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Abstract

This study examines the problem of robust stability analysis of neutral-type time-varying uncertain Lurie nonlinear con-
trol system with mixed time delays. Firstly, by discretizing the time-delay interval into non-uniformly multiple subintervals
and decomposing the corresponding integral intervals to estimate the bounds of integral terms more exactly, less conservative
stability criteria are derived. Secondly, based on the above delay-partitioning method, a newly augmented Lyapunov-Krasovkii
functional is constructed. Thirdly, by taking full advantage of Wirtinger’s integral inequality, which can provide tighter upper
bound than Jensen’s inequality, novel delay-dependent robust stability conditions are obtained in terms of linear matrix inequal-
ities. Finally, several numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results.
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1. Introduction

During the past few decades, the study of time-delay systems (TDSs) has attracted increasing attention
due to the fact that time delay is an unavoidable factor in a variety of physical and engineering problems,
and may lead to instability, poor performance or even oscillation [3, 7, 29, 31]. Therefore, the issue of stabil-
ity analysis for TDSs has become a popular subject of research for their extensive applications in practical
systems, such as H∞ out tracking control system [36], markovian jump system [32], H∞ filtering [4], re-
liable passive control for singular systems [28], dissipativity analysis [38], neural networks [22, 23], and
other scientific areas.
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To date, TDSs are often classified into two categories, namely, retarded type [2, 26, 30, 35] and neutral
type [1, 8, 10, 12–14, 16–18, 25, 27, 37, 39]. The retarded type system only depends on the state delay,
while the neutral type system not only relies on its state, but also its derivatives of state. TDSs can be
frequently found in a large amount of dynamical systems, for example, population ecology, distributed
networks containing lossless transmission lines, the control of constrained manipulators with delay mea-
surements and so on. Due to their extensive applications in practice, the stability analysis for neutral-type
systems have received considerable interest in the recent. Meanwhile, numerous important and interest-
ing research results on the delayed stability analysis have been also proposed. In [30], the authors have
investigated the problem of state robust H∞ tracking control for uncertain stochastic systems with interval
time-varying delay by employing reciprocally convex approach. In [26], by introducing a parameter λ in
the Lyapunov-Krasovkii functional (LKF), new delay-derivation-dependent stability conditions have been
derived in term of (linear matrix inequalities) LIMs. The problem of exponential stability for uncertain
neutral switched systems with nonlinear perturbations has been studied in [37]. In order to improve
further the feasible region of stability criteria, many effective methods have been developed, such as slack
matrices or free-weighting matrices [2, 12], reciprocally convex [5], delay-partitioning [1, 14], state matrix
decomposition [17], model transformation [27], a multiple integral inequality [7, 23].

On the other hand, it is well-known that many nonlinear systems could be modeled in the form of
Lurie control system (LCS), such as Chua’s circuit, Hyper chaotic attractors and Lorenz system, which
consist of a feedback connection of a linear system and a nonlinear element satisfying the sector con-
dition. However, in practice, stability of TDSs may be frequently destroyed by its nonlinear pertur-
bations. Therefore, a good deal of effort has been paid to the stability analysis of DLCS in the past
decades [5, 6, 9, 11, 15, 19–21, 24, 33, 34]. Based on LKF approach, less conservative synchronization crite-
ria have been obtained in [11]. The authors in [5, 20, 33] have considered the problem of delay-dependent
stability of a class for uncertain NTLCS with time-varying delays and sector-bounded nonlinearity via
some effective mathematical techniques. The design of a PD controller for robust H∞ stabilization of
uncertain LCS with sector and slope restricted nonlinearities has been studied by using convex properties
of the nonlinearities in [34]. By introducing an appropriate LKF and utilizing second order reciprocal
convex combination technique, improved delay-dependent stability criteria have been derived in terms
of LMIs in [15, 24]. Paper in [19] has proposed a new method to study LCS with mixed time-varying
delays. That is dividing the time-varying delay interval [0,h(t)] into multiple subintervals with the same
size. The method may take fully the information about the delay interval [0,h] into account, which can
reduce the conservativeness of results. To the best of our knowledge, there are still some information of
nonlinear functions which have not been well utilized in [5, 6, 9, 11, 15, 19–21, 24, 33, 34], which may lead
to the conservatism of proposed results to a certain extent. Therefore, it is a challenging and valuable
issue to develop many more effective methods with less conservative results.

Motivated by the issues discussed above, the issue of delay-dependent robust stability for time-varying
uncertain neutral-type Lurie nonlinear control system (NTLNCS) with mixed time-varying delays is stud-
ied by using some new approaches in this paper. The main contributions of this paper are listed in the
following. In the first place, we propose a new delay-partitioning method (DPM) which is more general
than the one in [19]. The method is: dividing the time-varying delay interval [0,h] into non-uniformly
multiple subintervals

∑N
i=1[ρi−1h, ρih]. In the second place, a novelly augmented LKF is constructed by

choosing various weighting matrices corresponding to different subsegments. In the third place, improved
results are derived by making the best of the Wirtinger’s integral inequality (WII), which may provide
tighter upper bound than Jensen’s integral inequality. Finally, five numerical examples are presented to
show the improvements over the existing results and the effectiveness of the proposed methods.

