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Abstract

We are concerned with the following nonlinear elliptic equations

−div(ϕ(x,∇u)) + b(x)|u|p−2u = λf(x,u) in RN,

where the function ϕ(x, v) is of type |v|p−2v, b : RN → (0,∞) is a continuous potential function, λ is a real parameter, and
f : RN ×R → R is a Carathéodory function. In this paper, under suitable assumptions, we show the existence of infinitely
many weak solutions for the problem above without assuming the Ambrosetti and Rabinowitz condition, by using the fountain
theorem. Next, we give a result on the existence of a sequence of solutions for the problem above converging to zero in the
L∞-norm by employing the Moser iteration under appropriate conditions. c©2017 All rights reserved.
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1. Introduction

The celebrated mountain pass theorem of Ambrosetti and Rabinowitz [2] has become one of main tools
for solving elliptic equations of variational type. Ambrosetti and Rabinowitz [2] proved the existence of
infinitely many distinct pairs of solutions of second order uniformly elliptic equations, subject to the
Dirichlet boundary condition as applications of their mountain pass theorem. Due to a generalization
of the mountain pass theorem in [2], the existence of infinitely many solutions of the semilinear elliptic
Dirichlet boundary value problem was investigated by Bartsch [3].

The multiplicity result of solutions for the following semilinear elliptic problem

−∆u+ b(x)u = λf(x,u) in RN, (1.1)
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was studied by Bartsch and Wang [5], as applying the fountain theorem which was first introduced in
[4, Theorem 2.25] (see also [34]). It is well-known that the main difficulty in treating the problem (1.1)
in RN arises from the lack of the compactness of the Sobolev embedding, which prevents from checking
directly that the energy functional associated with (1.1) satisfies the Palais-Smale condition. To overcome
the difficulty of the noncompact embedding, they established a new compact embedding result under
suitable conditions on the potential b(x). To this end, as showing the compactness of the Palais-Smale
sequence for an energy functional which plays an important role in applying the fountain theorem, they
proved the existence of infinitely many solutions for the problem (1.1). Motivated by the work of [5],
many authors considered elliptic problems involving the p-Laplacian in the whole space. We refer the
readers to [22, 26]; see also [1, 24] for the case of variable exponents.

In the present paper, we deal with the following nonlinear elliptic equations of the p-Laplace type

− div(ϕ(x,∇u)) + b(x)|u|p−2u = λf(x,u) in RN, (1.2)

where the function ϕ(x, v) is of type |v|p−2 v, b : RN → (0,∞) is a continuous potential function, λ is a
real parameter, and f : RN×R→ R is a Carathéodory function. As a natural extension of the p-Laplacian
operator, many researchers have been widely studied nonlinear elliptic equations of the p-Laplace type
operator in various ways; see [8, 10, 11, 22, 23] and references therein.

The first aim of this paper is to demonstrate the existence of an unbounded sequence of solutions for
the problem (1.2) without assuming the following Ambrosetti and Rabinowitz condition ((AR)-condition
for short) which is imposed on the nonlinearity f(x, t):

(AR) There exist positive constants N and ζ such that ζ > p and

0 < ζF(x, t) 6 f(x, t)t, for x ∈ Ω and |t| > N,

where F(x, t) =
∫t

0 f(x, s)ds, and Ω is a bounded domain in RN.

The main role of (AR)-condition in applying critical point theory is to ensure the boundedness of the
Palais-Smale sequence of the functional with respect to the problem (1.2). However, this condition is
very restrictive, and thus undoubtedly eliminates many nonlinearities. Accordingly, many authors in
[18, 25, 27–29, 36] have made an effort to drop (AR)-condition in recent years. In particular, Jeanjean [17]
obtained the existence and multiplicity of solutions for the Laplacian equation on the whole space RN

assuming the following condition (Je) below:

(Je) There exists η > 1 such that
ηF(x, t) > F(x, st),

for all (x, t) ∈ RN ×R and s ∈ [0, 1], where F(x, t) = f(x, t)t− pF(x, t).

This condition (Je) is weaker than (AR)-condition and in past years there are numerous studies dealing
with the p-Laplacian problem by assuming (Je); see [7, 27, 28]. We refer to [1, 31] for the case of variable
exponents and [32] for the fractional p-Laplacian. From this point of view, we discuss the existence of an
unbounded sequence of solutions for the problem (1.2) without assuming (AR)-condition under a suitable
assumption for f which is slightly different from (Je). The method of approach is to apply the fountain
theorem given in [34, Theorem 3.6].

The second aim is to prove the existence of small solutions for the problem (1.2), which means that the
sequence of solutions converges to 0 in the L∞-norm, relies only on local behavior under the conditions
on f(x,u) only for sufficiently small u. To do this, we use a method by means of global variational for-
mulations introduced by Wang [33]. He obtained the existence of infinitely many solutions for nonlinear
boundary value problems which is rather a local phenomenon by modifying and extending the functional
f(x,u). Utilizing the argument in [33], Naimen [30] showed that nonlinear Neumann problems have in-
finitely many solutions whose L∞-norms converge to zero. In this direction, many authors considered
the results for the nonlinear equations on a bounded domain in RN; see [9, 15, 19, 31]. To the best of
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our knowledge, such a result on the whole space RN is very rare. The strategy to obtain this multiplic-
ity result involves the following two steps: Firstly, we give a regularity type result on the L∞-bound of
solutions for the problem (1.2) by applying the Moser iteration method based on the work of Drábek,
Kufner, and Nicolosi in [12]. It is worth noticing that the problem (1.2) includes the potential term, so
more complicated analysis has to be carefully carried out in comparison with nonlinear equations given
in [12]. Secondly, we establish the existence of a sequence of solutions which converges to zero in the
L∞-norm with the aid of the regularity result.

This paper is organized as follows: In Section 2, under certain conditions on ϕ and f, we establish
the existence of an unbounded solutions for the problem (1.2) by employing the fountain theorem (see
Theorem 2.11). In Section 3, we give a result on the existence of a sequence of solutions for the problem
(1.2) converging to zero in the L∞-norm via the Moser iteration under the appropriate conditions (see
Proposition 3.1 and Theorem 3.5).

2. Existence of solutions

In this section, we shall give the proof of the existence of nontrivial weak solutions for the problem
(1.2), by applying the mountain pass theorem and the fountain theorem.

Let 1 < p < N and p∗ := Np/(N − p) denotes the Sobolev conjugate of p. Let the potential b ∈
C(RN, R) be continuous. Suppose that

(B) b ∈ C(RN, R), infx∈RN b(x) > b0 > 0, meas{x ∈ RN : −∞ < b(x) 6M} < +∞, ∀M ∈ R.

