaining test problems; (b) for two
sets of test problems, the number of function evaluations of both levels is higher. From the problem (a), it
can be seen that the global convergence of the algorithm is hard to be guaranteed with the increase of the
dimension. From the problem (b), it is obvious that the convergence speed of the algorithm needs to be
improved. In this paper, a coadapted coevolutionary particle swarm optimization (CCPSO) is proposed
for solving the CBLP, in which the appropriate number of species can cover multiple niches and the
species interact with one another within a shared domain model and have a cooperative relationship,
thus the global convergence of the proposed algorithm for CBLP can be greatly improved. Furthermore,
the stagnation detection strategy in our algorithm will enable the evolutionary pressure to increase the
overall fitness of the ecosystem, which can further accelerate the convergence speed. In order to test the
effectiveness and practicability of the proposed algorithm, we introduced the algorithm to settle watershed
water trading decision-making problem. For the watershed water trading decision-making model based
on bilevel programming in [47], we reoptimize the optimal allocations parameters of water resources by
the proposed algorithm and the solutions found by the proposed method are better than those given in

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2117

the references.
The rest of this paper is organized as follows. Section 2 introduces the definitions and properties of

complex bilevel programming problems. Section 3 proposes a cooperative coevolution particle swarm
optimization algorithm for such problems. Some illustrative examples are provided in Section 4. The
CCPSO algorithm is applied for solving a practical problem in Section 5, while the conclusion is reached
in Section 6.

2. Problem formulation

Let x ∈ Rn1 ,y ∈ Rn2 , F, f : Rn1 × Rn2 → R, G : Rn1 × Rn2 → Rp, g : Rn1 × Rn2 → Rq. The optimistic
formulation of BLP can be written as follows:

min
x,y

F(x,y),

s.t. G(x,y) 6 0,
where y solves the following problem:
min
y

f(x,y),

s.t. g(x,y) 6 0,

(2.1)

where F(x,y) and f(x,y) are the upper level and the lower level objective functions, respectively. G(x,y)
and g(x,y) are the upper level and the lower level constraints, respectively. x ∈ Rn1 and y ∈ Rn2 are
the decision variables under the control of the upper and lower level problems, respectively. The basic
notions of BLP are recalled as follows:

(a) Constraint region of the BLP:

S = {(x,y)|G(x,y) 6 0,g(x,y) 6 0} .

(b) Feasible set for the lower level problem for each fixed x:

S(x) = {y|g(x,y) 6 0} .

(c) Projection of onto the upper level maker’s decision space:

S(X) = {x|∃y,G(x,y) 6 0,g(x,y) 6 0} .

(d) The lower level maker’s rational reaction set for each fixed with x ∈ S(X):

P(x) = {y|y ∈ argmin [f(x,y) : y ∈ S(x)]} .

(e) Inducible region:
IR = {(x,y)|(x,y) ∈ S,y ∈ P(x)} .

Definition 2.1. A point (x,y) is feasible if (x,y) ∈ IR.

Definition 2.2. A feasible point (x∗,y∗) is an optimal solution if (x∗,y∗) ∈ IR and F(x∗,y∗) 6 F(x̄, ȳ),
∀(x̄, ȳ) ∈ IR.

For problem (2.1), it is noted that a solution (x∗,y∗) is feasible for the upper level problem if and only
if y∗ is an optimal solution for the lower level problem with x = x∗. In practice, we often make the
approximate optimal solutions of the lower level problem as the optimal response feedback to the upper
level problem, and this point of view is accepted usually. Based on this fact, the CCPSO algorithm may
have a great potential for solving BLP. In the following, an algorithm based on the CCPSO is presented
for solving problem (2.1).

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2118

3. The algorithm

3.1. The CCPSO algorithm
We now describe a generalized architecture for evolving interacting coadapted subcomponents. The

architecture, which we call cooperative coevolution, models an ecosystem consisting of two or more
species. As in nature, the species are genetically isolated−meaning that individuals only mate with other
members of their species. Mating restrictions are enforced simply by evolving the species in separate
populations. The species interact with one another within a shared domain model and have a cooperative
relationship.

The basic coevolutionary model is shown in Fig. 1. Although this particular illustration shows three
species, the actual number in the ecosystem may be more or less. Each species is evolved in its own
population and adapts to the environment through the repeated application of the PSO. The figure shows
the fitness evaluation phase of the PSO from the perspective of each of the three species. Although most
of our implementations of this model have utilized a sequential pattern of evaluation, where the complete
population of each species is evaluated in turn, the species could also be evaluated in parallel. To eval-
uate individuals from one species, collaborations are formed with representatives from each of the other
species. There are many possible methods for choosing representatives with which to collaborate. In this
paper, it is appropriate to simply let the current best individual from each species be the representative.

Now we discuss the uses of cooperative coevolution particle swarm optimization (CCPSO) to minimize
a function f(x,y) of n independent variables. The problem was decomposed into n species and each
assigned to one of the independent variables. Each species consisted of a population of alternative values
for its assigned variable. To evaluate an individual from one of the species, we first selected the current
best individual from every one of the other species and combined them, along with the individual being
evaluated, into a vector of variable values. This vector was then applied to the target function. An
individual was rewarded based on how well it minimized the function within the context of the variable
values selected from the other species. The details of the proposed algorithm are given as follows:

Algorithm 3.1.

Step 1. Initialization scheme. Initialized the species randomly and each species represents a variable of a
complete solution. Then, go to Step 2 (a).

Step 2. Generate the complete solution.
(a) Select the individual from each of the other species randomly and combine them, along with

the individual being evaluated, into a vector. Then, go to Step 3.
(b) Select the current best individual from every one of the other species and combine them,

along with the individual being evaluated, into a vector. Then, go to Step 3.
Step 3. Credit evaluation. The credit assignment at the species level is defined in terms of the fitness

value of the complete solutions in which the species members participate.
Step 4. Species coevolutionary. Each of the species is coevolved in a round-robin fashion using a standard

PSO.
Step 5. Evolutionary stagnation detection. If the evolutionary stagnation condition of a species is false,

then, go to Step 7. Otherwise, go to Step 6.
Step 6. Reinitialization the stagnation species. Keep the member with the best credit assignment, the

remaining members are reinitialized randomly and the credit evaluation of these members is
computed as Step 3.

