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Abstract

The bilevel linear programming with fuzzy decision variables and multiple followers model (MFFVBLP) is firstly estab-
lished and investigated, and the model optimal solution is shown to be equivalent to the optimal solution of the bilevel linear
programming with multiple followers by using fuzzy structured element theory in this paper. The optimal solution of this
model is found out by adopting the Kuhn-Tucker approach. An illustrative example is provided to demonstrate the feasibility
and efficiency of the proposed method for solving the MFFVBLP model. c©2017 All rights reserved.
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1. Introduction

Bilevel programming introduced by Von Stackelberg in 1952 [20] has been developed to solve the
decentralized planning problems in which decision makers are often arranged within a hierarchical ad-
ministrative structure. A bilevel programming problem occurs when two decision makers are located at
different hierarchical levels. In general, a decision maker at the upper level is termed as the leader, and
the lower level is termed as the follower [1, 2]. In the context of bilevel programming, the leader first
specifies a strategy, and then the follower specifies a strategy so as to optimize the objective with full
knowledge of the action of the leader.

So far many researches on bilevel programming has centered on the linear version of the problem
[1, 2, 5, 10, 12, 14]. Two fundamental issues in theory and practice of bilevel programming problems
are mostly concerned, one is how to model a real world bilevel programming, and the other is how
to find properties and an optimal solution for the bilevel programming problem. There are many such
hierarchical optimization problems in the fields of industry, agriculture, financial, transportation and so
on [4, 6, 9, 21], but in many practical hierarchical decision making systems, resources, costs, demands, and
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many other elements are often subject to fluctuations and are difficult to measure. Hence, it is necessary
for us to formulate the decentralized decision-making problem with uncertainty as fuzzy models.

A fuzzy bilevel programming problem is a bilevel programming problem in which the coefficient,
either in objective functions or in constraints, is described by fuzzy values. Sakawa et al. [12–17] formu-
lated cooperative fuzzy bilevel programming problems and proposed an interactive fuzzy programming
approach to solve the problems. From this approach, the concept of a bilevel programming was intro-
duced based on fuzzy number λ-level sets. At the same time, some researches applied fuzzy set technique
to deal with bilevel programming problems. Shih and Lee [18] applied fuzzy set theory to overcome the
computational difficulties in solving bilevel problems. Sinha [19] started from the fuzzy mathematical
programming approach to obtain the solution of multi-level linear programming problems. Recently,
Zhang et al. [11, 23–25] studied fuzzy bilevel programming problem, with their focus on the situation
that the leader or the follower had multiple objectives with fuzzy parameters and all followers shared
their decision variables. They also provided some related algorithms based on the membership function
in fuzzy set theory. Moreover, they have first solved the fuzzy linear bilevel programming problems with
a specialized form of membership functions, triangular form, in the fuzzy parameters [5, 22]. However,
fuzzy bilevel programming with fuzzy variables is still a new and challenging work for us.

This paper discusses a class of typical model of bilevel linear programming with fuzzy decision vari-
ables and multiple followers. Based on the homeomorphism properties between the bounded real fuzzy
number and the monotone functions on [−1, 1], the comparison of a fuzzy number is changed into a new
comparison of monotone function by the definition of fuzzy numbers structured element weighted order.
Then the optimal solutions of new derived model is proved equivalent to the optimal solution of the
bilevel linear programming with fuzzy decision variables and multiple followers. The feasibility of the
proposed approach is further proved by giving a numerical example.

The following part of this paper is arranged as follows. Section 2 introduces some concepts and
properties of the fuzzy numbers structured element weighted order. Section 3 studies the model and
optimal solution of bilevel linear programming with fuzzy decision variables and multiple followers.
Section 4 proposes an algorithm and demonstrates the efficiency of the algorithm by giving one numerical
example. Finally, some conclusions are reached in Section 5.

2. Preliminaries

In this section, some necessary backgrounds and notions of fuzzy structured element theory are pre-
sented.

Definition 2.1 ([7]). Let E be a fuzzy set on R and E(x) be the membership function of E. Then, E is called
a fuzzy structured element if

(1) E(0) = 1;
(2) E(x) is monotonously increasing and right continuous on [−1, 0], monotone decreasing and left con-

tinuous on (0, 1];
(3) E(x) = 0, (−∞ < x < −1 or 1 < x < +∞).