Define the linear subspace

X :=

{
u ∈W1,p(RN) :

∫
RN

|∇u|p dx+
∫

RN
b(x) |u|p dx <∞} ,

with b satisfying the condition (B), then X is a reflexive separable Banach space with the norm

‖u‖X =

(∫
RN

|∇u|p dx+
∫

RN
b(x) |u|p dx

) 1
p

,

which is equivalent to the norm ‖ · ‖W1,p(RN) given by

‖u‖W1,p(RN) =

(∫
RN

|∇u|p dx+
∫

RN
|u|p dx

) 1
p

.

Lemma 2.1. The following statements hold:

(i) There is a continuous embedding W1,p(RN) ↪→ Ls(RN) for any s ∈ [p,p∗].

(ii) If b satisfies the assumption (B), then there is a compact embedding X ↪→ Ls(RN) for any s ∈ [p,p∗).

Throughout this paper, let X be the completion of C∞0 (RN) and let X∗ be the dual space of X. Further-
more, 〈·, ·〉 denotes the pairing of X and its dual X∗ and Euclidean scalar product on RN, respectively.

Definition 2.2. We say that u ∈ X is a weak solution of the problem (1.2), if∫
RN
ϕ(x,∇u) · ∇v dx+

∫
RN
b(x)|u|p−2uvdx = λ

∫
RN
f(x,u)v dx, (2.1)

for all v ∈ X.
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We assume that ϕ : RN ×RN → RN is a continuous function with the continuous derivative with
respect to v of the mapping Φ0 : RN ×RN → R, Φ0 = Φ0(x, v), that is, ϕ(x, v) = d

dvΦ0(x, v). Suppose
that ϕ and Φ0 satisfy the following assumptions:

(J1) The equality
Φ0(x, 0) = 0,

holds for almost all x ∈ RN.
(J2) There are a function a ∈ Lp ′(RN) and a nonnegative constant a0 such that

|ϕ(x, v)| 6 a(x) + a0|v|
p−1,

holds for almost all x ∈ RN and for all v ∈ RN, where 1/p+ 1/p ′ = 1.
(J3) Φ0(x, ·) is strictly convex in RN for all x ∈ RN.
(J4) The relations

d|v|p 6 ϕ(x, v) · v and d|v|p 6 pΦ0(x, v),

hold for all x ∈ RN and v ∈ RN, where d is a positive constant.
(J5) There exists a constant θ > p such that

H(x, sv) 6 H(x, v),

for v ∈ RN and s ∈ [0, 1], where H(x, v) = θΦ0(x, v) −ϕ(x, v) · v, for all x ∈ RN.

Let us define the functional Φ : X→ R by

Φ(u) =

∫
RN
Φ0(x,∇u)dx+ 1

p

∫
RN
b(x)|u|p dx.

Under the assumptions (J1), (J2), and (J4), it follows from [24, Lemma 3.2] that the functional Φ is well-
defined on X, Φ ∈ C1(X, R), and its Fréchet derivative is given by

〈Φ′(u), v〉 =
∫

RN
ϕ(x,∇u) · ∇v dx+

∫
RN
b(x)|u|p−2uvdx.

Let us set F(x, t) =
∫t

0 f(x, s)ds. For 1 < p < q < p∗, we assume that

(F1) f : RN ×R → R satisfies the Carathéodory condition in the sense that f(·, t) is measurable for all
t ∈ R and f(x, ·) is continuous for almost all x ∈ RN.

(F2) f satisfies the following growth condition: for all (x, t) ∈ RN ×R,

|f(x, t)| 6 σ(x) |t|q−1 ,

where σ ∈ Lγ1(RN)∩ L∞(RN) with γ1 = p∗

p∗−q .

(F3) lim|t|→∞ F(x,t)
|t|p

=∞ uniformly for almost all x ∈ RN.
(F4) There exists a constant µ > 1 such that

µF(x, t) > F(x, st),

for (x, t) ∈ RN ×R and s ∈ [0, 1], where F(x, t) = f(x, t)t− θF(x, t) and θ is given in (J5).
(F5) f(x,−t) = −f(x, t) holds for all (x, t) ∈ RN ×R.

Define the functional Ψ : X→ R by

Ψ(u) =

∫
RN
F(x,u)dx.
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Then it is easy to check that Ψ ∈ C1(X, R) and its Fréchet derivative is〈
Ψ′(u), v

〉
=

∫
RN
f(x,u)v dx,

for any u, v ∈ X (see [34]). Next we define the functional Iλ : X→ R by

Iλ(u) = Φ(u) − λΨ(u).

Then it follows that the functional Iλ ∈ C1(X, R) and its Fréchet derivative is〈
I′λ(u), v

〉
=

∫
RN
ϕ(x,∇u) · ∇v dx+

∫
RN
b(x)|u|p−2uvdx− λ

∫
RN
f(x,u)v dx,

for any u, v ∈ X.

Since the assumption (F4) is weaker than the following assumption that

f(x, t)

|t|θ−2 t
is increasing in t > 0 and decreasing in t < 0, (2.2)

for any x ∈ RN, we check that the following examples satisfy the assumption (F4) by applying the
assumption (2.2).

Example 2.3. Let us consider

ϕ(x, v) = |v|p−2 v, and f(x, t) = |t|q−2 t log (1 + |t|),

for all v ∈ RN and for all t ∈ R. It is clear that the function ϕ satisfies the assumptions (J1)-(J5) when
θ = p. Also, it is obvious that the function f satisfies the conditions (F1)-(F3) hold. Since the relation

f(x, t)
|t|p−2 t

=
|t|q−2 t log (1 + |t|)

|t|p−2 t
= |t|q−p log (1 + |t|),

is increasing in t > 0 and decreasing in t < 0, if q > p = θ for all x ∈ RN, it follows that the assumption
(F4) holds.

Example 2.4. Let us consider

ϕ(x, v) =

1 +
|v|p√

1 + |v|2p

 |v|p−2 v, and f(x, t) = |t|q−2 t log (1 + |t|),

for all v ∈ RN and for all t ∈ R. In this case, put

Φ0(x, v) =
1
p

(
|v|p +

√
1 + |v|2p − 1

)
,

for all v ∈ RN. It is immediately apparent that the conditions (J1)-(J4) hold. A similar argument in [6]
implies that the assumption (J5) holds when θ = 2p. For the sake of convenience, we give the detailed
proof. In fact, we have, for all s ∈ [0, 1]

H(x, v) −H(x, sv) = 2pΦ0(x, v) −ϕ(x, v) · v− 2pΦ0(x, sv) +ϕ(x, sv) · sv

= 2p

 1
p
|v|p +

√
1 + |v|2p

p
−

1
p
|sv|p −

√
1 + |sv|2p

p





Y.-H. Kim, J.-H. Bae, J. Lee, J. Nonlinear Sci. Appl., 10 (2017), 2144–2161 2149

−

1 +
|v|p√

1 + |v|2p

 |v|p +

1 +
|sv|p√

1 + |sv|2p

 |sv|p

= |v|p − |sv|p

+ 2
√

1 + |v|2p −
|v|2p√

1 + |v|2p
− 2
√

1 + |sv|2p +
|sv|2p√

1 + |sv|2p

> 2
√

1 + |v|2p −
|v|2p√

1 + |v|2p
− 2
√

1 + |sv|2p +
|sv|2p√

1 + |sv|2p
.