Step 7. Termination check. If termination condition is false, go to Step 2 (b). Otherwise, output the
optimal solution.

Evolutionary stagnation condition
It is well-known that PSO has the advantage of good convergence performance and the disadvantage

of easily trapping in local optimal. If a species is unproductive, determined by the contribution its

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2119

individuals make to the collaborations they participate in, the species will be destroyed. Stagnation can
be detected by monitoring the quality of the collaborations through the application of the inequality:

f(t) − f(t− L) < G,

where f(t) is the fitness of the best collaboration at the generation t, G is a constant specifying the
fitness gain considered to be a significant improvement, and L is a constant specifying the length of an
evolutionary window in which significant improvement must be made. In this paper, the G is set as 10−3.

Constraint handling
In these approaches, the pair-wise comparison used in tournament selection is exploited to make sure

that:

(i) when two feasible solutions are compared, the one with better objective function value is chosen;
(ii) when one feasible and one infeasible solutions are compared, the feasible solution is chosen;

(iii) when two infeasible solutions are compared, the one with smaller constraint violation is chosen.

Figure 1: Cooperative coevolutionary model of three species.

3.2. The CCPSO algorithm for CBLP
The process of the proposed algorithm for solving the CBLP is an interactive coevolutionary process.

We first initialize population, and then the CBLP is transformed to solve single level optimization prob-
lems in the upper level and the lower level interactively by the CCPSO. For each iteration, an approximate
optimal solution for problem 1 is obtained and this interactive procedure is repeated until the accurate
optimal solutions of the original problem are found. The details of the proposed algorithm are given as
follows:

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2120

Algorithm 3.2.

Step 1. Initialization scheme.
Step 1.1. Initialize a random population (Nu) of the upper level variables Xu. For each upper level

member Xi
u(i = 1, 2, · · · ,Nu), initialize a random population (Nl) of the lower level variables

Yl.
Step 1.2. For the fixed Xi

u(i = 1, 2, · · · ,Nu), perform a lower level optimization procedure to determine
the corresponding optimal lower level variables using Algorithm 3.1 and the optimal solution
of the lower level Yoptimal is obtained .

Step 2. Combine the upper level variables and the corresponding optimal lower level variables to generate
the complete upper level solution Zi

u = (Xi
u, Yoptimal)(i = 1, 2, · · · ,Nu). Evaluate the fitness value

of the complete upper level solutions based on the upper level function and constraints.
Step 3. Check the stop condition. If the stop condition is satisfied, the optimal solution is output; other-

wise go to Step 5.
Step 4. Update the upper level decision variables using the simulated binary crossover operator (SBX)

and the polynomial variation method (PM).

Step 5. Reinitialize the lower level members. For the updated Xi
u(i = 1, 2, · · · ,Nu), solve min

∣∣∣Xi
u −Xj

u

∣∣∣,
where Xj

u(j = 1, 2, · · · ,Nu) is the upper decision variables before updating. If Xp
u meets the

condition and the Yoptimal
p is the optimal lower lever variable corresponding to Xp

u, the Yoptimal
p

is reserved for next generation. The other (Nl−1) level particles are produced randomly in the
feasible region. According to the above method, the ns sub-swarms are produced.

Step 6. Combine the updated upper level variables and the corresponding lower level variables to gen-

erate the complete lower level solution Zi
l = ((Xi

u, Y1
i), (Xi

u, Y2
i), · · · , (Xi, Y

optimal
i) · · · , (Xi, Y

Nl

i)).
Then, evaluate the fitness value of the complete lower level solutions based on the lower level
function and constraints.

Step 7. Fix the upper level variables of the complete lower level solution, perform a lower level optimiza-
tion procedure to produce the corresponding optimal lower level variables using Algorithm 3.1
and the optimal lower level variable Yoptimal(i = 1, 2, · · · ,Nu) is obtained. Then, go to Step 2.

Termination condition

At Step 1.2 and Step 7, Algorithm 3.1 uses a variance based termination criteria. When the value
of αj, described in the following equation becomes less than αstop, the optimization task terminates. In
the following, we state the termination criteria at the lower level, which can be similarly extended to the
upper level. Let the variance of the lower level population members at generation j for each lower level
variable j be vji. If the number of lower level variables is ml, then αj is computed as:

αj =

ml∑
i=1

v
j
i

v
j
0

, (3.1)

where vi0 denotes the variance for the variable i in the initial lower level population, the value of αj usually
lies between 0 and 1 in (3.1). In this paper, the value of αstop is set as 10−5 for the lower level and the
value of αstop is set as 10−4 for the upper level.

4. Numerical experiments

In this section, the parameters are set as follows: the PSO parameters are set as follows: r1, r1 ∈
random(0, 1) the inertia weight ω = 0.7298 and acceleration coefficients with r1 = r1 = 1.49618. For the
CCPSO, the population sizes of each species were set as 10 at the upper level and lower level. All results

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2121

presented in this paper have been obtained on a personal computer (CPU:AMD Phenon(tm)X6 1055T
2.80GHz; RAM:3.25GB) using a C# implementation of the proposed algorithm.

4.1. Problem statement and its properties
In this section, we test our algorithm using two sets of twelve problems [40] which are scalable in

terms of number of variables. The first set is the 5-dimensional instance of these problems and the second
set is the 10-dimensional instance of these problems. Tables 1, 2, and 3 give the twelve problems and
describe the properties of these problems.