Notation: Notations used in this paper are fairly standard: Rn denotes the n-dimensional Euclidean
space; Rn×m is the set of all n×m dimensional matrices; I denotes the identity matrix of appropriate
dimensions; AT stands for the matrix transposition of the matrix A. By X � 0 (respectively X � 0),
for X ∈ Rn×n, we mean that the matrix X is real symmetric positive definite (respectively, positive semi-
definite); diag{r1, · · · , rn} diagonal matrix with diagonal elements ri, i = 1, · · · ,n, the symbol ∗ represents
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the elements below the main diagonal of a symmetric matrix; 〈M〉s is defined as 〈M〉s = 1
2(M+MT ); ρ(·)

denotes the spectral radius of given matrix.

2. Preliminaries

Consider the following time-varying uncertain NTLNCS with mixed time-varying delays and sector-
bounded nonlinearity:

ẋ(t) − Cẋ(t− τ(t)) = (A +4A(t))x(t) + (Ad +4Ad(t))x(t− h) + (D +4D(t))f(σ(t)),

σ(t) = HTx(t) = [h1, · · · , hm]Tx(t), t > 0,
x(t) = φ(t), t ∈ [−max{h, τ}, 0],

(2.1)

where x(t) ∈ Rn is the state vector, σ(t) ∈ Rm is the output vector, A ∈ Rn×n, Ad ∈ Rn×n, D ∈
Rn×m, C ∈ Rn×n, H ∈ Rn×m are known real matrices, f(σ(t)) ∈ Rm is the nonlinear function in the
feedback path. Its form is formulated as{

f(σ(t)) = [f1(σ1(t)), · · · , fm(σm(t))]T ,

σ(t) =[σ1(t), · · · ,σm(t)]T = HTx(t) = [h1, · · · , hm]Tx(t),

wherein, each term fs(σs(t)), s = 1, · · · ,m, satisfies one of the following sector conditions:

fs(σs(t)) ∈ K[0,ks] = {fs(σs(t)) | fs(0) = 0, 0 < σs(t)fs(σs(t)) 6 ksσ2
s(t), σs(t) 6= 0},

or

fs(σs(t)) ∈ K[0,∞] = {fs(σi(t)) | fs(0) = 0, σs(t)fs(σs(t)) > 0, σs(t) 6= 0}. (2.2)

h and τ(t) are constant discrete delay and time-varying neutral delay, respectively. τ(t) satisfies the
following conditions:

0 6 τ(t) 6 τ, τ̇(t) 6 τc < 1,

where τ and τc are constants, φ(t) is initial condition.
In addition, 4A(t), 4Ad(t) and 4D(t) are time-varying uncertain matrices of appropriate dimen-

sions, which are assumed to be of the following form:

[4A(t),4Ad(t),4D(t)] = NF(t)[E1, E2, E3],

where N, E1, E2 and E3 are known real constant matrices of appropriate dimensions, and F(t) is a time-
varying uncertain matrix satisfying

F(t)TF(t) 6 I, ∀t > 0. (2.3)

By using Eq. (2.3), the time-varying uncertain system (2.1) can be rewritten as follows:

ẋ(t) =(A +4A(t))x(t) + (Ad +4Ad(t))x(t− h) + Cẋ(t− τ(t)) + (D +4D(t))f(σ(t))
=Ax(t) + Adx(t− h) + Cẋ(t− τ(t)) + Df(σ(t)) + NP(t),

(2.4)

where P(t) = F(t)ξϑ(t), ξ = [E1, 0, 0, 0, E3,
N−1︷ ︸︸ ︷

0, · · · , 0, E2,
N︷ ︸︸ ︷

0, · · · , 0], ϑT (t) = [x(t)T , ẋT (t), x(t− τ(t))T , ẋT (t−
τ(t)), fT (σ(t)), xT (t − ρ1h), · · · , xT (t − ρjh), · · · , xT (t − ρN−1h), xT (t − h),$T1 (t), · · · ,$Tj (t), · · · ,$TN+1(t),

P(t)],$Tj (t) =
1

(ρj−ρj−1)h
×
∫t−ρj−1h

t−ρjh
xT (s)ds, j = 1, · · · ,N.



K. B. Shi, Y. H. Wei, S. M. Zhong, J. Wang, J. Nonlinear Sci. Appl., 10 (2017), 2196–2213 2199

In order to improve the feasible region of stability criteria, by applying the idea of non-uniformly di-
viding delay interval, the interval [0,h] is divided into N variable subintervals. That is, dividing [0,h] into
N segments

∑N
j=1[ρj−1h, ρj−1h]. ρi is the predetermined parameter satisfying the following conditions:

0 = ρ0h < · · · < ρih < · · · < ρNh = h, ρ0 = 0, ρN = 1, ρi ∈ (0, 1) (i = 1, · · · ,N− 1).

The following lemma is introduced, which will be used in the proof of the main results.

Lemma 2.1 ([35]). For a given symmetric positive definite matrix R > 0, and for differentiable signal x(t) in
[α,β]→ Rn, the following inequality holds:

−(β−α)

∫β
α

ẋT (s)Rẋ(s)ds 6 −

[
x(α)
x(β)

1
β−α

∫β
α x(s)ds

]T [ 4R 2R −6R
∗ 4R −6R
∗ ∗ 12R

] [ x(α)
x(β)

1
β−α

∫β
α x(s)ds

]
,

where α and β are two real constants.

