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1. Introduction

The Cauchy problems for fuzzy differential equations have been studied by several authors [12, 16,
17, 24, 25, 27] on the metric space (En,D) of normal fuzzy convex set with the distance D given by
the maximum of the Hausdorff distance between the corresponding level sets. In [24], the author has
proved the Cauchy problem has a uniqueness result if f was continuous and bounded. In [16, 17], the
authors presented a uniqueness result when f satisfies a Lipschitz condition. Because the metric space
(En,D) has a linear structure, it can be imbedded isomorphically as a cone in a Banach space. It is
worth mentioning that Chen et al. [4–6] studied the initial value problems of fuzzy differential equations
by using the parametric representation of fuzzy numbers and the new framework of calculus for fuzzy
number valued functions established in [7]. One can see that their method was more convenient than
the original method to calculate derivatives, integrals and compute numerical solutions, etc. In the very
interesting paper [26], Qiu et al. introduced a metric on the quotient space of fuzzy numbers and then
dealt with fuzzy mappings of a real variable whose values are equivalence classes of fuzzy numbers and
gave an existence and uniqueness theorem for a solution to a fuzzy differential equation. In addition,
Wang et al. [31] proved that generalized Bernstein fuzzy systems were universal approximators to a given
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continuous function and its high-order derivatives and the extreme learning machine method was used
to tune the parameters of generalized Bernstein fuzzy system and spline fuzzy system. In 2002, Xue
and Fu [35] established solutions to fuzzy differential equations with right-hand side functions satisfying
Carathéodory conditions on a class of Lipschitz fuzzy sets.

In dynamic systems, delay is generally inevitable, that is, the velocity of the system at some instant
depends on the history of the trajectory until this instant. The theory of retarded functional differential
equations has been well-known when the right side function is continuous, hence Riemann integral. Hale
[15] proved that the results still hold true when continuity of right function is weakened to satisfaction
of a Carathéodory condition. The further step of generalization was done in [8] and [29] which applies
the Henstock integrals to the study of retarded functional differential equations with finite delays and
unbounded delays. Combining the fuzzy mathematics and functional differential equations, we get fuzzy
functional differential equations, which have attracted the interest of many researchers [1, 22, 30]. Guo et
al. [14] discussed the oscillation properties of a class of fuzzy delay differential equation of second order
and provided an oscillation criterion. In [18], Khastan et al. provided sufficient conditions for the global
existence of a unique (ii)-solution to an initial value problem for fuzzy functional differential equations
using generalized derivative and were of broader applicability than those using Hukuhara derivative. In
this paper, we extend and complement those of various authors such as [1, 21, 22], where the existence of
generalized solution to the discontinuous fuzzy functional problem is considered by using properties of
strong fuzzy Henstock integrals [32, 33] under strong GH-differentiability.

The paper is organized as follows. In Section 2, we give some basic concepts and preliminary results.
In Section 3 and Section 4, we provide some existence theorems of generalized solutions to initial value
problems for the discontinuous fuzzy differential equations and retarded fuzzy functional differential
equations, respectively. Finally, in Section 5, we give some concluding remarks.

2. Preliminaries

Let Pk(Rn) denote the family of all nonempty compact convex subsets of Rn and define the addition
and scalar multiplication in Pk(Rn) as usual. Let A and B be two nonempty bounded subsets of Rn. The
distance between A and B is defined by the Hausdorff metric:

dH(A,B) = max{sup
a∈A

inf
b∈B
‖ a− b ‖, sup

b∈B
inf
a∈A

‖ b− a ‖}.

Denote En = {u : Rn → [0, 1]|u satisfies (1)-(4) below} is a fuzzy number space. where

(1) u is normal, i.e., there exists an x0 ∈ Rn such that u(x0) = 1;

(2) u is fuzzy convex, i.e., u(λx+ (1 − λ)y) > min{u(x),u(y)} for any x,y ∈ Rn and 0 6 λ 6 1;

(3) u is upper semi-continuous;

(4) [u]0 = cl{x ∈ Rn|u(x) > 0} is compact.

For 0 < α 6 1, denote [u]α = {x ∈ Rn|u(x) > α}. Then from above (1)-(4), it follows that the α-level set
[u]α ∈ Pk(Rn) for all 0 6 α < 1.