4.2. Experimental comparison
The results obtained by the CCPSO are compared with those obtained by the nested bilevel evo-

lutionary algorithm in [40]. We performed 11 runs for 5-dimension and 10-dimension problems. For
5-dimensional problems, the problems 1-5 and the problems 7-12, we choose p = 2,q = 3 and r = 1, and
the problem 6 we choose p = 2,q = 0, r = 1 and s = 2. For 10-dimensional problems, the problems 1-5
and the problems 7-12 we choose p = 5,q = 5 and r = 2, and the problem 6 we choose p = 5,q = 3, r = 2
and s = 2.

The results for 5-dimensional test problems are reported in Tables 4 and 5. Table 4 provides the
comparisons of function evaluations at upper and lower levels. The comparisons of the accuracy of
both levels and the number of lower level calls for 11 runs, as well as the average lower level function
evaluations required per lower level call are reported in Table 5. The similar result comparisons for
10-dimensional test problems are reported in Tables 6 and 7.

The fifth column and sixth column in Table 4 provides the median function evaluations required at
the lower and upper levels respectively. The numbers in the brackets provide a ratio of the function
evaluations required using the method in [40] against the function evaluations required using CCPSO.
Both the approaches are able to successfully handle all the test problems with five dimensions, however,
as can be observed from Table 4, the method in [40] requires 2.7 to 5.01 times function evaluations at
the upper level, and requires 5.21 to 9.10 times function evaluations at the lower level as compared to
CCPSO. From Table 5, we can obtain the following comments about our algorithm and the algorithm
in [40]: for some problems, such as problems 1, 2, 4, 6, 7, 9, 10, 11 and 12, the upper level’s accuracy
obtained by our algorithm is not worse than those obtained by the algorithm in [40], while the lower
level’s accuracy obtained by our algorithm is better than those obtained by the algorithm in [40]. For the
problems 3, 5, and 8, the upper level’s accuracy by our algorithm is worse than those by the algorithm in
[40], while the lower level’s accuracy by our algorithm is not worse than those by the algorithm in [40].
On the other hand, these results also provide the median number of lower level calls, and the average
number of lower level function evaluations required per lower level call. The method in [40] requires
nearly three times lower level calls, and requires nearly two times function evaluations at the lower level
for per lower level call compared to CCPSO. From the result comparisons, it suggests that the cooperative
coevolutionary strategy adopted in the CCPSO can improve the global search ability of the algorithm. In
addition, the evolutionary stagnation detection technology adopted in both levels greatly enhances the
speed of convergence of the algorithm, thus it saves the number of function evaluations at both levels.

It can be seen from Tables 6 and 7 that the number of function evaluations increase significantly when
the size of the test problems is increased to 10. The method in [40] is able to successfully solve the first
five test problems in all the runs. From Table 6, it follows that the method in [40] requires 2.84 to 3.84
times function evaluations at the upper level, and requires 5.79 to 11.38 times function evaluations at the
lower level for the first eight test problems as compared to CCPSO. From Table 7, it can be observed that
the method in [40] requires 2.79 to 3.82 times lower level calls, and requires 2.16 to 3.05 times function
evaluations at the lower level for per lower level call as compared to CCPSO. From the result comparisons,
it can be seen that the global convergence of the proposed algorithm is greatly improved. Furthermore,
the results demonstrate that the available computational resources quickly become insufficient to solve
the problems with an increase in the number of dimensions.

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2122

Table 1: Test problems and their properties.
No. Problem Properties

1 min
x,y

F(x,y) =
p∑

i=1

x2
i +

q∑
i=r+1

y2
i +

r∑
i=1

(xi − tanyi)2 convex upper problem

min
y
f(x,y) =

p∑
i=r+1

x2
i +

q∑
i=r+1

y2
i +

r∑
i=1

(xi − tanyi)2 convex level problem

xi ∈ [−5, 10], i = 1, 2, · · · ,p; the two levels cooperate with each other
yi ∈ [−π/2,π/2], i = 1, 2, · · · , r; without constrains at two levels
yi ∈ [−5, 10], i = r+ 1, r+ 2, · · · ,q.

2 min
x,y

F(x,y) =
p∑

i=1

x2
i −

q∑
i=r+1

y2
i −

r∑
i=1

(xi − logyi)2 convex upper problem

min
y
f(x,y) =

p∑
i=r+1

x2
i +

q∑
i=r+1

y2
i +

r∑
i=1

(xi − logyi)2 convex level problem

xi ∈ [−5, 1], i = 1, 2, · · · , r; the two levels conflict with each other
xi ∈ [−5, 10], i = r+ 1, 2, · · · ,p; without constrains at two levels
yi ∈ [0, e], i = 1, 2, · · · , r;
yi ∈ [−5, 10], i = r+ 1, 2, · · · ,q.

3 min
x,y

F(x,y) =
p∑

i=r+1

x2
i −

q∑
i=r+1

y2
i +

r∑
i=1

(x2
i − tanyi)2 convex upper problem

min
y
f(x,y) =

p∑
i=r+1

x2
i +

q∑
i=r+1

(y2
i − cos 2πyi) convex level problem

+

r∑
i=1

(x2
i − tanyi)2 the two levels cooperate with each other

xi ∈ [−5, 10], i = 1, 2, · · · ,p; without constrains at two levels
yi ∈ [−π/2,π/2], i = 1, 2, · · · , r;
yi ∈ [−5, 10], i = r+ 1, 2, · · · ,q.

4 min
x,y

F(x,y) =
p∑

i=r+1

x2
i −

q∑
i=r+1

y2
i −

r∑
i=1

(|xi|− log(1 + yi))
2 convex upper problem

min
y
f(x,y) =

p∑
i=r+1

x2
i +

q∑
i=r+1

(y2
i − cos 2πyi) multi-modality at the lower level

+

r∑
i=1

(|xi|− log(1 + yi))
2 + q the two levels conflict with each other

xi ∈ [−5, 10], i = 1, 2, · · · , r; without constrains at two levels
xi ∈ [−5, 10], i = r+ 1, 2, · · · ,p;
yi ∈ [0, e], i = 1, 2, · · · , r;
yi ∈ [−5, 10], i = r+ 1, 2, · · · ,q.