3. Stability analysis in the finite sector K[0,ks]

In this section, we will propose a novel delay-dependent stability criterion of NTLNCS (2.1) via using
a general and complete DPM. Firstly, we consider the case in which the nonlinearity fs(σs(t)) satisfy the
sector condition:

f(σ(t)) ∈ K[0,ks](s = 1, · · · ,m).

For the sake of simplicity of matrix representation, eTi = [

i︷ ︸︸ ︷
0, · · · , 0, I,

2N+6−i︷ ︸︸ ︷
0, · · · , 0] (i = 1, · · · , 2N+ 6), êTi =

[

i︷ ︸︸ ︷
0, · · · , 0, I,

2N+4−i︷ ︸︸ ︷
0, · · · , 0] (i = 1, · · · , 2N+ 4) and ẽTi = [

i︷ ︸︸ ︷
0, · · · , 0, I,

2N+5−i︷ ︸︸ ︷
0, · · · , 0] (i = 1, · · · , 2N+ 5) are defined as

block entry matrices.

Theorem 3.1. For given positive scalars τ, τc, h and ε > 0, the time-varying uncertain NTLNCS (2.1) with
nonlinearity located in the finite sector K[0,ks] is globally asymptotically stable if ρ(C) < 1 and there exist positive
definite matrices P > 0, W > 0, Pi > 0, Rj > 0, Wj > 0 (i = 1, 2; j = 1, · · · ,N), any positive definite diagonal
matrices G = diag{g1, · · · ,gm} > 0, L = diag{l1, · · · , lm} > 0, B = diag{b1, · · · ,bm} > 0, and arbitrary
matrices T1, T2 and T3 with appropriate dimensions, such that the following LIM holds:

Σ < 0, (3.1)

where

Σ =e1

(
P1 + R1 −

1
τ

W −
4
ρ1h

W1 + 〈T2A〉s
)

eT1

+ e2

(
P2 + τW + ρ1hW1 +

N−1∑
i=1

(ρi+1 − ρi)hWi+1 − 〈T1〉s

)
eT2

− e3

(
(1 − τc)P1 +

1
τ

W
)

eT3 − (1 − τc)e4P2eT4

+ e5〈T3D − 2B〉seT5 −
4
ρ1h

e6W1eT6 − e5+NRNeT5+N

−
12
ρ1h

e6+NW1eT6+N +

〈
e1(P + HKLHT + ATTT1 − T2)eT2 + e1

1
τ

WeT3 + e1T2CeT4 + e1(T2D + ATTT3

+ HKB)eT5 −
2
ρ1h

e1W1eT6 + e1T2AdeT5+N +
6
ρ1h

e1W1eT6+N + e2T1CeT4 + e2(H(G − L) + T1D − TT3 )e
T
5
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+ e2T1AdeT5+N + e4CTTT3 eT5 + e5T3AdeT5+N +
6
ρ1h

e6W1eT6+N + (e2T1 + e1T2 + e5T3)NeT2N+6

+

N−1∑
i=1

6
(ρi+1 − ρi)h

e5+iWi+1eT6+N+i

+

N−1∑
i=1

6
(ρi+1 − ρi)h

e6+iWi+1eT6+N+i −

N−1∑
i=1

2
(ρi+1 − ρi)h

e5+iWi+1eT6+i

〉
s

+

N−1∑
i=1

ei+5 [Ri+1 − Ri] eTi+5 −

N−1∑
i=1

4
(ρi+1 − ρi)h

e5+iWi+1eT5+i −
N−1∑
i=1

4
(ρi+1 − ρi)h

e6+iWi+1eeT6+i

−

N−1∑
i=1

12
(ρi+1 − ρi)h

e6+N+iWi+1eT6+N+i + εξ
Tξ− εe2N+6IeT2N+6.

Proof. Consider an appropriate of LKF for the time-varying uncertain NTLNCS (2.1) as follows:

V(xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt) + V5(xt), (3.2)

where

V1(xt) = xT (t)Px(t) +
∫t
t−τ(t)

xT (s)P1x(s)ds+
∫t
t−τ(t)

ẋT (s)P2ẋ(s)ds,

V2(xt) =
∫t
t−ρ1h

xT (s)R1x(s)ds+
N−2∑
i=1

∫t−ρih
t−ρi+1h

xT (s)Ri+1x(s)ds+
∫t−ρN−1h

t−h
xT (s)RNx(s)ds,

V3(xt) =
∫t
t−τ

(s− (t− τ))ẋT (s)Wẋ(s)ds+
∫t
t−ρ1h

(s− (t− ρ1h))ẋT (s)W1ẋ(s)ds,

V4(xt) =
N−2∑
i=1

∫t−ρih
t−ρi+1h

∫t
θ

ẋT (s)Wi+1ẋ(s)dsdθ+
∫t−ρN−1h

t−h

∫t
θ

ẋT (s)WNẋ(s)dsdθ,

V5(xt) = 2
m∑
s=1

gs

∫σs(t)
0

fs(s)ds+ 2
m∑
s=1

ls

∫σs(t)
0

[kss− fs(s)]ds.