Define the functional h : RN × (R+ ∪ {0})→ R by

h(x, `) = 2
√

1 + `2p −
`2p√

1 + `2p
.

Then we obtain

∂

∂`
h(x, `) =

(
2p`2p−1 − 2p`2p−1) 1√

1 + `2p
+

p`4p−1

(1 + `2p)
√

1 + `2p
> 0,

for all (x, `) ∈ RN × (R+ ∪ {0}). This implies that

H(x, v) −H(x, sv) > 0.

Also the same argument as in the previous example shows that f satisfies the assumption (F4) if we set
q > 2p = θ for all x ∈ RN.

Next, taking inspiration from the argument given in [21, Theorem 4.1], we will show that the operator
Φ′ is of type (S+) when X is the Sobolev space on the whole space RN; see also [8, 24]. For bounded
domains in RN, we refer to [10, 21].

Lemma 2.5. Assume that (B) and (J1)-(J4) hold. Then the functional Φ : X → R is convex and weakly lower
semicontinuous on X. Moreover, the operator Φ′ is of type (S+), i.e., if un ⇀ u in X and

lim sup
n→∞

〈
Φ′(un) −Φ

′(u),un − u
〉
6 0,

then un → u in X as n→∞.

Proof. To show that Φ′ is of type (S+), let {un} be a sequence in X such that un ⇀ u in X as n→∞ and

lim sup
n→∞ 〈Φ′(un) −Φ′(u),un − u〉 6 0. (2.3)

Since Φ is strictly convex by the assumption (J3), it is obvious that the operator Φ′ is monotone, that is,

〈Φ′(un) −Φ′(u),un − u〉 > 0. (2.4)

By (2.3) and (2.4), we have

lim
n→∞

∫
RN

(ϕ(x,∇un) −ϕ(x,∇u)) · (∇un −∇u) dx

+ lim
n→∞

∫
RN
b(x)(|un|

p−2 un − |u|p−2 u) (un − u) dx

= lim
n→∞ 〈Φ′(un) −Φ′(u),un − u〉 = 0,
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which yields that

lim
n→∞

∫
RN

(ϕ(x,∇un) −ϕ(x,∇u)) · (∇un −∇u) dx = 0. (2.5)

Now, we prove that the sequence {|∇un|p} is uniformly integrable in RN, i.e., for each ε > 0, there exists
δ > 0 such that if H is a measurable subset of RN with meas(H) 6 δ (meas(H) is the Lebesgue measure
of H), then ∫

H

|∇un|p dx 6 ε,

for every n ∈N. Given ε > 0, the equation (2.5) implies that there exists n1 ∈N such that for n > n1, we
get ∫

H

(ϕ(x,∇un) −ϕ(x,∇u)) · (∇un −∇u)dx 6 εd

8
,

for any measurable subset H of RN, which says∫
H

ϕ(x,∇un) · ∇un dx 6
εd

8
+

∫
H

ϕ(x,∇u) · ∇un +ϕ(x,∇un) · ∇u−ϕ(x,∇u) · ∇udx. (2.6)

According to the assumption (J4) we obtain that∫
H

ϕ(x,∇un) · ∇un dx >
∫
H

d |∇un|p dx. (2.7)

Given ε0 > 0, there exists a constant C(ε0) > 0 depending on ε0 such that for all a,b ∈ R,

ab 6 ε0 |a|
p +C(ε0) |b|

p ′ . (2.8)

By using this inequality, (J2), and (J4), we deduce that

ϕ(x,∇u) · ∇un +ϕ(x,∇un) · ∇u−ϕ(x,∇u) · ∇u

6 |a(x)|∇un + a0 |∇u|p−1∇un + |a(x)|∇u+ a0 |∇un|p−1∇u− d |∇u|p

6 C

(
d

4

)
|a(x)|p

′
+
d

4
|∇un|p + a0C

(
d

4a0

)
|∇u|p + d

4
|∇un|p

+
d

4a0
|a(x)|p

′
+C

(
d

4a0

)
|∇u|p + d

4
|∇un|p + a0C

(
d

4a0

)
|∇u|p

=

(
C

(
d

4

)
+

d

4a0

)
|a(x)|p

′
+

3d
4

|∇un|p + (2a0 + 1)C
(
d

4a0

)
|∇u|p ,

where C (d/4) and C (d/4a0) are the constants given in (2.8). Combining this relation and (2.7), it follows
from (2.6) that

d

4

∫
H

|∇un|p dx 6
∫
H

(
C

(
d

4

)
+

d

4a0

)
|a(x)|p

′
dx+

∫
H

(2a0 + 1)C
(
d

4a0

)
|∇u|p dx+ εd

8
. (2.9)

Note that a ∈ Lp ′(RN) and u ∈ X. Then there exists δ > 0 such that if meas(H) 6 δ, then∫
H

(
C

(
d

4

)
+

d

4a0

)
|a(x)|p

′
dx+

∫
H

(2a0 + 1)C
(
d

4a0

)
|∇u|p dx 6 εd

8
.

This together with (2.9) implies that

d

4

∫
H

|∇un|p dx 6
εd

8
+
εd

8
,

as claimed.



Y.-H. Kim, J.-H. Bae, J. Lee, J. Nonlinear Sci. Appl., 10 (2017), 2144–2161 2151

On the other hand, there exists a constant C > 0 such that

|∇un −∇u|p 6 C(|∇un|p + |∇u|p),

for all n ∈ N and for almost all x ∈ RN. Since |∇u|p ∈ L1(RN) and {|∇un|p} is uniformly integrable in
RN, {|∇un −∇u|p} is also uniformly integrable in RN.

Next, we claim that
|∇un(x) −∇u(x)|→ 0 as n→∞, (2.10)

for almost all x ∈ RN. From (2.5), it follows that the sequences {(ϕ(x,∇un) −ϕ(x,∇u)) · (∇un −∇u)} and
{b(x)(|un|

p−2 un − |u|p−2 u) (un − u)} converge to 0 in L1(RN; RN) and L1(RN) as n → ∞, respectively.
Hence, there exist a subsequence {unk} of {un} and a subset U of RN of measure 0 such that

lim
k→∞ (ϕ(x,∇unk) −ϕ(x,∇u)) · (∇unk −∇u) = 0, (2.11)

for every x ∈ RN \ U. Let x ∈ RN \ U. By a similar argument above, we can show that {|∇unk(x)|}
is bounded and so {∇unk(x)} is bounded in RN. By passing to a subsequence, we can assume that
∇unk(x) → ξ as k → ∞ for some ξ ∈ RN. Then we obtain ϕ(x,∇unk) → ϕ(x, ξ) in RN as k → ∞ and
the relation (2.11) implies that

0 = lim
k→∞ (ϕ(x,∇unk) −ϕ(x,∇u)) · (∇unk −∇u) = (ϕ(x, ξ) −ϕ(x,∇u)) · (ξ−∇u).