5 min
x,y

F(x,y) =
p∑

i=1

x2
i −

q∑
i=r+1

((yi+1 − y
2
i) + (yi − 1)2) convex upper problem

−

r∑
i=1

(|xi|− y
2
i)

2 multi-modality at the lower level

min
y
f(x,y) =

p∑
i=1

x2
i +

q∑
i=r+1

((yi+1 − y
2
i) + (yi − 1)2) the two levels conflict with each other

+

r∑
i=1

(|xi|− y
2
i)

2 without constrains at two levels

xi ∈ [−5, 10], i = 1, 2, · · · ,p; yi ∈ [−5, 10], i = 1, 2, · · · ,q.

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2123

Table 2: Test problems and their properties.
No. Problem Properties

6 min
x,y

F(x,y) =
p∑

i=r+1

x2
i −

q∑
i=r+1

y2
i +

q+s∑
i=q+1

y2
i −

r∑
i=1

(xi − yi)
2 many global solutions at the lower level

min
y
f(x,y) =

p∑
i=r+1

x2
i +

q∑
i=r+1

y2
i +

q+s∑
i=q+1

(yi+1 − yi)
2 the two levels conflict with each other

+

r∑
i=1

(xi − yi)
2 without constrains at two levels

xi ∈ [−5, 10], i = 1, 2, · · · ,p;
yi ∈ [−π/2,π/2], i = 1, 2, · · · ,q+ s.

7 min
x,y

F(x,y) = 1 +
1

400

p∑
i=r+1

x2
i −

p∏
i=r+1

cos
xi√
i
−

q∑
i=r+1

y2
i multi-modality at the upper level

+

r∑
i=1

x2
i −

r∑
i=1

(xi − logyi)2 the two levels conflict with each other

min
y
f(x,y) =

p∑
i=r+1

x3
i +

q∑
i=r+1

y2
i +

r∑
i=1

(xi − logyi)2 without constrains at two levels

xi ∈ [−5, 1], i = 1, 2, · · · , r;
xi ∈ [−5, 10], i = r+ 1, 2, · · · ,p;
yi ∈ [0, e], i = 1, 2, · · · , r;
yi ∈ [−5, 10], i = r+ 1, 2, · · · ,q.

8 min
x,y

F(x,y) = 20 + e− 20 exp(−0.2

√√√√ 1
p− r

p∑
i=r+1

x2
i) multi-modality at the upper level

− exp(
1

p− r

p∑
i=r+1

cos 2πxi) multi-modality at the lower level

−

q∑
i=r+1

((yi+1 − y
2
i) + (yi − 1)2) the two levels conflict with each other

+

r∑
i=1

x2
i −

r∑
i=1

(xi − y
3
i)

2 without constrains at two levels

min
y
f(x,y) =

p∑
i=r+1

|xi|+

q∑
i=r+1

((yi+1 − y
2
i) + (yi − 1)2)

+

r∑
i=1

(xi − y
3
i)

2

xi ∈ [−5, 10], i = 1, 2, · · · ,p;
yi ∈ [−5, 10], i = 1, 2, · · · , r;

9 min
x,y

F(x,y) =
p∑

i=r+1

x2
i −

q∑
i=r+1

y2
i −

p∑
i=1

(xi − log(yi − 1))2 the two levels conflict with each other

min
y
f(x,y) =

p∑
i=1

x2
i +

q∑
i=r+1

y2
i +

p∑
i=1

(xi − log(yi − 1))2 without constrains at two levels

xi ∈ [−5, 1], i = 1, 2, · · · , r;
xi ∈ [−5, 10], i = r+ 1, 2, · · · ,p;
yi ∈ [−1,−1 + e], i = 1, 2, · · · , r;
yi ∈ [−5, 10], i = r+ 1, 2, · · · ,q.

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2124

Table 3: Test problems and its properties.
No. Problem Properties

10 min
x,y

F(x,y) =
p∑

i=1

(xi − 2)2 +

q∑
i=r+1

y2
i −

r∑
i=1

(xi − tanyi)2 the two levels conflict with each other

s.t. G1(x,y) =
p∑

i=r+1,i 6=j

x3
i +

r∑
i=1

x3
i − xj 6 0 j = r+ 1, 2, · · · ,p constraints at both levels

G2(x,y) =
r∑

i=1,i 6=j

x3
i +

p∑
i=r+1

x3
i − xj 6 0 j = 1, 2, · · · , r

min
y
f(x,y) =

p∑
i=r+1

x2
i +

q∑
i=r+1

(yi − 2)2 +

r∑
i=1

(xi − tanyi)2

s.t. g1(x,y) =
q∑

i=r+1,i 6=j

y3
j − yj 6 0 j = r+ 1, 2, · · · ,q

xi ∈ [−5, 10], i = 1, 2, · · · ,p;
yi ∈ [−π/2,π/2], i = 1, 2, · · · , r;
yi ∈ [−5, 10], i = r+ 1, r+ 2, · · · ,q.

11 min
x,y

F(x,y) =
p∑

i=1

x2
i −

q∑
i=r+1

y2
i −

r∑
i=1

(xi − logyi)2 many global solutions at the lower level

s.t. G1(x,y) = 1√
r
+ logyj − xj 6 0 j = r+ 1, 2, · · · ,p the two levels conflict with each other

min
y
f(x,y) =

p∑
i=r+1

x2
i +

q∑
i=r+1

y2
i +

r∑
i=1

(xi − logyi)2 constraints at both levels

s.t. g1(x,y) = 1 −

r∑
i=1

(xi − logyi)2 6 0 j = r+ 1, 2, · · · ,p

xi ∈ [−5, 10], i = 1, 2, · · · ,p;
yi ∈ [1/e, e], i = 1, 2, · · · , r;
yi ∈ [−5, 10], i = r+ 1, r+ 2, · · · ,q.