Taking the derivative of V(xt) along the trajectory of the NTLNCS (2.1), we can obtain the following
differential:

V̇(xt) = V̇1(xt) + V̇2(xt) + V̇3(xt) + V̇4(xt) + V̇5(xt),

where

V̇1(xt) =2xT (t)Pẋ(t) + xT (t)P1x(t) − (1 − τ̇(t))xT (t− τ(t))P1x(t− τ(t))

+ ẋT (t)P2ẋ(t) − (1 − τ̇(t))ẋT (t− τ(t))P2ẋ(t− τ(t))

62xT (t)Pẋ(t) + xT (t)P1x(t) − (1 − τc)xT (t− τ(t))x1x(t− τ(t)) (3.3)

+ ẋT (t)x2ẋ(t) − (1 − τc)ẋT (t− τ(t))P2ẋ(t− τ(t))

=ϑT (t)[e1P1eT1 + 〈e1PeT2 〉s + e2P2eT2 − (1 − τc)e3P1eT3 − (1 − τc)e4P2eT4 ]ϑ(t),

V̇2(xt) =xT (t)R1x(t) − xT (t− ρ1h)R1x(t− ρ1h)

+

N−2∑
i=1

[xT (t− ρih)Ri+1x(t− ρih) − xT (t− ρih)Ri+1x(t− ρih)] (3.4)
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+ xT (t− ρN−1h)RNx(t− ρN−1h) − xT (t− h)RNx(t− h)

=xT (t)R1x(t) − xT (t− h)RNx(t− h) +
N−1∑
i=1

xT (t− ρih)[Ri+1 − Ri]x(t− ρih)

=ϑT (t)

[
e1R1eT1 − e5+NRNeT5+N +

N−1∑
i=1

ei+5 [Ri+1 − Ri] eTi+5

]
ϑ(t).

From Lemma 2.1 and the celebrated Jensen’s inequality [7], we can have

V̇3(xt) =ėT (t)(τW + ρ1hW1)ẋ(t) −
∫t
t−τ

ẋT (s)Wẋ(s)ds−
∫t
t−ρ1h

ẋT (s)W1ẋ(s)ds

6ẋT (t)(τW + ρ1hW1)ẋ(t) −
∫t
t−τ(t)

ẋT (s)Wẋ(s)ds−
∫t
t−ρ1h

ẋT (s)W1ẋ(s)ds

6ẋT (t)(τW + ρ1hW1)ẋ(t)

−
1
τ

[
x(t)

x(t−τ(t))

]T [ W −W
−W W

] [ x(t)
x(t−τ(t))

] [
x(t)

x(t−τ(t))

]
−

1
ρ1h

[
x(t)

x(t−ρ1h)
$1(t)

]T [ 4W1 2W1 −6W1
2W1 4W1 −6W1
−6W1 −6W1 12W1

] [
x(t)

x(t−ρ1h)
$1(t)

]
=ϑT (t)

[
e2(τW + ρ1hW1)eT2 − e1

(
1
τ

W +
4
ρ1h

W1

)
eT1 −

1
τ

e3WeT3 −
4
ρ1h

e6W1eT6

−
12
ρ1h

e6+NW1eT6+N +

〈
1
τ

e1WeT3 −
2
ρ1h

e1W1eT6 +
6
ρ1h

e1W1eT6+N +
6
ρ1h

e6W1eT6+N

〉
s

]
ϑ(t), (3.5)

V̇4(xt) =
N−1∑
i=1

(ρi+1 − ρi)hẋT (t)Wi+1ẋ(t) −
N−1∑
i=1

∫t−ρih
t−ρi+1h

ẋT (s)Wi+1ẋ(s)ds

6
N−1∑
i=1

(ρi+1 − ρi)hẋT (t)Wi+1ẋ(t)

−

N−1∑
i=1

1
(ρi+1 − ρi)h

[
x(t−ρih)

x(t−ρi+1h)
$i+1(t)

]T [ 4Wi+1 2Wi+1 −6Wi+1
2Wi+1 4Wi+1 −6Wi+1
−6Wi+1 −6Wi+1 12Wi+1

] [
x(t−ρih)

x(t−ρi+1h)
$i+1(t)

]

=ϑT (t)

[
e2

(
N−1∑
i=1

(ρi+1 − ρi)hWi+1

)
eT2 −

N−1∑
i=1

4
(ρi+1 − ρi)h

e5+iWi+1eT5+i (3.6)

−

N−1∑
i=1

4
(ρi+1 − ρi)h

e6+iWi+1eT6+i

−

N−1∑
i=1

12
(ρi+1 − ρi)h

e6+N+iWi+1eT6+N+i +

〈
N−1∑
i=1

6
(ρi+1 − ρi)h

e5+iWi+1eT6+N+i

+

N−1∑
i=1

6
(ρi+1 − ρi)h

e6+iWi+1eT6+N+i −

N−1∑
i=1

2
(ρi+1 − ρi)h

e5+iWi+1eT6+i

〉
s

]
ϑ(t), (3.7)

V̇5(xt) =2
m∑
s=1

(gs − ls)σ̇s(t)fs(σs(t)) + 2
m∑
s=1

σ̇s(t)lsksσs(t)

=2ẋT (t)H(G − L)f(σ(t)) + 2xT (t)HKLHT ẋ(t)

=ϑT (t)
〈
e2H(G− L)eT5 + e1HKLHTeT2

〉
s
ϑ(t).