Define D : En × En → [0,∞)

D(u, v) = sup{dH([u]α, [v]α) : α ∈ [0, 1]},

where d is the Hausdorff metric defined in Pk(Rn). Then it is easy to see that D is a metric in En. Using
the results in [9], we know that

(1) (En,D) is a complete metric space;

(2) D(u+w, v+w) = D(u, v) for all u, v,w ∈ En;

(3) D(λu, λv) = |λ|D(u, v) for all u, v,w ∈ En and λ ∈ R.



Q. Ma, Y.-B. Shao, Z.-T. Gong, J. Nonlinear Sci. Appl., 10 (2017), 2133–2143 2135

The metric space (En,D) has a linear structure, it can be imbedded isomorphically as a cone in a
Banach space of function u∗ : I× Sn−1 −→ R, where Sn−1 is the unit sphere in Rn, with an imbedding
function u∗ = j(u) defined by

u∗(r, x) = sup
α∈[u]α

< α, x >,

for all < r, x >∈ I× Sn−1 (see [9]).

Theorem 2.1 ([34]). There exists a real Banach space X such that En can be imbedded as a convex cone C with
vertex 0 into X. Furthermore the following conditions hold true:

(1) the imbedding j is isometric;

(2) addition in X induces addition in En;

(3) multiplication by nonnegative real number in X induces the corresponding operation in En;

(4) C−C is dense in X;

(5) C is closed.

It is well-known that the H-derivative for fuzzy-number-functions was initially introduced by Puri
and Ralescu [10, 25] and it is based on the condition (H) of sets. We note that this definition is fairly
strong, because the family of fuzzy-number-valued functions H-differentiable is very restrictive. In this
paper we consider a more general definition of a derivative for fuzzy-number-valued functions enlarging
the class of differentiable fuzzy-number-valued functions, which has been introduced in [3].

Definition 2.2 ([3]). Let f̃ : (a,b)→ En and x0 ∈ (a,b). We say that f̃ is (i)-differentiable at x0, if there exists
an element f̃′(t0) ∈ En, such that for all h > 0 sufficiently small, there exist f̃(x0 + h)	H f̃(x0), f̃(x0)	H
f̃(x0 − h) and the limits (in the metric D)

lim
h→0

f̃(x0 + h)	H f̃(x0)

h
= lim
h→0

f̃(x0)	H f̃(x0 − h)

h
= f̃′(x0).

f̃ is (ii)-differentiable at x0, for all h < 0 sufficiently small, there exist f̃(x0 + h)	H f̃(x0), f̃(x0)	H
f̃(x0 − h) and the limits (in the metric D)

lim
h→0

f̃(x0 + h)	H f̃(x0)

h
= lim
h→0

f̃(x0)	H f̃(x0 − h)

h
= f̃′(x0).

Definition 2.3 ([20]). Let δ(ξ) be a positive real function on a closed set [a,b]. A division P= {(ξi,[xi−1, xi])}
is said to be δ-fine, if the following conditions are satisfied:

(1) a = x1 < x2 < · · · < xn = b;

(2) ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi)).

Definition 2.4 ([13]). A fuzzy-number-valued function f̃ will be termed additive on [a,b] if for any di-
vision T : a 6 x1 6 x2 6 · · · 6 xn 6 b, we have f̃([xi, xj]) (1 6 i < j 6 n) exists and f̃([xi, xj]) =∑j−1
k=i f̃([xk, xk+1]) or f̃([xj, xi])(1 6 i < j 6 n) exists and (−1) · f̃([xj, xi]) = (−1) ·

∑j−1
k=i f̃([xk+1, xk]). For

convenience, denote f̃([s, t]) by f̃(t)	H f̃(s).