It follows from the strict monotonicity of ϕ on X due to (J3) that this relation occurs only if ξ = ∇u, that
is, ∇unk(x) → ∇u(x) in RN as k → ∞. Since these arguments hold for any subsequence of {∇un}, we
conclude that ∇un(x)→ ∇u(x) in RN as n→∞ for every x ∈ RN \U, i.e., (2.10) holds. Hence, we obtain
that {|∇un −∇u|p} converges to zero in RN. Combining this with its uniform integrability, we derive

lim
n→∞

∫
RN

|∇un −∇u|p dx = 0, (2.12)

by Vitali’s convergence theorem, that is, ‖∇un−∇u‖Lp(RN) → 0 as n→∞. From the compact embedding
theorem, we obtain un → u in Lp(RN) as n → ∞. It follows from (2.12) that un → u in W1,p(RN) as
n → ∞. Therefore, we conclude that un → u in X as n → ∞, because ‖ · ‖X is equivalent to the norm
‖ · ‖W1,p(RN). This completes the proof.

Proceeding arguments analogous to [13, Lemma 3.2], we can see that the functionals Ψ and Ψ′ are
weakly strongly continuous on X. Thus we will omit the proofs here.

Lemma 2.6. Assume that (B) and (F1)-(F2) hold. Then Ψ and Ψ′ are weakly strongly continuous on X.

With the aid of Lemmas 2.5 and 2.6, we prove that the energy functional Iλ satisfies the Cerami
condition ((C)c-condition for short), i.e., for c ∈ R, any sequence {un} ⊂ X such that Iλ(un) → c and
‖I′λ(un)‖X∗(1 + ‖un‖X) → 0 as n → ∞ has a convergent subsequence. This plays a key role in finding a
nontrivial weak solution for the given problem.

Remark 2.7. One of the key assumptions for proving that the functional Iλ satisfies the (C)c-condition (or
Palais-Smale condition) for c ∈ R is

f(x, t) = o(|t|p−1) as |t|→ 0, uniformly for x ∈ RN, (2.13)

see, for instance, [18, 28, 29, 35]. However, we prove the following result without the assumption (2.13).

Lemma 2.8. Assume that (B), (J1)-(J5) and (F1)-(F4) hold. Then Iλ satisfies the (C)c-condition for any λ > 0.
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Proof. For c ∈ R, let {un} ⊂ X be a (C)c-sequence of the functional Iλ, that is,

Iλ(un)→ c and ‖I′λ(un)‖X∗(1 + ‖un‖X)→ 0 as n→∞,

which shows that
c = Iλ(un) + o(1) and

〈
I′λ(un),un

〉
= o(1), (2.14)

where o(1) → 0 as n → ∞. Since I′λ is of type (S+) by Lemmas 2.5, 2.6 and X is reflexive, it suffices to
verify that the sequence {un} is bounded in X.

Assume the contrary that the sequence {un} is unbounded in X. Then we may suppose that ‖un‖X > 1
and ‖un‖X → ∞ as n → ∞. Define a sequence {`n} by `n = un/‖un‖X. Then it is obvious that {`n} ⊂ X
and ‖`n‖X = 1. Hence, up to a subsequence, still denoted by {`n}, we obtain `n ⇀ ` in X as n → ∞ and
according to Lemma 2.1

`n(x)→ `(x) a.e. in RN, `n → ` in Lq(RN), and `n → ` in Lp(RN) as n→∞. (2.15)

Set Ω1 =
{
x ∈ RN : `(x) 6= 0

}
. Using the assumption (J4) and (2.14), we assert that

c = Iλ(un) + o(1)

=

∫
RN
Φ0(x,∇un)dx+

1
p

∫
RN
b(x)|u|p dx− λ

∫
RN
F(x,un)dx+ o(1)

>
d

p

∫
RN

|∇un|p dx+
1
p

∫
RN
b(x)|u|p dx− λ

∫
RN
F(x,un)dx+ o(1)

>
min{d, 1}

p
‖un‖pX − λ

∫
RN
F(x,un)dx+ o(1).

Since the sequence {un} is the (C)c-sequence, we get∫
RN
F(x,un)dx >

min{d, 1}
λp

‖un‖pX −
c

λ
+
o(1)
λ
→∞ as n→∞. (2.16)

Moreover, the assumptions (B), (J2) and the Hölder inequality imply that

Iλ(un) =

∫
RN
Φ0(x,∇un)dx+

1
p

∫
RN
b(x)|u|p dx− λ

∫
RN
F(x,un)dx

6
∫

RN
a(x) |∇un|dx+

a0

p

∫
RN

|∇un|p dx+
1
p

∫
RN
b(x)|u|p dx− λ

∫
RN
F(x,un)dx

6 ‖a‖Lp′(RN)‖∇un‖Lp(RN) + (a0 + 1)‖un‖pX − λ

∫
RN
F(x,un)dx

6 (C1‖a‖Lp′(RN) + a0 + 1)‖un‖pX − λ

∫
RN
F(x,un)dx, (2.17)

for some constant C1. Then we have

C1‖a‖Lp′(RN) + a0 + 1 >
1

‖un‖pX

(
Iλ(un) + λ

∫
RN
F(x,un)dx

)
, (2.18)

for sufficiently large n. The condition (F3) implies that there exists t0 > 1 such that F(x, t) > |t|p for all
x ∈ RN and |t| > t0. Since F(x, t) is continuous on RN × [−t0, t0], there exists a positive constant M such
that |F(x, t)| 6 M, for all (x, t) ∈ RN × [−t0, t0]. Therefore we can choose a real number M0 such that
F(x, t) >M0, for all (x, t) ∈ RN ×R, and thus

F(x,un(x)) −M0

‖un‖pX
> 0, (2.19)
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for all x ∈ RN and for all n ∈ N. By the relation (2.15), we know that |un(x)| = |`n(x)| ‖un‖X → ∞ as
n→∞ for all x ∈ Ω1. Furthermore, it follows from the condition (F3) that

lim
n→∞ F(x,un(x))

‖un‖pX
= lim
n→∞ F(x,un(x))

|un(x)|
p |`n(x)|

p =∞, (2.20)

for all x ∈ Ω1. Hence we get that |Ω1| = 0. Indeed, if |Ω1| 6= 0, then according to (2.16), (2.18), (2.19),
(2.20), and the Fatou lemma, we deduce

1
λ

(
C1‖a‖Lp′(RN) + a0 + 1

)
= lim
n→∞

(C1‖a‖Lp′(RN) + a0 + 1)
∫

RN
F(x,un(x))dx

Iλ(un) + λ
∫

RN
F(x,un(x))dx

> lim inf
n→∞

∫
RN

F(x,un(x))
‖un‖pX

dx

> lim inf
n→∞

∫
Ω1

F(x,un(x))
‖un‖pX

dx− lim inf
n→∞

∫
Ω1

M0

‖un‖pX
dx

> lim inf
n→∞

∫
Ω1

F(x,un(x)) −M0

‖un‖pX
dx

>
∫
Ω1

lim inf
n→∞ F(x,un(x)) −M0

‖un‖pX
dx

=

∫
Ω1

lim inf
n→∞ F(x,un(x))

|un(x)|
p |`n(x)|

p dx−

∫
Ω1

lim
n→∞ M0

‖un‖pX
dx

=∞,

which is a contradiction. Thus `(x) = 0 for almost all x ∈ RN.
Since Iλ(tun) is continuous in t ∈ [0, 1], for each n ∈N, there is tn ∈ [0, 1] such that

Iλ(tnun) := max
t∈[0,1]

Iλ(tun).