(3.8)
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In order to improve the feasible region of stability criterion, according to (2.1), for any arbitrary matrices
T1, T2 and T3 with appropriate dimensions, the following equation holds:

0 =2
[
ẋT (t)T1 + xT (t)T2 + fT (σ(t))T3

]
[−ẋ(t) + Ax(t) + Adx(t− h(t)) + Cẋ(t− τ(t)) + Df(σ(t)) + NP(t)]

=ϑT (t)[e1〈T2A〉seT1 − e2〈T1〉seT2 + e5〈T3D〉seT5 + 〈e1(ATTT1 − T2)eT2 + e2T1AdeT5+N + e2T1CeT4 + e2(T1D

− TT3 )e
T
5 + e1T2AdeT5+N + e1T2CeT4 + e1(T2D + ATTT3 )e

T
5 + e5T3AdeT5+N + e4CTTT3 eT5

+ (e2T1 + e1T2 + e5T3)NeT2N+6〉s]ϑ(t). (3.9)

Moreover, the time-varying uncertain NTLNCS (2.1) with nonlinearity located in the sectors [0,ks],
(s = 1, · · · ,m), it is easy to achieve

0 <
fs(σs)

σs
6 ks. (3.10)

For any positive diagonal matrix B = diag{b1, · · · ,bm}, the following inequality holds:

2xT (t)HKBf(σ(t)) − 2fT (œ(t))Bf(σ(t)) =ϑT (t)[〈e1HKBeT5 〉s − 2e5BeT5 ]ϑ(t) > 0. (3.11)

Furthermore, based on (2.4), for any positive scalar ε, the following inequality is satisfied

εϑT (t)ξTξϑT (t) − εP(t)T IP(t) =ϑT (t)(εξTξ− εe2N+6IeT2N+6)ϑ(t) > 0. (3.12)

Combining Eqs. (3.3)-(3.12), it yields,

V̇(xt) 6 ϑT (t)Σϑ(t). (3.13)

From (3.1), we can have V̇(t, xt) 6 −ε ‖ x(t) ‖2 holds for any sufficiently small ε > 0. Therefore, this
implies the NTLNCS (2.1) is globally asymptotically stable. The proof is completed.

Remark 3.2. In order to obtain less conservative stability criteria, the condition 0 6 h(t) 6 h is divided
into two equal subintervals such as 0 6 h(t) 6 h

2 and h
2 6 h(t) 6 h in [5]. Different from the method

[5], the condition hL 6 h(t) 6 hU is divided into two unequal subintervals such as hL 6 h(t) 6 αhL+hU2
and αhL+hU2 6 h(t) 6 hU by introducing an adjustable parameter α in [6], which can reduce further the
conservatism of the existing results.
Remark 3.3. Stimulated by the existing approaches in [5, 6, 19], we partition completely the time-varying
delay interval [0,h] into non-uniformly multiple subintervals

∑N
i=1[ρi−1h, ρih] by bring in N− 1 variable

parameters ρi satisfying (0 < ρ1 < · · · < ρi < · · · < ρN−1 < 1). It is worth pointing out that the method
in [5, 19] is a special case of our method with N = 2 and ρ1 = 1

2 or ρi = i
N (h(t) = h). Therefore, the

proposed method in this paper is more general and less conservative.
Remark 3.4. Compared with those approaches in [6, 9, 11, 19, 21] to deal with the integral term like∫t−ρi−1h
t−ρih

ẋT (s)Wiẋ(s)ds, Lemma 2.1 provides a new handling method. The method can establish the
more relationship among∫t−ρi−1h

t−ρih
ẋT (s)Wiẋ(s)ds,

1
(ρi − ρi−1)h

∫t−ρi−1h

t−ρih
x(s)ds, x(t− ρi−1h), and x(t− ρih),

which may reduce further the conservatism of stability criteria.
Remark 3.5. If C = 0, then the NTLNCS (2.1) reduces to the following delayed Lurie nonlinear control
systems (DLNCS):

ẋ(t) = (A +4A(t))x(t) + (Ad +4Ad(t))x(t− h) + (D +4D(t))f(σ(t)),

σ(t) = HTx(t) = [h1, · · · , hm]Tx(t), t > 0,
x(t) = φ(t), t ∈ [−max{h, τ}, 0].

(3.14)

According to Theorem 3.1, we have the following corollary for the delay-dependent stability of DLNCS
(3.14).
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Corollary 3.6. For given positive scalars h and ε > 0, DLNCS (3.14) with nonlinearity located in the infinite
sector K[0,ks] is asymptotically stable if there exist positive definite matrices P > 0, Rj > 0, Wj > 0 (j =
1, · · · ,N), any positive definite diagonal matrices G = diag{g1, · · · ,gm} > 0, L = diag{l1, · · · , lm} > 0,
B = diag{b1, · · · ,bm} > 0, and arbitrary matrices T1, T2 and T3 with appropriate dimensions, such that the
following LIM holds:

Σ̂ < 0,

where

Σ̂ =ê1

(
R1 −

4
ρ1h

W1 + 〈T2A〉s
)