Definition 2.5 ([11, 13]). A fuzzy-number-valued function f̃ is said to be strong Henstock integrable on
[a,b] if there exists a additive fuzzy-number-valued function F̃ on [a,b] such that for every ε > 0 there is
a function δ(ξ) > 0 and for any δ-fine division P = {([u, v], ξ)} of [a,b], we have∑

i∈Kn

D(f̃(ξi)(vi − ui), F̃([ui, vi])) +
∑
j∈In

D(f̃(ξj)(vj − uj), (−1) · F̃([uj, vj−1])) < ε,

where Kn = {i ∈ {1, 2, ··,n}} such that F̃([xi−1, xi]) is a fuzzy number and In = {j ∈ {1, 2, ··,n}} such that
F̃([xj, xj−1]) is a fuzzy number. We write f̃ ∈ SFH[a,b].
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Definition 2.6 ([13]). A fuzzy-number-valued function F̃ defined on X ⊂ [a,b] is said to be AC∗(X) if for
every ε > 0 there exists η > 0 such that for every finite sequence of non-overlapping intervals {[ai,bi]},
satisfying Σni=1|bi − ai| < η where ai,bi ∈ X for all i we have∑

ω(F̃, [ai,bi]) < ε,

where ω denotes the oscillation of F̃ over [ai,bi], i.e.,

ω(F̃, [ai,bi]) = sup{D(F̃(y), F̃(x)); x,y ∈ [ai,bi]}.

Definition 2.7 ([13]). A fuzzy-number-valued function F̃ is said to be ACG∗ on X, if X is the union of a
sequence of closed sets {Xi} such that on each Xi, F̃ is AC∗(Xi).

For the strong fuzzy Henstock integrable we have the following theorems.

Theorem 2.8. Let f̃ : [a,b]→ En. If f̃ = 0 a.e. on [a,b], then f̃ is SFH integrable on [a,b] and
∫b
a f̃(t)dt = 0.

Theorem 2.9. Let f̃ : [a,b]→ En be SFH integrable on [a,b] and let F̃(x) =
∫x
a f̃(t)dt for each x ∈ [a,b]. Then

(a) the function F̃ is continuous on [a,b];

(b) the function F̃ is differentiable a.e on [a,b] and F̃′ = f;

(c) f̃ is measurable.

Theorem 2.10 (Controlled Convergence Theorem [13]). Suppose {f̃n} is a sequence of SFH integrable functions
on [a,b] satisfying the following conditions:

(1) f̃n(x)→ f̃(x) a.e. in [a,b] as n→∞;

(2) the primitives F̃n of f̃n are ACG∗ uniformly in n;

(3) the primitives F̃n converge uniformly on [a,b];

then f̃ is also SFH integrable on [a,b] and

lim
n→∞

∫b
a

f̃n(x)dx =
∫b
a

f̃(x)dx.

3. The existence of solutions for discontinuous fuzzy ordinary differential equations

In this section, according to the idea of [19] and the operator j which is the isometric embedding from
(En,D) onto its range in the Banach space X, we will deal with the Cauchy problem of discontinuous
systems as following {

x′(t) = f̃(t, x(t)),
x(0) = x0 ∈ En, (3.1)

where En is a fuzzy number space, and f̃ : [0,γ]× B → En is strong fuzzy Henstock integrable, B = {x :
D(x, 0̃ 6 D(x0, 0̃) + b,b > 0)}.

Definition 3.1. Assume x : [a,b] → En is a solution of the initial value problem (3.1), if and only if x is
continuous and satisfied integral equation

x(t) = x0 +

∫t
t0

f(s, x(s))ds,

or

x0 = x(t) + (−1) ·
∫t
t0

f(s, x(s))ds,

on some interval (t0, t) ⊂ R, under the strong differentiability condition (i) or (ii), respectively.
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For any bounded subset A of the Banach space X we denote α(A) the Kuratowski measure of non-
compactness of A, i.e., the infimum of all ε > 0 such that there exists a finite covering of A by sets of
diameter less than ε. For the properties of α we refer to [2] for example.

Lemma 3.2 ([2]). Let H ⊂ C(Iγ,X) be a family of strong equicontinuous functions. Then

α(H) = sup
t∈Iγ

α(H(t)) = α(H(Iγ)),

where α(H) denote the Kuratowski measure of non-compactness in C(Iγ,X) and the function t → α(H(t)) is
continuous.

Let C(x0,γ) = {x ∈ C(Iγ) : x(0) = x0,D(x, 0̃) 6 D(x0, 0̃) + b} (b and γ are some positive numbers).
Obviously, the fuzzy set C(x0,γ) is closed and convex.

Let F̃x be defined by F̃x(t) = x0 +
∫t

0 f̃(s, x(s))ds or F̃x(t) = x0 + (−1) ·
∫t

0 f̃(s, x(s))ds, for t ∈ Iγ and
x ∈ C(x0,γ) where the integral is in the sense of SFH.