Let {dk} be a positive sequence of real numbers such that limk→∞ dk =∞ and dk > 1 for any k. Then it is
clear that ‖dk`n‖X = dk > 1 for any k and n. Fix k, since `n → 0 strongly in the space Lq(RN) as n→∞,
it follows from the continuity of Nemytskii operator that F(x,dk`n)→ 0 in L1(RN), which asserts

lim
n→∞

∫
RN
F(x,dk`n)dx = 0. (2.21)

Since ‖un‖X → ∞ as n → ∞, we have ‖un‖X > dk for sufficiently large n. Hence we know by (J4) and
(2.21) that

Iλ(tnun) > Iλ

(
dk
‖un‖X

un

)
= Iλ(dk`n)

=

∫
RN
Φ0(x,∇dk`n)dx− λ

∫
RN
F(x,dk`n)dx+

1
p

∫
RN
b(x)|dk`n|

p dx

>
d

p

∫
RN
a(x) |∇dk`n|p dx− λ

∫
RN
F(x,dk`n)dx+

b0

p

∫
RN

|dk`n|
p dx

> C2‖dk`n‖pX − λ

∫
RN
F(x,dk`n)dx

>
C2

2
d
p
k,

for sufficiently large n, where C2 := min{d,b0}/p. Letting n and k tend to infinity, we conclude that

lim
n→∞ Iλ(tnun) =∞. (2.22)
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For any n large enough, this implies that Iλ(tnun) > 0 = Iλ(0) = Iλ(0un), and thus tn > 0. If tn < 1,
then d

dtIλ(tun)|t=tn = 0, and so
〈
I′λ(tnun), tnun

〉
= 0. If tn = 1, then we have

〈
I′λ(un),un

〉
= 0. Hence

we always obtain 〈
I′λ(tnun), tnun

〉
= o(1),

for sufficiently large n.
On the other hand, due to the assumptions (J5) and (F4), for all n large enough we obtain that

1
µ
Iλ(tnun) =

1
µ
Iλ(tnun) −

1
θµ

〈
I′λ(tnun), tnun

〉
+ o(1)

=
1
µ

∫
RN
Φ0(x, tn∇un)dx−

λ

µ

∫
RN
F(x, tnun)dx+

1
pµ

∫
RN
b(x)|tnun|

p dx

−
1
θµ

∫
RN
ϕ(x, tn∇un) · (tn∇un)dx+

λ

θµ

∫
RN
f(x, tnun)tnun dx

−
1
θµ

∫
RN
b(x)|tnun|

p dx+ o(1)

=
1
θµ

∫
RN
H(x, tn∇un)dx+

λ

θµ

∫
RN

F(x, tnun)dx+
(

1
pµ

−
1
θµ

) ∫
RN
b(x)|tnun|

p dx+ o(1)

6
1
θ

∫
RN
H(x,∇un)dx+

λ

θ

∫
RN

F(x,un)dx+
(

1
p
−

1
θ

) ∫
RN
b(x)|un|

p dx+ o(1)

=

∫
RN
Φ0(x,∇un)dx− λ

∫
RN
F(x,un)dx+

1
p

∫
RN
b(x)|un|

p dx

−
1
θ

(∫
RN
ϕ(x,∇un) · ∇un dx− λ

∫
RN
f(x,un)un dx+

∫
RN
b(x)|un|

p dx

)
+ o(1)

= Iλ(un) −
1
θ

〈
I′λ(un),un

〉
+ o(1)→ c as n→∞,

which contradicts (2.22). This completes the proof.

Now, adding the oddity on f and applying the fountain theorem in [34, Theorem 3.6], we shall demon-
strate the existence of a sequence of weak solutions for the problem (1.2). To employ the fountain theorem,
we consider the following lemma.

Lemma 2.9 ([14]). Let W be a reflexive and separable Banach space. Then there are {en} ⊆ W and {f∗n} ⊆ W∗
such that

W = span{en : n = 1, 2, · · · }, W∗ = span{f∗n : n = 1, 2, · · · },

and 〈
f∗i , ej

〉
=

{
1 if i = j,

0 if i 6= j.

Let us denote Wn = span{en}, Yk =
⊕k
n=1Wn, and Zk =

⊕∞
n=kWn. As a key tool, we recall the

following fountain theorem.

Lemma 2.10 ([34]). Let X be a real reflexive Banach space, I ∈ C1(X, R) satisfies the (C)c-condition for any c > 0
and I is even. If for each sufficiently large k ∈N, there exist ρk > δk > 0 such that the following conditions hold:

(1) bk := inf{I(u) : u ∈ Zk, ‖u‖X = δk}→∞ as k→∞;
(2) ak := max{I(u) : u ∈ Yk, ‖u‖X = ρk} 6 0.

Then the functional I has an unbounded sequence of critical values, i.e., there exists a sequence {un} ⊂ X such that
I′(un) = 0 and I(un)→∞ as n→∞.
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Due to the fountain theorem, we give our main result in this section.

Theorem 2.11. Assume that (B), (J1)-(J5), and (F1)-(F5) hold. If Φ0(x,−v) = Φ0(x, v) holds for all (x, v) ∈
RN ×RN, then for any λ > 0, the problem (1.2) possesses an unbounded sequence of nontrivial weak solutions
{un} in X such that Iλ(un)→∞ as n→∞.

Proof. Obviously, Iλ is an even functional and satisfies the (C)c-condition. It suffices to show that for
every k ∈N there exist ρk > δk > 0 such that

(1) bk := inf{Iλ(u) : u ∈ Zk, ‖u‖X = δk}→∞ as k→∞;
(2) ak := max{Iλ(u) : u ∈ Yk, ‖u‖X = ρk} 6 0.

Set
αk := sup

u∈Zk,‖u‖X=1
‖u‖Lq(RN).