Definition 2.2 ([7]). E is referred as a canonical fuzzy structured element if

(i) ∀x ∈ (−1, 1), E(x) > 0;
(ii) E(x) is continuous and strictly monotone increasing (decreasing) on [−1, 0] ((0, 1]).

Definition 2.3 ([7]). E is called a symmetrical fuzzy structured element if E(−x) = E(x).

Lemma 2.4 ([3]). Let E be a fuzzy structured element and E(x) be its membership function. Let the function f(x) be
continuous and monotone on [−1, 1], then f(E) is a fuzzy number, and the membership function of f(E) is E(f−1(x))
(where f−1(x) is rotational symmetry function for variable x and y, if f is a strictly monotone function, then f−1(x)
is the inverse function of f(x)).
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Lemma 2.5 ([7]). For a given canonical fuzzy structured element E and any finite fuzzy number Ã, there always
exists a monotone bounded function f on [−1, 1], having the form Ã = f(E).

Definition 2.6 ([7]). Let Ã = (a,b, c) ∈ Ñc(R) be a triangular fuzzy number, where a 6 b 6 c. The
member function corresponding to Ã is defined by

µ
Ã
(x) =


x−a
b−a , a 6 x < b,
1, x = b,
x−c
b−c , b < x 6 c,
0, others.

Lemma 2.7 ([7]). Let Ã = (a,b, c) be the triangular fuzzy number and

E(x) =


1 + x, −1 6 x 6 0,
1 − x, 0 < x 6 1,
0, others

be the triangular fuzzy structured element. Then we have

f(x) =


(b− a)x+ b, −1 6 x 6 0,
(c− b)x+ b, 0 < x 6 1,
0, others

from which we can easily get Ã = f(E).

Next we denote all bounded fuzzy numbers on R by Ñc(R). Let mapping HE : B[−1,1] → Ñc(R) be
given by

f→ HE(f) = f(E) ∈ Ñc(R).
We say HE is a fuzzy function induced by structured element E on B[−1,1]. It is easily known that HE is a
one-to-one isometric mapping from B[−1,1] onto Ñc(R) ([8]).

Definition 2.8 ([3]). Let Ã1, Ã2 ∈ ÑC(R). Their structured element representations are Ãi = fi(E), i = 1, 2,
respectively, where E is given a canonical fuzzy structured element whose membership function is E(x).
Let f1(x) and f2(x) be the same sequence monotonic functions on [−1, 1] (function with the same monotone
property). Then from

Ã1 6 Ã2 ⇔ F(Ã1, Ã2) =

∫ 1

−1
E(x)(f1(x) − f2(x))dx 6 0

we may define a total order relation ” 6 ” on ÑC(R) which is called the structured element weighted
order for fuzzy numbers.

Lemma 2.9 ([7]). Let E be a symmetrical fuzzy structured element. Let f1(x) and f2(x) be the same sequence
monotonic functions on [−1, 1]. Let fuzzy numbers Ã1 = f1(E), and Ã2 = f2(E). Then

Ã1 + Ã2 = f1(E) + f2(E), Ã1 − Ã2 = f1(E) + f
τ
2 (E), kÃ1 = |k| fτ1 (E).

It readily follows from the last equality that fτ1 (E) = f1(E) for k > 0 and fτ1 (E) = −f1(−E) for k < 0.

Lemma 2.10 ([7]). Let f be a monotonously bounded function on [−1, 1]. Given E is a fuzzy structured element
on R which yields the fuzzy number Ã = f(E). For any λ ∈ [0, 1], the λ-level set of E is denoted as Eλ = [e−λ , e+λ ],
where e−λ ∈ [−1, 0] and e+λ ∈ [0, 1]. If f is a monotone increasing function on [−1, 1], then

Aλ = [f(E)]λ = f(Eλ) = [f(e−λ ), f(e
+
λ )].

If f is a monotone decreasing function on [−1, 1], then

Aλ = [f(e+λ ), f(e
−
λ )].