Definition 3.3. A fuzzy-number-valued function f̃ : Iγ × En is a Carathéodory function, if

(1) f̃ is measurable for any x ∈ En;

(2) f̃ is continuous for any t ∈ Iγ.

Lemma 3.4. Let V be equicontinuous bounded set in C(Iγ,En), f̃ be a Carathéodory function and f̃(·, x(·)) be a
SFH integrable function for each x ∈ V . Let F̃ = {F̃x : x ∈ C(x0,γ)} be equicontinuous and uniformly ACG∗ on
Iγ. Then

α(j ◦
∫t

0
f̃(s,V(s))ds) 6

∫t
0
α(j ◦ f̃(s,V(s)))ds,

whenever α(j ◦ f̃(s,V(s))) 6 ϕ(s), for s ∈ Iγ a.e., ϕ(s) is a Lebesgue integrable function, and∫t
0
f̃(s,V(s))ds = {

∫t
0
f̃(s, x(s))ds, x(s) ∈ V(s)}.

Theorem 3.5 ([23]). Let D be a closed convex subset of X, and let F be a continuous function from D into itself. If
for x ∈ D the implication

V̄ = ¯con({x}∪ F(V))⇒ V , (3.2)

is relatively compact, then F has a fixed point.

Definition 3.6. A nonnegative function (t, r)→ h(t, r) is a Kamke function on I× R+, if

(1) h(t, r) satisfies the Carathéodory conditions;

(2) h(t, 0) = 0 and the function identically equal to zero is the unique continuous solution of the
equation u(t) =

∫t
0 h(s,u(s))ds, for t ∈ I satisfying the condition u(0) = 0.

Next, we give the main results for this section.

Theorem 3.7. If for each continuous function x : Iγ → En, f̃(·, x(·)) is SFH integrable, f̃ is a Carathéodory function
and

α(j ◦ f̃(t,X)) 6 h(t,α(j ◦X)), (3.3)

for each bounded subset X ⊂ En, where h is a Kamke function. Let F = {F̃x : x ∈ C(x0,γ)} and F is equicontinuous
and uniformly ACG∗ on Iγ. Then there exists a solution of the problem (3.1) on Iβ for some 0 < β 6 γ.
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Proof. By equicontinuous of F, there exist a number β, and 0 < β 6 γ such that

D(

∫t
0
f̃(s, x(s))ds, 0̃) 6 b,

for t ∈ Iβ and x ∈ C(x0,α). By the assumption, the operator F̃x is well-defined and maps C(x0,β) into
C(x0,β). Using Theorem 2.10 for the SFH integral we deduce that F̃ is continuous.

Suppose that V̄ = ¯con({x}) ∪ F(V) for some bounded V ⊂ C(x0,β). We will prove that V is relatively
compact, thus (3.2) is satisfied.

In fact, F(V) is equicontinuous, the function v(t) → α(j ◦ V(t)) is continuous on Iβ, and F(V(t)) =

{x0 +
∫t

0 f̃(s, x(s))ds, x(s) ∈ V(s)} or F(V(t)) = {x0 + (−1) ·
∫t

0 f̃(s, x(s))ds, x(s) ∈ V(s)}.
By Lemma 3.4 and (3.3), we have

α(j ◦ F(V(t))) 6 α(j ◦ {
∫t

0
f̃(s, x(s))ds, x(s) ∈ V(s)})

6
∫t

0
α(j ◦ f̃(s,V(s)))ds

6
∫t

0
h(s,α(j ◦ V(s)))ds.

Since V̄ = ¯con({x}) ∪ F(V), by the property of measure of noncompactness we have α(j ◦ V(t)) 6
α(j ◦ F(V(t))) and

v(t) = α(j ◦ V(t)) 6
∫t

0
h(s, v(s))ds.

Hence, we have v(t) = α(j ◦ V(t)). By Lemma 3.2, V is relatively compact. So, by Theorem 3.5, V has a
fixed point which is a solution of (3.1).

Now, we give the theorem on the existence of solution of the fuzzy differential inclusion{
x′(t) ∈ F̃(t, x(t)),
x(0) = x0 ∈ En, (3.4)

in a fuzzy number space, where the multifunction F̃ : Iγ× En → En is such that f̃(·, x(·)) has strong fuzzy
Henstock selection v(·) for each x ∈ C(x0, Iγ).