Then we have αk → 0 as k → ∞. In fact, assume the contrary, then there exist ε0 > 0, k0 ∈ N, and a
sequence {uk} in Zk such that

‖uk‖X = 1 and ‖uk‖Lp∗(RN) > ε0,

for all k > k0. Since the sequence {uk} is bounded in X, we may suppose that uk ⇀ u in X as k → ∞ for
some u ∈ X and thus

〈f∗j ,u〉 = lim
k→∞ 〈f∗j ,uk〉 = 0,

for j = 1, 2, · · · . Hence we get u = 0. However, we observe that

ε0 6 lim
k→∞ ‖uk‖Lq(RN) = ‖u‖Lq(RN) = 0,

which provides a contradiction.
For any u ∈ Zk, it follows from the conditions (J4), (F2), the Sobolev inequality, and the Hölder

inequality that

Iλ(u) =

∫
RN
Φ0(x,∇u)dx+

∫
RN

b(x)

p
|u|p dx− λ

∫
RN
F(x,u)dx

>
d

p

∫
RN

|∇u|p dx+ 1
p

∫
RN
b(x) |u|p dx− λ

∫
RN

|σ(x)|

q
|u|q dx

>
min {d, 1}

p
‖u‖pX −

λ

q
‖σ‖L∞(RN)‖u‖

q

Lq(RN)

>
min {d, 1}

p
‖u‖pX −

λC3

q
α
q
k‖u‖

q
X,

where C3 is a positive constant. Choose δk = (λC3α
q
k/min{d, 1})1/(p−q). Since p < q and αk → 0 as

k→∞, we assert δk →∞ as k→∞. Hence, if u ∈ Zk and ‖u‖X = δk, then we deduce that

Iλ(u) > min{d, 1}
(

1
p
−

1
q

)
δ
p
k − λC4δk →∞ as k→∞,

for some positive constant C4, which implies (1).
Next, the proof of condition (2) follows the lines of that of [1, Theorem 1.3]. For the sake of conve-

nience, we give the proof. Assume that the condition (2) does not hold for some k. Then there exists a
sequence {un} in Yk such that

‖un‖X →∞ as n→∞ and Iλ(un) > 0. (2.23)
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Let `n = un/‖un‖X. Then it is obvious that ‖`n‖X = 1. Since dim Yk < ∞, there exists ` ∈ Yk \ {0} such
that up to a subsequence,

‖`n − `‖X → 0 and `n(x)→ `(x),

for almost all x ∈ RN as n→∞. If `(x) 6= 0, then |un(x)|→∞ for all x ∈ RN as n→∞. Hence it follows
from the condition (F3) that

lim
n→∞ F(x,un(x))

‖un‖pX
= lim
n→∞ F(x,un(x))

|un(x)|
p |`n(x)|

p =∞,

for all x ∈ Ω2 :=
{
x ∈ RN : `(x) 6= 0

}
. The estimate in Lemma 2.8 implies that∫
Ω2

F(x,un(x))
‖un‖pX

dx→∞ as n→∞.

Therefore, from the relation (2.17), we have

Iλ(un) 6
(
C1‖a‖Lp′(RN) + a0 + 1

)
‖un‖pX − λ

∫
Ω2

F(x,un)dx

= ‖un‖pX

(
C1‖a‖Lp′(RN) + a0 + 1 − λ

∫
Ω2

F(x,un(x))
‖un‖pX

dx

)
→ −∞ as n→∞,

which contradicts (2.23). This completes the proof.

3. Existence of a sequence of weak solutions converging to zero

Now, we deal with the existence of a sequence of weak solutions converging to zero for the problem
(1.2). For this, we employ a regularity result (Proposition 3.1). First of all, we need the following additional
assumptions for ϕ, Φ0, and f:

(J6) ϕ(x, v) · v− pΦ0(x, v) > 0, for all x ∈ RN and for all v ∈ RN.

(F6) There exists a constant s0 > 0 such that pF(x, t) − f(x, t)t > 0, for all x ∈ RN and for 0 < |t| < s0.
(F7) lim|t|→0

f(x,t)
|t|p−2t

= +∞ uniformly for all x ∈ RN.

From the assumptions above, we show the existence of a sequence of solutions for the problem (1.2)
converging to zero in the L∞-norm based on the iteration method in [12, Theorem 4.1], which considered
only nonnegative weak solutions. Since the problem (1.2) includes the potential term, more complicated
analysis has to be carefully carried out in comparison with nonlinear equations given in [12]. Furthermore,
we extend the result to the case of any weak solutions. For a bounded domain, see [20, Theorem 4.1].

Proposition 3.1. Assume that (B), (J1)-(J2), (J4), and (F1)-(F2) hold. If u is a weak solution of the problem (1.2),
then u ∈ L∞(RN).
Proof. Suppose that u is nonnegative. For a positive constant M, define

vM(x) = min{u(x),M},

and choose v = v
kp+1
M (k > 0) as a test function in (2.1). Then obviously v ∈ X ∩ L∞(RN) and it follows

from (2.1) that∫
RN
ϕ(x,∇u) · ∇vkp+1

M dx+

∫
RN
b(x) |u|p−2 uv

kp+1
M dx = λ

∫
RN
f(x,u)vkp+1

M dx. (3.1)
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Due to (J4) and Lemma 2.1, the left-hand side of (3.1) can be estimated as follows:∫
RN
ϕ(x,∇vM) · ∇vkp+1

M dx+

∫
RN
b(x) |u|p−2 uv

kp+1
M dx (3.2)

> d(kp+ 1)
∫

RN
v
kp
M |∇vM|

p dx+

∫
RN
b(x)v

(k+1)p
M dx

>
d(kp+ 1)
(k+ 1)p

∫
RN

∣∣∇vk+1
M

∣∣p dx+ 1
(k+ 1)p

∫
RN
b(x)v

(k+1)p
M dx

>
min{d, 1}
C
p
5 (k+ 1)p

(∫
RN

|vM|(k+1)p∗ dx

) p
p∗

,

for some constant C5 > 0. By using the assumption (F2) and the Hölder inequality, the right-hand side of
(3.1) can be formally estimated from above and we obtain

λ

∫
RN
f(x,u)vkp+1

M dx 6 λ
∫

RN
|f(x,u)||u|kp+1 dx (3.3)

6 λ

(∫
RN
σ(x)γ1 dx

) 1
γ1
(∫

RN
|u|(k+1)pγ ′1 |u|(q−p)γ

′
1 dx

) 1
γ ′1

6 λ

(∫
RN
σ(x)γ1 dx

) 1
γ1
(∫

RN
|u|(k+1)s dx

)p
s
(∫

RN
|u|

(q−p)γ ′1
s

s−pγ ′1 dx

) s−pγ ′1
sγ ′1 ,

where s = pp∗γ ′1
p∗−(q−p)γ ′1

. Obviously s 6 p∗, 1 < s
pγ ′1

, and (q−p)γ ′1s
s−pγ ′1

= p∗, and hence (3.3) yields

λ

∫
RN
f(x,u)vkp+1

M dx 6 λ

(∫
RN
σ(x)γ1 dx

) 1
γ1
(∫

RN
|u|p

∗
dx

) s−pγ ′1
sγ ′1

(∫
RN

|u|(k+1)s dx

)p
s

. (3.4)