12 min
x,y

F(x,y) =
p∑

i=r+1

(xi − 2)2 +

q∑
i=r+1

y2
i +

r∑
i=1

tan |yi| many global solutions at the lower level

−

r∑
i=1

(xi − yi)
2 the two levels conflict with each other

s.t. G1(x,y) = tanyi − xi 6 0 i = 1, 2, · · · , r constraints at both levels

G2(x,y) =
p∑

i=r+1,i 6=j

x3
i +

r∑
i=1

x3
i − xj 6 0 j = r+ 1, r+ 2, · · · ,p

G3(x,y) =
r∑

i=1,i 6=j

x3
i +

q∑
i=r+1

x3
i − xj 6 0 j = 1, 2, · · · , r

min
y
f(x,y) =

p∑
i=r+1

x2
i +

q∑
i=r+1

(yi − 2)2 +

r∑
i=1

(xi − tanyi)2

s.t. g1(x,y) = 1 −

r∑
i=1

(xi − tanyi)2 6 0

g2(x,y) =
p∑

i=r+1,i 6=j

(yj)
3 − yj 6 0 j = r+ 1, 2, · · · ,q

xi ∈ [−14.1, 14.1], i = 1, 2, · · · , r;
xi ∈ [−5, 10], i = r+ 1, r+ 2, · · · ,p;
yi ∈ [−1.5, 1.5], i = 1, 2, · · · , r;
yi ∈ [−5, 10], i = r+ 1, r+ 2, · · · ,q;

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2125

Table 4: Comparison of the function evaluations (FE) for the upper level (UL) and the lower level (LL) from 11 runs for 5-
dimensional test problems.
No. Method the best FE the median FE the worst FE

LL UL LL UL LL UL

1 CCPSO 103464 386 192174(8.46) 712(3.56) 242250 1046

The method in [40] 859875 1124 1625794 2534 2091127 3512

2 CCPSO 99786 478 138481(10.93) 642(3.61) 203458 1021

The method in [40] 1123645 1467 1513514 2316 2103519 3592

3 CCPSO 192736 433 250662(5.79) 714(3.26) 215384 1023

The method in [40] 887673 1143 1452379 2326 2013258 2976

4 CCPSO 69298 243 122884(9.16) 572(2.84) 137011 725

The method in [40] 583769 746 1125625 1624 1359875 2132

5 CCPSO 583769 519 238302(8.72) 892(3.27) 267553 1248

The method in [40] 1295156 1684 2078546 2917 2513763 3579

6 CCPSO 138232 537 208760(11.38) 774(3.81) 269872 1172

The method in [40] 1278636 1578 2375682 2948 3786498(×) 4248(×)

7 CCPSO 233310 494 259457(6.30) 856(2.90) 318746 1126

The method in [40] 966238 1376 1635278 2476 2435994(×) 3858(×)

8 CCPSO 230724 756 286808(9.75) 1096(3.84) 323172 1546

The method in [40] 1489672 2168 2796316 4212 5294734(×) 5986(×)

9 CCPSO 977846 1189 1725678 3425 3412248(×) 4628(×)

The method in [40] −− −− −− −− −− −−

10 CCPSO 977846 1189 1725678 3425 3412248(×) 4628(×)

The method in [40] −− −− −− −− −− −−

11 CCPSO 977846 1189 1725678 3425 3412248(×) 4628(×)

The method in [40] −− −− −− −− −− −−

12 CCPSO 977846 1189 1725678 3425 3412248(×) 4628(×)

The method in [40] −− −− −− −− −− −−

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2126

Table 5: Comparison of the accuracy for the upper and lower levels, and the lower level calls from 11 runs for 5-dimensional test
problems.
No. Method the best FE the median the average FE

UL accuracy LL accuracy LL calls LL calls

1 CCPSO 0.000529 0.000061 239 340.90

The method in [40] 0.000615 0.000112 763 628.96

2 CCPSO 0.000207 0.000045 225 342.31

The method in [40] 0.000224 0.000216 638 625.33

3 CCPSO 0.000079 0.000029 216 273.77

The method in [40] 0.000051 0.000037 686 579.62

4 CCPSO 0.000048 0.000023 217 374.52

The method in [40] 0.000068 0.000074 623 693.76

5 CCPSO 0.000084 0.000045 333 236.13

The method in [40] 0.000071 0.000063 1012 483.36

6 CCPSO 0.000139 0.000056 249 245.48

The method in [40] 0.000217 0.000103 714 616.07

7 CCPSO 0.000089 0.000041 233 310.54

The method in [40] 0.000365 0.000983 672 572.53

8 CCPSO 0.000893 0.000076 360 211.29

The method in [40] 0.000572 0.000153 1127 544.39

9 CCPSO 0.000531 0.000062 184 236.01

The method in [40] 0.000617 0.000154 576 552.06

10 CCPSO 0.009156 0.009876 271 292.55

The method in [40] 0.087354 0.091426 793 376.75

11 CCPSO 0.003219 0.001534 1211 1299.07

The method in [40] 0.043512 0.038767 6176 2317.98

12 CCPSO 0.007463 0.000102 264 8835.99

The method in [40] 0.087312 0.004138 813 18695.66

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2127

Table 6: Comparison of the function evaluations (FE) for the upper level (UL) and the lower level (LL) from 11 runs for 10-
dimensional test problems.
No. Method the best FE the median FE the worst FE