Definition 3.8. The set {
∫γ

0 f̃(s, x(s))ds : f̃(·, x(·)) ∈ F̃(·, x(·)); f is a SFH integrable} is called SFH integral of
the multifunction F̃ on Iγ.

Theorem 3.9. Let the multifunction F̃ has a SFH selection f̃(·, x(·)) for any x ∈ C(x0,α) such that f̃ is a
Carathéodory function and define G̃x(t) as

G̃x(t) = x0 +

∫t
0
F̃(s, x(s))ds,

or

G̃x(t) = x0 + (−1) ·
∫t

0
F̃(s, x(s))ds,

for t ∈ I and x ∈ C(x0.α) and
α(j ◦ F̃(t,X)) 6 h(t,α(j ◦X)),

for each bounded subset X ⊂ En, where h is a Kamke function. LetG = {G̃x : x ∈ C(x0,α)} andG is equicontinuous
and uniformly ACG∗ on Iα. Then there exists a solution of the problem (3.4) on Iβ for some 0 < β 6 γ.

Proof. It is easy to see that f̃ satisfies the conditions of Theorem 3.7. It is clear that every solution of (3.1)
is a solution of (3.4).
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4. The existence of solutions for discontinuous fuzzy retarded functional differential equations

In this section, using properties of the strong fuzzy Henstock integral and corresponding controlled
convergence theorems, we prove existence theorems for the retarded functional equation in a fuzzy num-
ber space.

Let r,α be nonnegative real numbers, Iα = [0,α] and let En be a fuzzy number space. Suppose that
x(t) is fuzzy-number-valued function defined on [−r,α]. For any α ∈ Iα, the function xt is defined as
xt(θ) = x(t+ θ), where −r 6 θ 6 0.

Let f̃ : Iα ×C([−r, 0],En)→ En, and{
x′(t) = f̃(t, xt),
x(θ) = ϕ(θ), −r 6 θ 6 0, (4.1)

where the integral is taken in the sense of strong fuzzy Henstock integral and the derivative x′ is consid-
ered in the sense of GH-derivative.

Let SFH[u, v] denote the space of fuzzy-number-valued functions of strong fuzzy Henstock integrable
on [u, v]. We consider the metric H(·, ·) on SFH[u, v] defined by

H(φ(t),ψ(t)) = sup
t∈[u,v]

D(Φ(t),Ψ(t)),

where Φ(t) =
∫t
uφ(s)ds and Ψ(t) =

∫t
uψ(s)ds, for any φ(t),ψ(t) ∈ SFH[u, v].

Let ϕ be some specified function fixed in SFH[−r, 0]. The set Ωb and Rαb are defined as follows:

Ωb = {x ∈ SFH[−r, 0] : H(x,ϕ) 6 b}, Rαb = Iα ×Ωb,

where α,b are positive numbers.

Definition 4.1 ([28]). A nonnegative real-valued function h(t, r) defined on Iα ×R+ is a Kamke function
if h satisfies the Carathéodory conditions, h(t, 0) = 0 and the function identically equal to zero is the
unique continuous solution of the equation u(t) =

∫t
0 h(s,us)ds, for t ∈ Iα satisfying the condition

u(0) = 0, where us = u(t+ s).

Definition 4.2 ([35]). A fuzzy-number-valued function f̃ : Rαb → En is said to be Carathéodory function
on Rαb, if for each x ∈ Ωb, f̃(t, x) is measurable in t and for almost all t ∈ Iα, f̃(t, x) is continuous with
respect to x.

Theorem 4.3. A fuzzy-number-valued function x(t) is called a generalized (i)-solution (or generalized (ii)-solution)
of problem (4.1) if and only if it satisfies the following integral equations{

x0 = ϕ,
x(t) = ϕ(0) +

∫t
0 f̃(s, xs)ds, t ∈ Iα,

or {
x0 = ϕ,
x(t) = ϕ(0)	H (−

∫t
0 f̃(s, xs)ds), t ∈ Iα,

respectively.