The proof of above lemmas can be found in reference [3, 7, 8].
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3. Bilevel linear programming with fuzzy decision variables and multiple followers model

Consider the following bilevel linear programming with fuzzy decision variables and multiple follow-
ers (MFFVBLP). 

min
x̃i

Z̃1
1 =

N∑
i=1

c1
ix̃i+

S∑
s=1

M∑
j=1

d1
sjỹsj;

s.t. where ỹsjis the lower level problem’s solution:

min
ỹsj

Z̃2
s =

N∑
i=1

c2
six̃i+

M∑
j=1

d2
sjỹsj,

s.t.
N∑
i=1

astix̃i+
M∑
j=1

bstjỹj 6 ẽ
s
t ,

x̃i > 0; ỹsj > 0,
i = 1, 2, · · · ,N; j = 1, 2, · · · ,M; s = 1, 2, · · · ,S; t = 1, 2, · · · , T ,

(3.1)

where x̃i ∈ R, ỹsj ∈ R, ẽst ∈ ÑC(R); c1
i, c

2
si, d

1
sj, d

2
sj, a

s
ti, b

s
tj ∈ R.

The following theorem indicates that MFFVBLP (3.1) may be transformed another equivalent repre-
sentation that lays the basis for the algorithm in next section.

Theorem 3.1. Let x̃i = (xi, xi, xi) and ỹsj = (y
sj

,ysj,ysj) be triangular fuzzy numbers for i = 1, 2, · · · ,N;

j = 1, 2, · · · ,M and s = 1, 2, · · · ,S. Let Z̃1
1 = G1

1(E), Z̃
2
s = G2

s(E), x̃i = fi(E), ỹsj = Fsj(E), ẽst = ψst(E),
M1

1 =
∫1
−1 E(t)G

1
1(t)dt. Suppose that E is a canonical symmetrical fuzzy structured element and G1

1(t), G
2
s(t),

fi(t), Fsj(t) and ψst(t) are monotonous increasing functions for i = 1, 2, · · · ,N, j = 1, 2, · · · ,M, s = 1, 2, · · · ,S
and t = 1, 2, · · · , T . Then the model (3.1) is equivalent to the following model

min
xi,xi,xi

M1
1 =

N∑
i=1

c1
i

∫1
−1 E(t)fi(t)dt+

S∑
s=1

M∑
j=1
d1
sj

∫1
−1 E(t)Fsj(t)dt;

s.t. where y
sj

,ysj,ysjis the lower level problem’s solution:

min
y
sj

,ysj,ysj
M2
s =

N∑
i=1

c2
si

∫1
−1 E(t)fi(t)dt+

M∑
j=1
d2
sj

∫1
−1 E(t)Fsj(t)dt,

s.t.
N∑
i=1

asti
∫1
−1 E(t)fi(t)dt+

M∑
j=1
bstj

∫1
−1 E(t)Fsj(t)dt 6

∫1
−1 E(t)ψ

s
t(t)dt,

xi − xi > 0, xi − xi > 0,ysj − ysj > 0,ysj − ysj > 0, fi(−1) > 0, Fsj(−1) > 0,
i = 1, 2, · · · ,N; j = 1, 2, · · · ,M; s = 1, 2, · · · ,S; t = 1, 2, · · · , T .

(3.2)

Proof. By Definition 2.8 and Lemma 2.7, it follows that scaling the fuzzy number Z̃1
1 is equivalent to scale

M1
1 =

∫1
−1 E(t)G

1
1(t)dt in the model (3.1). So we have

Z̃1
1 = G1

1(E) =

N∑
i=1

c1
ix̃i+

S∑
s=1

M∑
j=1

d1
sjỹsj =

N∑
i=1

∣∣c1
i

∣∣ fτi (E)+ S∑
s=1

M∑
j=1

∣∣d1
sj

∣∣ Fτsj(E).
By the use of fuzzy structured element theory, we have

M1
1 =

∫ 1

−1
E(t)G1

1(t)dt =

∫ 1

−1
E(t)[

N∑
i=1

∣∣c1
i

∣∣ fτi (t)+ S∑
s=1

M∑
j=1

∣∣d1
sj

∣∣ Fτsj(t)]dt
=

∫ 1

−1
E(t)

N∑
i=1

∣∣c1
i

∣∣ fτi (t)dt+ ∫ 1

−1
E(t)