LL UL LL UL LL UL
1 CCPSO 103464 386 192174(8.46) 712(3.56) 242250 1046

The method in [40] 859875 1124 1625794 2534 2091127 3512

2 CCPSO 99786 478 138481(10.93) 642(3.61) 203458 1021

The method in [40] 1123645 1467 1513514 2316 2103519 3592

3 CCPSO 192736 433 250662(5.79) 714(3.26) 215384 1023

The method in [40] 887673 1143 1452379 2326 2013258 2976

4 CCPSO 69298 243 122884(9.16) 572(2.84) 137011 725

The method in [40] 583769 746 1125625 1624 1359875 2132

5 CCPSO 168304 519 238302(8.72) 892(3.27) 267553 1248

The method in [40] 1295156 1684 2078546 2917 2513763 3579

6 CCPSO 138232 537 208760(11.38) 774(3.81) 269872 1172

The method in [40] 1278636 1578 2375682 2948 3786498(×) 4248(×)

7 CCPSO 233310 494 259457(6.30) 856(2.90) 318746 1126

The method in [40] 966238 1376 1635278 2476 2435994(×) 3858(×)

8 CCPSO 230724 756 286808(9.75) 1096(3.84) 323172 1546

The method in [40] 1489672 2168 2796316 4212 5294734(×) 5986(×)

9 CCPSO 977846 1189 1725678 3425 3412248(×) 4628(×)

The method in [40] −− −− −− −− −− −−

10 CCPSO 977846 1189 1725678 3425 3412248(×) 4628(×)

The method in [40] −− −− −− −− −− −−

11 CCPSO 977846 1189 1725678 3425 3412248(×) 4628(×)

The method in [40] −− −− −− −− −− −−

12 CCPSO 977846 1189 1725678 3425 3412248(×) 4628(×)

The method in [40] −− −− −− −− −− −−

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2128

Table 7: Comparison of the accuracy for the upper and lower levels, and the lower level calls from 11 runs for 10-dimensional
test problems.
No. Method The best FE The median The average FE

UL accuracy LL accuracy LL calls LL calls
1 CCPSO 0.008794 0.003125 712 269.91

The method in [40] 0.005841 0.002174 2534 641.59

2 CCPSO 0.003126 0.001975 642 215.70

The method in [40] 0.001973 0.001182 2316 653.50

3 CCPSO 0.008914 0.004126 714 351.07

The method in [40] 0.008717 0.002633 2278 655.76

4 CCPSO 0.005939 0.003912 572 214.83

The method in [40] 0.007379 0.002708 1598 685.43

5 CCPSO 0.001938 0.000987 892 267.15

The method in [40] 0.002652 0.003487 2890 716.82

6 CCPSO 0.005413 0.000792 774 269.72

The method in [40] 0.008463 0.006952 2936 768.34

7 CCPSO 0.006734 0.000317 856 303.10

The method in [40] 0.009216 0.000527 2394 654.34

8 CCPSO 0.002145 0.000081 1096 261.69

The method in [40] 0.006935 0.000337 4188 647.12

9 CCPSO 0.061873 0.016795 3425 503.85

The method in [40] −− −− −− −−

10 CCPSO 0.035127 0.071963 2876 500.03

The method in [40] −− −− −− −−

11 CCPSO 0.389578 0.216874 2962 1005.51

The method in [40] −− −− −− −−

12 CCPSO 0.513681 0.009765 3124 708.57

The method in [40] −− −− −− −−

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2129

5. Application of CCPSO algorithm for a practical problem

Taking into account water rights and emission rights to establish a water market system based on
watershed management is the most effective economic method to solve water shortage and pollution
of watershed. In this water market system, the watershed management agency usually maximizes his
profits, whereas each user’s goal is to maximize its own profit. The problem involves uncertainty and is
bilevel in nature, thus, a watershed water trading decision-making model based on bilevel programming
is constructed, in which the upper decision-maker is the watershed management agency as the planning,
controlling and coordinating center of watershed and each user is the lower decision-maker. We present
a deterministic version of the case study from [47].

max
w,t,r1,g1,r2,g2

VT = 0.4w+ t(q1 + q2) + f1 + f2,

s.t. r1 + r2 +w = 90,
q1 + q2 +w 6 90,
g1 + g2 = 20,
r1 > 38, r2 > 42,g1 > 7,g2 > 8,w > 6, 0.3 6 t 6 2,

max
q1,l1

f1 = 0.7q1 − q1t− 0.3(45 − q1)
2 + (r1 − q1)[0.9 − 0.01(r1 + r2 − q1 − q2)]

− 0.2(0.2q1 − l1)
2 + (g1 − l1)[0.8 − 0.01(g1 + g2 − l1 − l2)],

max
q2,l2

f2 = 0.8q2 − q2t− 0.2(47 − q2)
2 + (r2 − q2)[0.9 − 0.01(r1 + r2 − q1 − q2)]

− 0.1(0.3q2 − l2)
2 + (g2 − l2)[0.8 − 0.01(g1 + g2 − l1 − l2)],

s.t. l1 + l2 6 20,
q1 > 0, l1 > 0,
q2 > 0, l2 > 0,

where q1 and q1 are actual water intake volume of water consumer A and water consumer B, respectively.
l1 and l1 are waste water discharge volume of two users, respectively. r1 and r2 are water rights of
two users, respectively. g1 and g1 are emission rights of two users, respectively. w is ecological water
requirement of watershed. t is water resource fees.

The optimal solution of the problem is obtained by Algorithm 3.2. Note that, the optimal solution
of the lower level is obtained by solving multiobjective problem using CCPSO combining the fast non-

Table 8: Results of the Spacing (SP) metrics for the above four examples.
Parameter CCPSO The best results in [40] The best results in [45]
q1 42.0000 42.0000 41.2016
q2 42.0000 41.9680 42.5388
l1 7.0216 6.9984 6.4772
l2 9.0013 9.1751 9.1611
r1 40.0000 39.9679 39.4861
r2 44.0000 44.0000 44.2542
g1 9.0000 9.0000 9.0015
g2 11.0000 11.0000 10.9985
ω 6.0000 6.0321 6.02596
t 0.3000 0.3000 0.3226
F 59.0613 58.97837 54.4482
f1 13.4240 13.40286 10.964
f2 18.0244 17.97226 17.964

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2130

dominated sort technology [13]. Table 8 shows the obtained results compared with the results in the
relevant references. From Table 8, we can see that the solutions found by the proposed method are better
than those given in the references. Therefore, the proposed method can also be applied to the practical
problem. In this problem, the population sizes of each species for both levels were chosen as 10 for the
problem and we execute the algorithm in 10 independent runs.