êT1 + ê2

(
ρ1hW1 +

N−1∑
i=1

(ρi+1 − ρi)hWi+1 − 〈T1〉s

)
êT2 + ê3(〈T3D〉s − 2B)êT3

−
4
ρ1h

ê4W1êT4 − ê3+NRNêT3+N −
12
ρ1h

ê4+NW1êT4+N +
〈

ê1(P + HKLHT + ATTT1 − T2)êT2 + ê2T1AdêT3+N

+ ê1(T2D + ATTT3 + HKB)êT3 −
2
ρ1h

ê1W1êT4 + ê1T2AdêT3+N

+
6
ρ1h

ê1W1êT4+N + ê2(H(G − L) + T1D − TT3 )ê
T
3

+ ê3T3AdêT3+N +
6
ρ1h

ê4W1êT4+N +

N−1∑
i=1

6
(ρi+1 − ρi)h

ê3+iWi+1êT4+N+i

+

N−1∑
i=1

6
(ρi+1 − ρi)h

ê4+iWi+1êT4+N+i

−

N−1∑
i=1

6
(ρi+1 − ρi)h

ê3+iWi+1êT4+i + (̂e2T1 + (̂e1T2 + (̂e3T3)N(̂e
T

2N+4

〉
s

+

N−1∑
i=1

êi+3[Ri+1 − Ri]êTi+3

−

N−1∑
i=1

4
(ρi+1 − ρi)h

ê3+iWi+1êT3+i −
N−1∑
i=1

4
(ρi+1 − ρi)h

ê4+iWi+1êT4+i

−

N−1∑
i=1

12
(ρi+1 − ρi)h

ê4+N+iWi+1êT4+N+i + εξ̂
T ξ̂− εê2N+4IêT2N+4, ξ̂

=[E1, 0, E3,

N−1︷ ︸︸ ︷
0, · · · , 0, E2,

N︷ ︸︸ ︷
0, · · · , 0].

Proof. We choose the following LKF for DLCS (3.14):

V(xt) = Ṽ1(xt) + V2(xt) + Ṽ3 + V4(xt) + V5(xt),

where V2(xt), V4(xt) and V5(xt) are defined in (3.2). Besides, Ṽ1(xt) and Ṽ3(xt) are also defined in (3.2)
with P1 = P2 = W = 0. Similarly to the proof of Theorem 3.1, the result follows immediately. This
completes the proof.

Remark 3.7. When D = 4D(t) = 0 and τ(t) = τ, we can get one delay-dependent asymptotical stability
criterion for neutral system (2.1). We will show the stability criterion for this case in Corollary 3.8.

Corollary 3.8. For given positive scalars τ, h and ε > 0, NTLCS (2.1) with D = 0 and τ(t) = τ is stable if there
exist positive definite matrices P > 0, W > 0, Pi > 0, Rj > 0, Wj > 0 (i = 1, 2; j = 1, · · · ,N), and arbitrary
matrices T1 and T2 with appropriate dimensions, such that the following LIM holds:

Σ̃ < 0,

where

Σ̃ =ẽ1

(
P1 + R1 −

1
τ

W −
4
ρ1h

W1 + 〈T2A〉s
)

ẽT1 + ẽ2(P2 + τW + ρ1hW1 +

N−1∑
i=1

(ρi+1 − ρi)hWi+1
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− 〈T1〉s)ẽT2 − ẽ3(P1 +
1
τ

W)ẽT3 − ẽ4P2ẽT4 −
4
ρ1h

ẽ5W1ẽT5 − ẽ4+NRNẽT4+N −
12
ρ1h

ẽ5+NW1ẽT5+N

+

〈
ẽ1(P + ATTT1 − T2)ẽT2 + ẽ1

1
τ

WẽT3 + ẽ1T2CẽT4 −
2
ρ1h

e1W1ẽT5 + ẽ1T2AdẽT4+N +
6
ρ1h

ẽ1W1ẽT5+N

+ ẽ2T1CẽT4 + ẽ2T1AdẽT4+N +
6
ρ1h

ẽ5W1ẽT5+N +

N−1∑
i=1

6
(ρi+1 − ρi)h

ẽ4+iWi+1ẽT5+N+i

+

N−1∑
i=1

6
(ρi+1 − ρi)h

ẽ5+iWi+1ẽT5+N+i −

N−1∑
i=1

2
(ρi+1 − ρi)h

ẽ4+iWi+1ẽT5+i + ẽ2T1 + ẽ1T2)NẽT2N+5

〉
s

+

N−1∑
i=1

ẽi+4(Ri+1 − Ri)ẽTi+4 −

N−1∑
i=1

4
(ρi+1 − ρi)h

ẽ4+iWi+1ẽT4+i −
N−1∑
i=1

4
(ρi+1 − ρi)h

ẽ5+iWi+1ẽT5+i

−

N−1∑
i=1

12
(ρi+1 − ρi)h

ẽ5+N+iWi+1ẽT5+N+i + εξ̃
T ξ̃− εẽ2N+4IẽT2N+4, ξ̃ = [E1, 0, E3,

N−1︷ ︸︸ ︷
0, · · · , 0,

N︷ ︸︸ ︷
0, · · · , 0].