S∑
s=1

M∑
j=1

∣∣d1
sj

∣∣ Fτsj(t)dt
=

N∑
i=1

∣∣c1
i

∣∣ ∫ 1

−1
E(t)fτi (t)dt+

S∑
s=1

M∑
j=1

∣∣d1
sj

∣∣ ∫ 1

−1
E(t)Fτsj(t)dt.
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First, we take the item
N∑
i=1

∣∣c1
i

∣∣ ∫1
−1 E(t)f

τ
i (t)dt into account. Actually, it follows from Lemma 2.9 that

N∑
i=1

∣∣∣c1
i

∣∣∣ ∫1

−1
E(t)fτi (t)dt =

N∑
i=1

c1
i

∫1

−1
E(t)fi(t)dt,

when c1
i > 0 and

N∑
i=1

∣∣∣c1
i

∣∣∣ ∫1

−1
E(t)fτi (t)dt = −

N∑
i=1

c1
i

∫1

−1
E(t)(−fi(t))dt,

when c1
i < 0. Since E is symmetrical structured element, we have E(−t) = E(t). By using the transform

element method of the definite integral, it holds that

N∑
i=1

∣∣∣c1
i

∣∣∣ ∫1

−1
E(t)fτi (t)dt =

N∑
i=1

c1
i

∫1

−1
E(t)fi(t)dt.

Analogously, another item in M1
1 could be rewritten as

S∑
s=1

M∑
j=1

∣∣d1
sj

∣∣ ∫ 1

−1
E(t)Fτsj(t)dt =

S∑
s=1

M∑
j=1

d1
sj

∫ 1

−1
E(t)Fsj(t)dt,

which results in

M1
1 =

N∑
i=1

c1
i

∫ 1

−1
E(t)fi(t)dt+

S∑
s=1

M∑
j=1

d1
sj

∫ 1

−1
E(t)Fsj(t)dt.

On the other hand, we similarly have

M2
s =

N∑
i=1

c2
si

∫ 1

−1
E(t)fi(t)dt+

M∑
j=1

d2
sj

∫ 1

−1
E(t)Fsj(t)dt.

By Lemma 2.7 and Lemma 2.9, we obtain the constraint

N∑
i=1

asti

∫ 1

−1
E(t)fi(t)dt+

M∑
j=1

bstj

∫ 1

−1
E(t)Fsj(t)dt 6

∫ 1

−1
E(t)ψst(t)dt.

Since for i = 1, 2, · · · ,N, j = 1, 2, · · · ,M, and s = 1, 2, · · · ,S, x̃i = (xi, xi, xi) and ỹsj = (y
sj

,ysj,ysj) are
triangular fuzzy numbers, we know from Definition 2.8 that xi − xi > 0, xi − xi > 0, ysj − ysj > 0, and
ysj − ysj > 0. Also, it follows from Definition 2.1 and Lemma 2.10 that Eλ = [e−λ , e+λ ] with e−λ ∈ [−1, 0]
and e+λ ∈ [0, 1]. By assuming that fi(t) and Fsj(t) are both monotonous increasing functions on [−1, 1], we
then have

(x̃i)λ = [fi(E)]λ = fi(Eλ) = fi(e
−
λ , e+λ ) = [fi(e

−
λ ), fi(e

+
λ )]

and
(ỹsj)λ = [Fsj(E)]λ = Fsj(Eλ) = Fsj(e

−
λ , e+λ ) = [Fsj(e

−
λ ), Fsj(e

+
λ )].

This together with x̃i > 0 and ỹsj > 0 indicate

fi(−1) 6 fi(e−λ ) 6 fi(e
+
λ ) 6 fi(1)

and
Fsj(−1) 6 Fsj(e−λ ) 6 Fsj(e

+
λ ) 6 Fsj(1).

So we have [fi(−1), fi(1)] > 0 and [Fsj(−1), Fsj(1)] > 0 which further yields fi(−1) > 0 and Fsj(−1) > 0.
The proof is completed.
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4. Algorithm and numerical example

We list all steps of the algorithm for solving the proposed MFFVBLP model. Note that it is derived
from the result of Theorem 3.1.