6. Conclusion and future works

In this paper, the CCPSO is proposed to solve the complex bilevel programming problem (CBLP) in
which the evolutionary stagnation detection technology is adopted. The algorithm is tested on two sets
of twelve problems which are scalable in terms of number of variables. The first set is the 5-dimensional
instance of these problems and the second set is the 10-dimensional instance of these problems. The
results indicate that the global convergence of the proposed algorithm is greatly improved, as well as the
evolutionary stagnation detection technology adopted in both levels greatly enhances the speed of con-
vergence of the algorithm. In the future works, the following problems will be considered: (1) Constraint
handling. It is possible that the infeasible solution with good performance near the optimum can induce
global searching to the boundary, so we will further discuss how to efficiently use the infeasible solution.
This kind of discussion could improve the performance of our CCPSO, particularly when the optimal
front lies on the boundaries between the feasible and infeasible regions. (2) Algorithm parallelization. We
will design the parallel CCPSO for CBLP so as to improve further the computation efficiency.

Acknowledgment

This work is supported by the National Science Foundation of China (61673006), the Young Project of
Hubei Provincial Department of Education (Q20141304), the Dr. Start-up fund by the Yangtze University
(2014) and the Basic and Advanced Research Project of Chongqing (cstc2016jcyjA0239, cstc2015jcyjBX0131).

References

[1] E. Aiyoshi, K. Shimuzu, A solution method for the static constrained Stackelberg problem via penalty method, IEEE Trans.
Automat. Control, 29 (1984), 1112–1114. 1

[2] M. A. Amouzegar, A global optimization method for nonlinear bilevel programming problems, IEEE Trans. Systems Man
Cybernet., 29 (1999), 771–777. 1

[3] J. F. Bard, An algorithm for solving the general bilevel programming problem, Math. Oper. Res., 8 (1983), 260–272. 1
[4] J. F. Bard, Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68 (1991), 371–378. 1
[5] J. F. Bard, Practical bilevel optimization, Algorithms and applications, Nonconvex Optimization and its Applications,

Kluwer Academic Publishers, Dordrecht, (1998). 1
[6] J. F. Bard, J. E. Falk, An explicit solution to the multilevel programming problem, Mathematical programming with

parameters and multilevel constraints, Comput. Oper. Res., 9 (1982), 77–100. 1
[7] O. Ben-Ayed, C. E. Blair, Computational difficulties of bilevel linear programming, Oper. Res., 38 (1990), 556–560. 1
[8] H. I. Calvete, C. Gaté, P. M. Mateo, A new approach for solving linear bilevel problems using genetic algorithms, Euro-

pean J. Oper. Res., 188 (2008), 14–28. 1
[9] H. I. Calvete, C. Galé, M. J. Oliveros, Bilevel model for productiondistribution planning solved by using ant colony

optimization, Comput. Oper. Res., 38 (2011), 320–327. 1
[10] J.-W. Chen, Q. H Ansari, Y.-C. Liou, J.-C. Yao, A proximal point algorithm based on decomposition method for cone

constrained multiobjective optimization problems, Comput. Optim. Appl., 65 (2016), 289–308. 1
[11] B. Colson, P. Marcotte, G. Savard, Bilevel programming: a survey, 4OR, 3 (2005), 87–107. 1
[12] B. Colson, P. Marcotte, G. Savard, An overview of bilevel optimization, Ann. Oper. Res., 153 (2007), 235–256. 1
[13] K. Deb, S. Agrawalan, A. Pratap, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE

Trans. Evol. Comput., 6 (2002), 182–197. 5
[14] S. Dempe, Foundations of bilevel programming, Nonconvex Optimization and its Applications, Kluwer Academic

Publishers, Dordrecht, (2002). 1
[15] S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Op-

timization, 52 (2003), 333–359. 1
[16] T. A. Edmunds, J. F. Bard, Algorithms for nonlinear bilevel mathematical programs, IEEE Trans. Systems Man Cyber-

net., 21 (1991), 83–89. 1

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2131

[17] J. B. Etoa Etoa, Solving quadratic convex bilevel programming problems using a smoothing method, Appl. Math. Comput.,
217 (2011), 6680–6690. 1

[18] J. E. Falk, J.-M. Liu, On bilevel programming, I, General nonlinear cases, Math. Programming, 70 (1995), 47–72. 1
[19] Y. Gao, G.-Q. Zhang, J. Lu, H.-M. Wee, Particle swarm optimization for bi-level pricing problems in supply chains, J.

Global Optim., 51 (2011), 245–254. 1
[20] Y. Gao, G.-Q. Zhang, J. Ma, J. Lu, A λ-cut and goal-programming-based algorithm for fuzzy-linear multiple-objective

bilevel optimization, IEEE Trans. Fuzzy Syst., 18 (2010), 1–13. 1
[21] M. Gendreau, P. Marcotte, G. Savard, A hybrid tabu-ascent algorithm for the linear bilevel programming problem, Hier-

archical and bilevel programming, J. Global Optim., 8 (1996), 217–233. 1
[22] S. R. Hejazi, A. Memariani, G. Jahanshahloo, M. M. Sepehri, Linear bilevel programming solution by genetic algorithm,

Comput. Oper. Res., 29 (2001), 1913–1925. 1
[23] Y. Ishizuka, E. Aiyoshi, Double penalty method for bilevel optimization problems, Hierarchical optimization, Ann. Oper.