We now define an auxiliary function x̂: if x is defined on Iβ (0 < β < α) with x(0) = ϕ(0), the function
x̂ is defined as follows:

x̂ =

{
x(t), t ∈ (0,β),
x(t) = ϕ(t), t ∈ (−r, 0).

Theorem 4.4. The set A(ϕ,α) ⊂ C(Iα,En) is defined by

A(ϕ,α) = {x ∈ C(Iα,En) : x(0) = ϕ(0),D(x, 0̃) 6 b+D(ϕ(0), 0̃), x̂ ∈ Ωb}.

Then A(ϕ,α) is bounded, closed and convex.
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We define the integral operator as follows:

F̃x(t) = x0 +

∫t
0
f̃(s, x̂s)ds,

or

F̃x(t) = x0 	H (−

∫t
0
f̃(s, x̂s)ds),

for t ∈ Iα and x ∈ A(ϕ,α) where the integral is taken in the sense of strong fuzzy Henstock integral and
the derivative x′ is considered in the sense of GH-derivative.

Theorem 4.5. Let En be a fuzzy number space and V is a set of strong fuzzy Henstock integrable functions. Let

F = {

∫t
0
x(s)ds, x ∈ V , t ∈ Iα},

be a equi-continuous, equi-bounded and strong uniformly ACO on Iα. Then

K(

∫t
0
j ◦ V(s)ds) 6

∫t
0
K(j ◦ V(s)ds),

whenever K(j ◦ V(s)) 6 h(s), for s ∈ Iα a.e., h is a Henstock integrable function and K denotes the Kuratowski’s
measure of non-compactness.

Proof. Since x(s) is strong fuzzy Henstock integrable, for each ε = 1
m > 0 there exists a function δm(x) > 0

such that for any δm-fine division {(ξi, [ui, vi])}, we have

D(
∑

x(ξi)(vi − ui),
∫t

0
x(s)ds) = sup{dH([

∑
x(ξi)(vi − ui)]

α, [
∫t

0
x(s)ds]α)}

6 |dH(
∑

x(ξi)(vi − ui), j ◦ V) −
∫t

0
(dH[x(s)]

α, j ◦ V)ds|

6 |
∑

dH(x(ξi), j ◦ V)(vi − ui) −
∫t

0
dH([x(s)]

α, j ◦ V)ds|

< εm.

Hence, by taking m→∞ we have

dH([

∫t
0
x(s)ds]α, j ◦ V) 6 (H)

∫t
0
dH([x(s)]

α, j ◦ V)ds. (4.2)

In addition, let
∫t

0 j ◦ V(s)ds = {j ◦
∫t

0 xm(s)ds : m = 1, 2, · · · }. Since the function dH([xm(t)]α, j ◦ V) is
measurable on Iα, we have K(j ◦ V(t)) = lim

m→∞dH([xm(t)]α, j ◦HF) is measurable on Iα too. By (4.2) we
have

dH([

∫t
0
xm(s)ds]α, j ◦ V) 6 (H)

∫t
0
dH([xm(s)]α, j ◦ V)ds.

Hence, by Henstock’s theorems monotone and dominated convergence of real valued functions, we have

lim
m→∞dH([

∫t
0
x(s)ds]α, j ◦ V]) 6 lim

m→∞
∫t

0
dH([xm(s)]α, j ◦ V)ds

6
∫t

0
lim
m→∞dH([xm(s)]α, j ◦ V)ds.

So,

K(

∫t
0
j ◦ V(s)ds) 6

∫t
0
K(j ◦ V(s)ds),

for t ∈ Iα.

Now, we present the main outcomes in this section.
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Theorem 4.6. Let ϕ be some specified function fixed in SFH[−r, 0]. Suppose that f̃(t, xt) is strong fuzzy Henstock
integrable and a Carathéodory function defined on Rαb and

K(j ◦ f̃(t,X)) 6 h(t,K(j ◦X)), (4.3)

for each bounded subset X ⊂ C(Iα, RF), where h is a Kamke function. Let F = {F̃x : x ∈ A(ϕ,α)} and suppose that
F is equi-continuous, equi-bounded and uniformly strong ACO on Iα. Then there exists a generalized (i)-solution
(or generalized (ii)-solution) of problem (4.2) on Iβ for some 0 < β 6 α with initial function ϕ.