4.1. Algorithm
1. Given that the fuzzy number is triangular, we have µ

Ã
= E(f−1(t)), according to Lemma 2.7 and the

expression of E. Compute fi(t), Fsj(t) and ψst(t).
2. Calculate integrals

∫1
−1 E(t)fi(t)dt,

∫1
−1 E(t)Fsj(t)dt and

∫1
−1 E(t)ψ

s
t(t)dt. Then plug them into model

(3.2).
3. According to Theorem 3.1, the MFFVBLP model is transformed into the classical bilevel linear pro-

gramming with multiple followers model (3.2). Compute the optimal solution of the model (3.2) via
the Kuhn-Tucker’s approach ([10]).

4. Insert the derived optimal solution of model (3.2) into model (3.1). We then get the optimal solution of
the original MFFVBLP model.

We provide an illustratively numerical example in this part to demonstrate the feasibility and efficiency
of the proposed method for solving the MFFVBLP problem.

4.2. Example
Let x̃1 = (x1, x1, x1), x̃2 = (x2, x2, x2), ỹ11 = (y11,y11,y11) and ỹ21 = (y21,y21,y21) be the leader decision

variable and the followers decision variables, respectively. Let Z̃1
1 and Z̃2

1, Z̃2
2 be objective functions of the

leader and the followers. Construct the following MFFVBLP problem.

min
x̃1,x̃2

Z̃1
1(x̃1, x̃2, ỹ11, ỹ21) = −4x̃1 −

1
5 x̃2 − 4ỹ11 + 6ỹ21;

s.t. where ỹ11, ỹ21are the lower level problem’s solution:
min
ỹ11

Z̃2
1(x̃1, x̃2, ỹ11) = 2x̃1 + x̃2 + 3ỹ11,

s.t. 6x̃1 − x̃2 + 13ỹ11 6 1̃5,
5x̃1 + 7ỹ11 6 1̃5,
5x̃1 + 2x̃2 − 8ỹ11 6 2̃0.2;
min
ỹ21

Z̃2
2(x̃1, x̃2, ỹ21) = 5x̃1 − x̃2 + 9ỹ21,

s.t. x̃1 + x̃2 − 7ỹ21 6 1̃0,
4x̃1 + ỹ21 6 4̃.9,
1
60 x̃2 − ỹ21 6 − 1̃

6 ,
x̃1 > 0, x̃2 > 0, ỹ11 > 0, ỹ21 > 0,

(4.1)

where the triangular fuzzy numbers are 1̃
6 = ( 2

15 , 1
6 , 1

5), 4̃.9 = (4.5, 4.9, 5.9), 1̃0 = (8, 10, 12), 1̃5 =

(14.5, 15, 15.5), 2̃0.2 = (18.7, 20.2, 20.5).
1. By Lemma 2.7 and Theorem 3.1, we have

ψ1
1(t) = ψ

1
2(t) =


2t+ 15, −1 6 t 6 0,
2t+ 15, 0 6 t 6 1,
0, others,

ψ1
3(t) =


1.5t+ 20.2, −1 6 t 6 0,
0.3t+ 20.2, 0 6 t 6 1,
0, others,

ψ2
1(t) =


2t+ 10, −1 6 t 6 0,
2t+ 10, 0 6 t 6 1,
0, others,

ψ21
2 (t) =


0.4t+ 4.9, −1 6 t 6 0,
t+ 4.9, 0 6 t 6 1,
0, others,

ψ2
3(t) =


1

30t+
1
6 , −1 6 t 6 0,

1
30t+

1
6 , 0 6 t 6 1,

0, others,
f1(t) =


(x1 − x1)t+ x1, −1 6 t 6 0,
(x1 − x1)t+ x1, 0 6 t 6 1,
0, others,
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f2(t) =


(x2 − x2)t+ x2, −1 6 t 6 0,
(x2 − x2)t+ x2, 0 6 t 6 1,
0, others,

F11(t) =


(y11 − y11)t+ y11, −1 6 t 6 0,
(y11 − y11)t+ y11, 0 6 t 6 1,
0, others,

F21(t) =


(y21 − y21)t+ y21, −1 6 t 6 0,
(y21 − y21)t+ y21, 0 6 t 6 1,
0, others.