Now it follows from (3.1), (3.2), (3.4), and the Sobolev inequality that there exists a constant C6 > 0
(independent of M and k > 0) such that(∫

RN
|vM|(k+1)p∗ dx

) p
p∗

6 C6(k+ 1)p
(∫

RN
|u|(k+1)s dx

)p
s

,

which implies

‖vM‖L(k+1)p∗(RN) 6 C
1

(k+1)p
6 (k+ 1)

1
k+1 ‖u‖L(k+1)s(RN), (3.5)

for any positive constant M. The expression (3.5) is a starting point for a bootstrap argument which plays
an important role in L∞- estimates. Since u ∈ X and hence u ∈ Lp∗(RN) we can choose k := k1 in (3.5)
such that (k1 + 1)s = p∗, i.e., k1 = p∗

s − 1. Then we have

‖vM‖L(k1+1)p∗(RN) 6 C
1

(k1+1)p

6 (k1 + 1)
1

k1+1 ‖u‖L(k1+1)s(RN), (3.6)

for any positive constant M. Due to u(x) = lim
M→∞ vM(x) for almost every x ∈ RN, the Fatou lemma and

(3.6) imply

‖u‖L(k1+1)p∗(RN) 6 C
1

(k1+1)p

6 (k1 + 1)
1

k1+1 ‖u‖L(k1+1)s(RN). (3.7)

Thus, we can choose k = k2 in (3.5) such that (k2 + 1)s = (k1 + 1)p∗ =
(p∗)2

s and repeating the same
argument we get

‖u‖L(k2+1)p∗(RN) 6 C
1

(k2+1)p

6 (k2 + 1)
1

k2+1 ‖u‖L(k2+1)s(RN).
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By induction we obtain

‖u‖L(kn+1)p∗(RN) 6 C
1

(kn+1)p
6 (kn + 1)

1
kn+1 ‖u‖L(kn+1)s(RN), (3.8)

for any n ∈N, where kn + 1 =
(
p∗

s

)n
. It follows from (3.7) and (3.8) that

‖u‖L(kn+1)p∗(RN) 6 C
1
p

∑n
j=1

1
kj+1

6 (k1 + 1)
1

k1+1 (k2 + 1)
1

k2+1

· · · (kn + 1)
1

kn+1 ‖u‖L(k1+1)s(RN).

Since (kn + 1)
1

kn+1 > 1 and limkn→∞ (kn + 1)
1

kn+1 = 1, there exists C7 > 1 (independent of kn) such that

‖u‖L(kn+1)p∗(RN) 6 C
1
p

∑n
j=1

1
kj+1

6 C7‖u‖L(k1+1)s(RN). (3.9)

However
∑n
j=1

1
kj+1 =

∑n
j=1

(
s
p∗

)nj
and s

p∗ < 1. Hence it follows from (3.9) that there exists a constant
C8 > 0 such that

‖u‖Lrn(RN) 6 C8‖u‖Lp∗(RN), (3.10)

for rn = (kn + 1)p∗ →∞ when n→∞. Let us assume that ‖u‖L∞(RN) > C8‖u‖Lp∗(RN). Then there exist
η > 0 and a set A of positive measure in Ω such that u(x) > C8‖u‖Lp∗(RN) + η for x ∈ A. It follows that

lim inf
rn→∞

(∫
RN

|u(x)|rn dx

) 1
rn

> lim inf
rn→∞

(∫
A

|u(x)|rn dx

) 1
rn

> lim inf
rn→∞

(
C8‖u‖Lp∗(RN) + η

)
(meas(A))

1
rn

= C8‖u‖Lp∗(RN) + η,

which contradicts (3.10). Therefore

‖u‖L∞(RN) 6 C8‖u‖Lp∗(RN) 6 C9,

for some constant C9 > 0.
If u changes sign, we set u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}. Then it is clear that u+ ∈ X

and u− ∈ X. Define for each M > 0, vM(x) = min{u+(x),M}. Taking again ϕ = v
kp+1
M as a test function

in X, we obtain∫
RN
ϕ(x,∇u) · ∇vkp+1

M dx+

∫
RN
b(x) |u|p−2 uv

kp+1
M dx = λ

∫
RN
f(x,u)vkp+1

M dx,

which implies that∫
RN
ϕ(x,∇u+) · ∇vkp+1

M dx+

∫
RN
b(x)

∣∣u+∣∣p−2
u+v

kp+1
M dx = λ

∫
RN
f(x,u+)vkp+1

M dx.

Proceeding a similar argument as above, we obtain u+ ∈ L∞(RN). Likewise, we get u− ∈ L∞(RN).
Therefore u = u+ + u− is in L∞(RN). This completes the proof.

The following lemma is quoted from [16].

Lemma 3.2 ([16]). Let I ∈ C1(X, R) where X is a Banach space. Assume that I satisfies the (PS)-condition, is even
and bounded from below, and I(0) = 0. If for any n ∈ N, there exists an n-dimensional subspace Xn and ρn > 0
such that

sup
Xn∩Sρn

I < 0,

where Sρ := {u ∈ X : ‖u‖X = ρ}, then I has a sequence of critical values cn < 0 satisfying cn → 0 as n→∞.



Y.-H. Kim, J.-H. Bae, J. Lee, J. Nonlinear Sci. Appl., 10 (2017), 2144–2161 2159

Based on the works of [9, 33], we give the following two lemmas.

Lemma 3.3. Assume that (J1)-(J2), (J4), (J6), (F1)-(F2), and (F6) hold. Then

Iλ(u) = 0 =
〈
I′λ(u),u

〉
, if and only if u = 0.

Lemma 3.4. Assume that (F1)-(F2) and (F6)-(F7) hold. Then there exist t0 > 0 with t0 < s0/2 and f̃ ∈ C1(RN ×
R, R) such that f̃(x, t) is odd in t and satisfy

F̃(x, t) := pF̃(x, t) − f̃(x, t)t > 0,

F̃(x, t) = 0, iff t ≡ 0 or |t| > 2t0,

where ∂
∂t F̃(x, t) = f̃(x, t).

Proof. Let us define a cut-off function κ ∈ C1(R, R) satisfying κ(t) = 1 for |t| 6 t0, κ(t) = 0 for |t| > 2t0,
|κ′(t)| 6 2/t0, and κ′(t)t 6 0. So, we define

F̃(x, t) = κ(t)F(x, t) + (1 − κ(t))ξ|t|p and f̃(x, t) =
∂

∂t
F̃(x, t), (3.11)

where ξ > 0 is a constant. It is straightforward that

pF̃(x, t) − f̃(x, t)t = κ(t)F(x, t) − κ′(t)tF(x, t) + κ′(t)tξ|t|p,

where F(x, t) := pF(x, t) − f(x, t)t. For 0 6 |t| 6 t0 and |t| > 2t0 the conclusion follows. Due to (F7), we
choose a sufficiently small t0 > 0 such that F(x, t) > ξtp for t0 6 |t| 6 2t0. By the assumption κ′(t)t 6 0,
we get the conclusion.