Res., 34 (1992), 73–88. 1
[24] R. G. Jeroslow, The polynomial hierarchy and a simple model for competitive analysis, Math. Programming, 32 (1985),

146–164. 1
[25] Y. Jiang, X.-Y. Li, C.-C. Hang, X.-N. Wu, Application of particle swarm optimization based on CHKS smoothing function

for solving nonlinear bilevel programming problem, Appl. Math. Comput., 129 (2013), 4332–4339. 1
[26] J. Kennedy, R. C. Eberhart, Y.-H. Shi, Swarm intelligence, Morgan Kaufmann Publishers, San Francisco, CA, (2001).

1
[27] R. J. Kuo, Y. S. Han, A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming

problem—a case study on supply chain model, Appl. Math. Model., 35 (2011), 3905–3917. 1
[28] R. J. Kuo, C. C. Huang, Application of particle swarm optimization algorithm for solving bi-level linear programming

problem, Comput. Math. Appl., 58 (2009), 678–685. 1
[29] K.-M. Lan, U.-P. Wen, H.-S. Shih, E. S. Lee, A hybrid neural network approach to bilevel programming problems, Appl.

Math. Lett., 20 (2007), 880–884. 1
[30] X.-Y. Li, P. Tian, X.-P. Min, A hierarchical particle swarm optimization for solving bilevel programming problems, Proceed-

ings of the 8th International Conference on Artificial Intelligence and Soft Computing (ICAISC), Poland, Lecture
Notes in Computer Science, 2016 (2006), 1169–1178. 1

[31] Y.-B. Lv, T.-S. Hu, G.-M. Wang, Z.-P. Wan, A penalty function method based on Kuhn-Tucker condition for solving linear
bilevel programming, Appl. Math. Comput., 188 (2007), 808–813. 1

[32] Y.-B. Lv, T.-S. Hu, G.-M. Wang, Z.-P. Wan, A neural network approach for solving nonlinear bilevel programming problem,
Comput. Math. Appl., 55 (2008), 2823–2829. 1

[33] R. Mathieu, L. Pittard, G. Anandalingam, Genetic algorithm based approach to bi-level linear programming, RAIRO
Rech. Opér., 28 (1994), 1–21. 1

[34] A. Migdalas (Ed.), P. M. Pardalos (Ed.), P. Värbrand (Ed.), Multilevel optimization: algorithms and applications,
Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, (1998). 1

[35] J. Rajesh, K. Gupta, H. S. Kusumakar, V. K. Jayaraman, B. D. Kulkarni, A tabu search based approach for solving a
class of bilevel programming problems in chemical engineering, J. Heuristics, 9 (2003), 307–319. 1

[36] K. H. Sahin, A. R. Ciric, A dual temperature simulated annealing approach for solving bilevel programming problems,
Comput. Chem. Eng., 23 (1998), 11–25. 1

[37] G. Savard, J. Gauvin, The steepest descent direction for the nonlinear bilevel programming problem, Oper. Res. Lett., 15
(1994), 265–272. 1

[38] K. Shimizu, E. Aiyoshi, A new computational method for Stackelberg and min-max problems by use of a penalty method,
IEEE Trans. Automat. Control, 26 (1981), 460–466. 1

[39] K. Shimizu, Y. Ishizuka, J. F. Bard, Nondifferentiable and two-level mathematical programming, Kluwer Academic
Publishers, Boston, MA, (1997). 1

[40] A. Sinha, P. Malo, K. Deb, Test problem construction for single-objective bilevel optimization, Evol. Comput., 22 (2014),
439–477. 1, 4.1, 4.2, 4.2, 4.2, 4, 5, 6, 7, 8

[41] L. N. Vicente, P. H. Calamai, Bilevel and multilevel programming: a bibliography review, J. Global Optim., 5 (1994),
291–306. 1

[42] L. Vicente, G. Savard, J. Júdice, Descent approaches for quadratic bilevel programming, J. Optim. Theory Appl., 81
(1994), 379–399. 1

[43] Z.-P. Wan, G.-M. Wang, B. Sun, A hybrid intelligent algorithm by combining particle swarm optimization with chaos
searching technique for solving nonlinear bilevel programming problems, Swarm Evol. Comput., 8 (2013), 26–32. 1

[44] Y.-P. Wang, Y.-C. Jiao, H. Li, An evolutionary algorithm for solving nonlinear bilevel programming based on a new
constraint-handling scheme, IEEE Trans. Systems Man Cybernet., 35 (2005), 221–232. 1

[45] G.-M. Wang, X.-J. Wang, Z.-P. Wan, S.-H. Jia, An adaptive genetic algorithm for solving bilevel linear programming
problem, Appl. Math. Mech. (English Ed.), 28 (2007), 1605–1612. 1, 8

[46] U. P. Wen, A. D. Huang, A simple tabu search method to solve the mixed-integer linear bilevel programming problem,
European J. Oper. Res., 88 (1996), 563–571. 1

[47] C.-Y. Wu, Y.-Z. Zhao, Watershed water trading decision-making model based on bi-level programming, Oper. Res. Manag.
Sci., 20 (2011), 30–37. 1, 5

T. Zhang, Z. Chen, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 2115–2132 2132

[48] S. B. Yaakob, J. Watada, A hybrid intelligent algorithm for solving the bilevel programming models, Knowledge-Based
Intell. Inf. Eng. Syst., 6277 (2010), 485–494. 1

[49] S. B. Yaakob, J. Watada, Double-layered hybrid neural network approach for solving mixed integer quadratic bilevel prob-
lems, Integr. Uncertain. Manag. Appl., 68 (2010), 221–230. 1

[50] G.-Q. Zhang, G.-L. Zhang, Y. Gao, J. Lu, Competitive strategic bidding optimization in electricity markets using bilevel
programming and swarm technique, IEEE Trans. Ind. Electron., 58 (2011), 2138–2146. 1

	Introduction and preliminaries
	Problem formulation
	The algorithm
	The CCPSO algorithm
	The CCPSO algorithm for CBLP

	Numerical experiments
	Problem statement and its properties
	Experimental comparison

	Application of CCPSO algorithm for a practical problem
	Conclusion and future works