2. Compute integrals∫ 1

−1
E(t)ψ1

1(t)dt =

∫ 1

−1
E(t)ψ1

2(t)dt = 15,
∫ 1

−1
E(t)ψ1

3(t)dt = 20,∫ 1

−1
E(t)ψ2

1(t)dt = 10,
∫ 1

−1
E(t)ψ2

2(t)dt = 5,∫ 1

−1
E(t)ψ2

3(t)dt =
1
6

,
∫ 1

−1
E(t)f1(t)dt =

1
6
(x1 + 4x1 + x1),∫ 1

−1
E(t)f2(t)dt =

1
6
(x2 + 4x2 + x2),

∫ 1

−1
E(t)F11(t)dt =

1
6
(y11 + 4y11 + y11),∫ 1

−1
E(t)F21(t)dt =

1
6
(y21 + 4y21 + y21),

and x1 − x1 > 0, x1 − x1 > 0, x2 − x2 > 0, x2 − x2 > 0, y11 − y11 > 0, y11 − y11 > 0, y21 − y21 > 0,
y21 − y21 > 0, f1(−1) = x1, f2(−1) = x2, F11(−1) = y11, F21(−1) = y21.

3. By Theorem 3.1, the original problem is equivalent to the following problem of bilevel linear
programming with multiple followers.

min
x1,x1,x1,x2,x2,x2∈R

M1
1 = −

2
3
(x1 + 4x1 + x1) −

1
30

(x2 + 4x2 + x2) −
2
3
(y11 + 4y11 + y11)

+ y21 + 4y21 + y21;

s.t. where y11,y11,y11,y21,y21,y21are the lower level problem’s solution:

min
y11,y11,y11

M2
1 =

1
3
(x1 + 4x1 + x1) +

1
6
(x2 + 4x2 + x2) +

1
2
(y11 + 4y11 + y11);

s.t. x1 + 4x1 + x1 −
1
6
(x2 + 4x2 + x2) +

13
6
(y11 + 4y11 + y11) 6 15,

5
6
(x1 + 4x1 + x1) +

7
6
(y11 + 4y11 + y11) 6 15,

5
6
(x1 + 4x1 + x1) +

1
3
(x2 + 4x2 + x2) −

4
3
(y11 + 4y11 + y11) 6 20,

min
y21,y21,y21

M2
2 =

5
6
(x1 + 4x1 + x1) −

1
6
(x2 + 4x2 + x2) +

2
3
(y21 + 4y21 + y21);

s.t.
1
6
(x1 + 4x1 + x1) +

1
6
(x2 + 4x2 + x2) −

7
6
(y21 + 4y21 + y21) 6 10,

2
3
(x1 + 4x1 + x1) +

1
6
(y21 + 4y21 + y21) 6 5,

1
360

(x2 + 4x2 + x2) −
1
6
(y21 + 4y21 + y21) 6 −

1
6

,

x1 − x1 > 0, x1 − x1 > 0, x2 − x2 > 0, x2 − x2 > 0,
y11 − y11 > 0,y11 − y11 > 0,y21 − y21 > 0,y21 − y21 > 0,

x1 > 0, x2 > 0,y11 > 0,y21 > 0.

(4.2)
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4. Now we exploit the Kuhn-Tucker approach to get an optimal solution of model (4.2) and plug them
into model (4.1). We have

(x1, x1, x1) = (0.1930, 1.2585, 1.4799),
(x2, x2, x2) = (5.0616, 10.7876, 27.2863),

(y11,y11,y11) = (0.4197, 1.0177, 3.5761),

(y21,y21,y21) = (0.1724, 0.4090, 1.3637),

M1
1 = −9.1934,M2

1 = 18.8519,M2
2 = −2.2357,

Z̃1
1 = (z1

1, z1
1, z1

1) = (−25.9564,−8.5958, 5.1797),

Z̃2
1 = (z2

1, z2
1, z2

1) = (6.7481, 16.2468, 41.3763),

Z̃2
2 = (z2

2, z2
2, z2

2) = (−24.1624,−1.3494, 16.1460).

5. Conclusions

A real-world bilevel decision problem may be modeled to have fuzzy coefficients. This paper has
investigated the bilevel linear programming with fuzzy decision variables and multiple followers model
and solved this complex problem by using the fuzzy structured element method. Further study includes
the development of models and methods for fuzzy multilevel programming. We will also explore effective
applications of the proposed techniques.
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