Proof. We only prove case of (i)-GH-differentiable. By equi-continuous of F, there exists some β, 0 < β 6 α
such that

D(

∫t
0
f̃(s, x̂s)ds, 0̃) 6 b, and D(

∫τ
−τ
ϕ(0)ds,

∫τ
−τ
ϕ(s)ds) < k,

and

D(

∫τ
−τ

∫t+s
0

f̃(p, x̂p)dpds, 0̃) < l,

and x ∈ A(ϕ,β).
Since the integral operator F̃x is well-defined, in fact

D(ϕ(0) +
∫t

0
f̃(s, x̂s)ds, 0̃) 6 D(ϕ(0), 0̃) +D(

∫t
0
f̃(s, x̂s)ds, 0̃) = D(ϕ(0), 0̃) + b,

and

H( ˆ̃Fxt ,ϕ) = sup
τ∈(−r,0)

D(

∫τ
−r

ˆ̃Fxt(s)ds,
∫τ
−r
ϕ(s)ds)

= sup
τ∈(−r,0)

D(

∫τ
−r

ˆ̃Fx(s+ t)ds,
∫τ
−r
ϕ(s)ds)

= sup
τ∈(−r,0)

D(

∫τ
−r

[ϕ(0) +
∫t+s

0
f̃(p, x̂p)dp]ds,

∫τ
−r
ϕ(s)ds)

6 sup
τ∈(−r,0)

D(

∫τ
−r
ϕ(0)ds,

∫τ
−τ
ϕ(s)ds)

+ sup
τ∈(−r,0)

D(

∫τ
−r

∫t+s
0

f̃(p, x̂p)dpds, 0̃)

6 k+ l = b.

Let j ◦ V = conv{j ◦ (x∪ F(V))} for V ⊂ A(ϕ,α). Next, we will prove that j ◦ V is relatively compact.
In fact, we put

{

∫t
0
f̃(s, x̂s)ds, x ∈ V} =

∫t
0
f̃(s,Vs)ds,

where Vs = {x̂ : x ∈ V} and

F(V(t)) = ϕ(0) +
∫t

0
f̃(s, x̂s)ds.

By Theorem 4.5 and (4.3) we have

K(j ◦ F(V(t))) = K[j ◦ (ϕ(0) +
∫t

0
f̃(s,Vs)ds)]

6
∫t

0
K[j ◦ (f̃(s,Vs))ds]

6
∫t

0
h(s,K(j ◦ V(s))ds.

By the properties of the Kuratowski measure of non-compactness, we have K(j ◦ V(t)) 6 K(j ◦ F(V(t)))
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and by differential inequality as follows

v(t) = K(j ◦ V(t)) 6
∫t

0
h(s,K(v(s)))ds,

we have v(t) = 0. By Lemma 3.2 j ◦ V is relatively compact. Therefore by Theorem 3.5 and Theorem 4.3,
the problem (4.1) has a generalized (i)-solution. The proof is completed.

Example 4.7. Let α = r = 1 and define a fuzzy-number-valued function f̃(t, xt) as

f̃(t, xt) = xt(−1) + F̃′(t), 0 6 t 6 1,

where “′” is (i)-GH-differentiability.
Let ϕ be some initial function continuous on [−1, 0]. The problem (4.1) is

x′(t) = xt(−1) + F̃′(t) = x(t− 1) + F̃′(t),

subject to the condition that x(θ) = ϕ(θ) for θ ∈ [−1, 0]. As t ∈ [−1, 0], problem (4.1) indicates

x′ = ϕ(t− 1) + F̃′(t).

x(t) =

∫t
0
ϕ(s− 1)ds+

∫t
0
F̃′(s)ds+ϕ(0).

Now the function F̃′(t) is not Kaleva integrable on [0, 1] but it is strong fuzzy Henstock integrable here.
Then the problem (4.1) has a generalized (i)-solution

x(t) =

∫t
0
ϕ(s− 1)ds+

∫t
0
F̃′(s)ds+ϕ(0).

5. Conclusions

The major contribution of this paper is to study the problems of existence of generalized solutions to
discontinuous fuzzy systems such as with right-hand function is strong fuzzy Henstock integral under
generalized differentiability. Some known results of fuzzy differential equations and fuzzy delay func-
tional differential equations are extended, which might be helpful in the analysis of dynamic systems
with uncertainties.
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