Now, we prove the second main result using Proposition 3.1 and Lemmas 3.2 and 3.4.

Theorem 3.5. Assume that (B), (J1)-(J4), (J6), (F1)-(F2), and (F5)-(F7) hold. Moreover, assume that Φ0(x,−v) =
Φ0(x, v) holds for all (x, v) ∈ RN ×RN. Then there exists a positive constant λ∗ such that for every λ ∈ [0, λ∗),
the problem (1.2) has a sequence of weak solutions {un} satisfying ‖un‖L∞(RN) → 0 as n→∞.

Proof. First of all, we will show that Iλ is coercive on X. Let u ∈ X and ‖u‖X > 1. For the given function
f(x, t), we can modify and extend f̃ ∈ C1(RN×R, R) satisfying all properties listed in Lemma 3.4. Define
Ĩλ(u) := Φ(u) − λ

∫
RN
F̃(x,u)dx. Then by Lemma 3.4, it is easy to show that Ĩλ ∈ C1(X, R) and is even

on X. Moreover, it follows from (F6) and (F7) that for |u(x)| 6 2t0, there exists a positive constant M1
such that M1|u|

p > |F(x,u)|. Set Ω3 :=
{
x ∈ RN : |u(x)| 6 t0

}
, Ω4 :=

{
x ∈ RN : t0 6 |u(x)| 6 2t0

}
, and

Ω5 :=
{
x ∈ RN : 2t0 6 |u(x)|

}
, where t0 is given in Lemma 3.4. From (J4), (J6), (3.11), and the conditions

of κ, we have

Ĩλ(u) :=

∫
RN
Φ0(x,∇u)dx+

∫
RN

b(x)

p
|u|p dx− λ

∫
RN
F̃(x,u)dx

>
d

p

∫
RN

|∇u|p dx+ 1
p

∫
RN
b(x) |u|p dx

− λ

∫
Ω3

F(x,u)dx− λ
∫
Ω4

{κ(u)F(x,u) + (1 − κ(u))ξ|u|p} dx− λ

∫
Ω5

ξ|u|p dx

>
min {d, 1}

p
‖u‖pX − λ

∫
Ω3

F(x,u)dx− λ
∫
Ω4

F(x,u)dx− λ
∫
Ω4

ξ|u|p dx− λ

∫
Ω5

ξ|u|p dx

>
min {d, 1}

p
‖u‖pX − λ

∫
Ω3

M1|u|
p dx− λ

∫
Ω4

M1|u|
p dx− λ

∫
Ω4

ξ|u|p dx− λ

∫
Ω5

ξ|u|p dx

>
min {d, 1}

p
‖u‖pX − λ (M1 + ξ)

∫
RN

|u|p dx

>
min {d, 1}

p
‖u‖pX −

λ

b0
(M1 + ξ) ‖u‖pX.
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If we set

λ∗ :=
b0 min {d, 1}
p(M1 + ξ)

,

then we deduce that for any λ ∈ [0, λ∗), Ĩλ is coercive, that is, Ĩλ(u) → ∞ as ‖u‖X → ∞. By a standard
argument, Ĩλ satisfies the (PS)c-condition. In order to apply Lemma 3.2, we only need to find for any
n ∈ N, a subspace Xn and ρn > 0 such that supXn∩Sρn Ĩλ < 0. For any n ∈ N we find n independent
smooth functions φi for i = 1, · · · ,n, and define Xn := span {φ1, ...,φn}. Due to (J2) and Lemma 3.4, when
‖u‖X < 1 we have that

Ĩλ(u) =

∫
RN
Φ0(x,∇u)dx+

∫
RN

b(x)

p
|u|p dx− λ

∫
RN
F̃(x,u)dx

6 (C1‖a‖Lp′(RN) + a0 + 1)‖u‖pX − λC10

∫
RN
F(x,u)dx,

for a positive constant C10. It follows from the assumption (F7) that for a sufficiently large M2 > 0, there
exists δ0 > 0 such that |t| < δ0 implies∫

RN
F(x, t)dx >

M2

p

∫
RN

|t|p dx.

By this relation and the fact that all norms on Xn are equivalent, choosing a suitable constant C10 and
sufficiently small ρn > 0, we can obtain

sup
Xn∩Sρn

Ĩλ < 0.

By Lemma 3.2, we get a sequence cn < 0 for Ĩλ satisfying cn → 0 when n goes to ∞. Then for any
un ∈ X satisfying Ĩλ(un) = cn and Ĩ′λ(un) = 0, the sequence {un} is a (PS)0-sequence of Ĩλ and {un} has a
convergent subsequence. Lemmas 3.3 and 3.4 imply that 0 is the only critical point with 0 energy and the
subsequence of {un} has to converge to 0. An indirect argument shows the sequence {un} has to converge
to 0. On the other hand, we have un ∈ C(RN) due to Proposition 3.1. Since ‖un‖L∞(RN) → 0, by Lemma
3.4 again, we deduce ‖un‖C(RN) 6 t0. Thus {un} are weak solutions of the problem (1.2). The proof is
complete.

Acknowledgment

Y.-H. Kim was supported by the National Research Foundation of Korea Grant funded by the Korean
Government (NRF-2016R1D1A1B03935866). J. Lee was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-
0093827).

References

[1] C. O. Alves, S.-B. Liu, On superlinear p(x)-Laplacian equations in RN, Nonlinear Anal., 73 (2010), 2566–2579. 1, 1, 2
[2] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional

Analysis, 14 (1973), 349–381. 1
[3] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 20 (1993), 1205–1216. 1
[4] T. Bartsch, Topological methods for variational problems with symmetries, Lecture Notes in Mathematics, Springer-

Verlag, Berlin, (1993). 1
[5] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on RN, Comm. Partial

Differential Equations, 20 (1995), 1725–1741. 1
[6] G. Bin, On superlinear p(x)-Laplacian-like problem without Ambrosetti and Rabinowitz condition, Bull. Korean Math.

Soc., 51 (2014), 409–421. 2.4
[7] Y. Chen, X. H. Tang, Ground state solutions for p-superlinear p-Laplacian equations, J. Aust. Math. Soc., 97 (2014),

48–62. 1



Y.-H. Kim, J.-H. Bae, J. Lee, J. Nonlinear Sci. Appl., 10 (2017), 2144–2161 2161

[8] E. B. Choi, Y.-H. Kim, Three solutions for equations involving nonhomogeneous operators of p-Laplace type in RN, J.
Inequal. Appl., 2014 (2014), 15 pages. 1, 2

[9] E. B. Choi, J.-M. Kim, Y.-H. Kim, Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann
boundary condition, Proc. Roy. Soc. Edinburgh Sect. A, (in press). 1, 3

[10] F. Colasuonno, P. Pucci, C. Varga, Multiple solutions for an eigenvalue problem involving p-Laplacian type operators,
Nonlinear Anal., 75 (2012), 4496–4512. 1, 2
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