Proof. We consider the following LKF candidate:

V(xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt) + V5(xt),

where

V1(xt) = xT (t)Px(t),

V2(xt) =
∫t
t−τ

xT (s)P1x(s)ds+
∫t
t−τ

ẋT (s)P2ẋ(s)ds+
∫t
t−τ

τ(s− (t− τ))ẋT (s)Wẋ(s)ds,

V3(xt) =
∫t
t−ρ1h

xT (s)R1x(s)ds+
N−2∑
i=1

∫t−ρih
t−ρi+1h

xT (s)Ri+1x(s)ds+
∫t−ρN−1h

t−h
xT (s)RNx(s)ds,

V4(xt) =
∫t
t−ρ1h

ρ1h(s− (t− ρ1h)ẋT (s)W1ẋ(s)ds+
N−2∑
i=1

∫t−ρih
t−ρi+1h

∫t
θ

(ρi+1h− ρih)ẋT (s)Wi+1ẋ(s)dsdθ,

V5(xt) =
∫t−ρN−1h

t−h

∫t
0
(h− ρN−1h)ẋT (s)WNẋ(s)dsdθ.

Then similar to the proof of Theorem 3.1, the result follows immediately. This completes the proof.

4. Stability analysis in the infinite sector [0,∞]

Next, we consider the case in which the nonlinearities fs(·) satisfy the infinite sector condition.

Theorem 4.1. For given positive scalars τ, τc, h and ε > 0, the NTLNCS (2.1) with nonlinearity located in the
finite sector K[0,∞] is asymptotically stable if ρ(C) < 1 and there exist positive definite matrices P > 0, W > 0,
Pi > 0, Rj > 0, Wj > 0 (i = 1, 2; j = 1, · · · ,N), a scalar α > 0 and any positive definite diagonal matrices
G = diag{g1, · · · ,gm} > 0, and arbitrary matrices T1, T2 and T3 with appropriate dimensions, such that the
following LIM holds:

Σ̌+ Ξ̌ < 0, (4.1)

where

Σ̌ = Σ− 〈e1HKLHTeT2 − e2HLeT5 〉s, Ξ̌ = 2αe1HeT5 .
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Proof. When NTLCS (2.1) with nonlinearity located in the sector [0,∞], the condition (2.2) is equivalent to

2αxT (t)Hf(σ(t)) = ϑT (t)(2αe1HeT5 )ϑ(t) > 0. (4.2)

Then combining Eqs. (3.3)-(3.9), (3.11) and (4.2) yields,

V̇(xt) 6 ϑT (t)(Σ+ Ξ̌)ϑ(t), j = 1, 2.

Then, similarly to the proof of Theorem 3.1, the result follows immediately. This completes the proof.

Remark 4.2. In many actual applications, maximum allowable time-delay upper bounds h is of interested.
Set α = 1

h , in Theorem 3.1 with fixed values τc and τ, the optimal value can be obtained through the
following optimization procedure:{

Minize α for 0 = ρ0 < ρ1 < · · · < ρi < · · · < ρN−1 < ρN = 1, 0 6 δ 6 1,
Respect to (3.1).

(4.3)

Inequality (4.3) is a convex optimization problem and can be obtained efficiently by using the MAT-
LABLMI Toolbox.

5. Numerical examples

In this section, five numerical simulation examples are given to show the effectiveness and correctness
of the main results derived above.

Example 5.1. To demonstrate the superiority of our methods, we consider the following NTLNCS with
the same parameters given in [9].

A =

[
−2 0.5
0.5 −1

]
, Ad =

[
1 0.4

0.4 −1

]
, C =

[
0.2 0.1
0.1 0.2

]
, D =

[
−0.5
−0.75

]
, H =

[
0.2
0.6

]
.

Table 1: The maximum admissible upper of time delay h for different values τc in Example 5.1.
τc 0.1 0.5 0.9

[9] 4.7407 3.0562 0.1198
Theorem 4.1 (N = 3) 7.9511 4.7791 0.1223
Theorem 4.1 (N = 4) 8.1065 4.7886 0.1224

For different τc, by applying Theorem 4.1 and solving the LMI (4.1) via MATLAB LMI Control Toolbox,
we can obtain the maximum allowable upper bounds h = τ which are listed in Table 1. From Table 1, it
can show crisply that our results are less conservative than the existing results in [9]. Therefore, it can be
deserved that our method is more effective than those in [9].

Let N = 4, ρ1 = 0.25, ρ2 = 0.50, ρ3 = 0.75, τc = 0.1 and h = τ = 8.1065, we can acquire the following
feasible parameters by Theorem 4.1 in our paper. Due to the limitation of the length of this paper, we
only provide a part of the feasible solutions here

P = 104 ∗
[

6.4957 −1.51328
−1.5132 9.3654

]
, R1 = 105 ∗

[
0.5344 −0.2728
−0.2728 1.0074

]
, R2 = 105 ∗

[
0.5386 −0.2791
−0.2791 1.0168

]
,

R3 = 105 ∗
[

0.5428 −0.2854
−0.2854 1.0261

]
, R4 = 105 ∗

[
0.5470 −0.2916
−0.2916 1.0355

]
, W1 = 103 ∗

[
1.7686 −2.6284
−2.6284 3.9099

]
,

W2 = 103 ∗
[

1.7673 −2.6274
−2.6274 3.9098

]
, W3 = 103 ∗

[
1.7668 −2.6269
−2.6269 3.9097

]
, W4 = 103 ∗

[
1.7665 −2.6267
−2.6267 3.9098

]
,
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Figure 1: State trajectory of x(t) in the plane for h = 7.9511 in Example 5.1.
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Figure 2: State trajectory of the output vector σ(t) in the plane for h = 7.9511 in Example 5.1.
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Figure 3: Phase trajectory of x(t) in the plane for h = 7.9511 in Example 5.1.

Assume N = 3, ρ1 = 0.3, ρ2 = 0.6 and τc = 0.1, by solving LMI (4.1) of Theorem 4.1, the maximum
bound h = τ = 7.9511 is obtained. Besides, the simulation results with initial state [−0.2, 0.2] are given in
Figures 1-3, which show that the state trajectories approach to zero asymptotically.

Example 5.2. Consider the following NTLNCS with the following parameters:

A =

[
−1.3 0.2
0.1 −1.2

]
, Ad =

[
−1.1 −0.2
−0.1 −1.1

]
, C =

[
−0.2 0
0.2 −0.1

]
,

D =

[
−0.2 0.1
−0.45 −0.3

]
, H =

[
0.3 −0.2
0.3 0.1

]
.
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Table 2: The maximum admissible upper of time delay τ = h for different values of K in Example 5.2.
Method Theorem 3.1 (f(σ(t)) ∈ K1) Theorem 3.1 (f(σ(t)) ∈ K2) Theorem 3.1 (f(σ(t)) ∈ K3)
τc = 0.1 2.3218 1.6806 0.2769

Let N = 3, ρ1 = 0.3, ρ2 = 0.6 and τc = 0.1, the admissible upper bounds of τ = h which guarantee
asymptotically stable of the NTLCS (2.1) by applying Theorem 3.1 are listed in Table 2, where K1 =
K[0, 0.5), K2 = K[0, 10), K3 = K[0, 1000). For example, if f(σ(t)) ∈ K2 = [0, 0.5], then h = τ = 2.3218, we
can offer the following part feasible parameters by applying Theorem 3.1 in our paper:

P =

[
12.0799 −4.1587
−4.1587 12.2488

]
, W =

[
0.4804 −0.3098
−0.3098 0.6440

]
, P1 =

[
2.4637 −1.9127
−1.9127 2.2126

]
,

P2 =

[
3.8392 −1.7500
−1.7500 2.6918

]
, R1 =

[
13.5852 −3.6702
−3.6702 13.0039

]
, R2 =

[
13.5286 −2.8083
−2.8083 13.2571

]
,

R3 =

[
13.5984 −1.9204
−1.9204 13.6192

]
, W1 =

[
1.3586 0.2622
0.2622 1.6729

]
, W2 =

[
1.3715 0.2592
0.2592 1.6700

]
.

Moreover, when h = 2.3218, f(σ(t)) = (0.25+ 0.25sign(σ(t)))σ(t), k1 = 0.5, k2 = 0.5, and x(0) = [−1.5, 1.8],
the trajectories of variables x(t) and σ(t) are shown in Figures 4-6.
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Figure 4: State trajectory of x(t) in the plane for h = τ = 2.3218 in Example 5.2.
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Figure 5: State trajectory of the output vector σ(t) in the plane for h = τ = 2.3218 in Example 5.2.
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Figure 6: Phase trajectory of x(t) in the plane for h = τ = 2.3218 in Example 5.2.

Example 5.3. Consider the following Chua’s circuit example and the system equation in [5, 11, 21] which
is given by

ẋ(t) = α(y(t) − h(t)),
ẏ(t) = x(t) − y(t) + z(t),
ż(t) = −βy(t),

with nonlinear characteristic

h(x(t)) = m1x(t) +
1
2
(m0 −m1)[|x(t) + c|− |x(t) − c|],

and parameters m0 = − 1
7 , m1 = 2

7 , α = 9, β = 14.28, and c = 1. The system can be presented in normal
LCS framework (3.14) with

A =

 −αm1 − 1 α 0
1 −2 1
0 −β −1

 , Ad =

 −6.0026 0 0
−1.3367 0 0
2.1264 0 0

 , D =

 −α(m0 −m1)
0
0

 , H =

 1
0
0

 .

The feedback nonlinear function belongs to the sector [0, 1].

Table 3: The maximum admissible upper of time delay h in Example 5.3.
Method [11] [21] [5] Corollary 3.6 (N=3) Corollary 3.6 (N=4)
h 0.1622 0.1745 0.1747 0.1785 0.1803
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Figure 7: State trajectory of x(t) in the plane for h = 0.1785 in Example 5.3.



K. B. Shi, Y. H. Wei, S. M. Zhong, J. Wang, J. Nonlinear Sci. Appl., 10 (2017), 2196–2213 2209

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

t

A
m

p
lit

u
d

e

 

 

σ(t)

Figure 8: State trajectory of the output vector σ(t) in the plane for h = 0.1785 in Example 5.3.
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Figure 9: Phase trajectory of x(t) in the plane for h = 0.1785 in Example 5.3.

The maximum admissible upper of time delay h for different N by using Corollary 3.6 against the
existing results in [5, 11, 21] are listed in Table 3. From Table 3, it can be observed that the proposed
stability criterion is less conservative than the ones in [5, 11, 21], which does well out of using a general and
complete DPM. On the other hand, under x(0) = [−1, 0.5, 1.5], Figures 7-9 are the graphical simulations to
show the states of x(t).

Example 5.4. Consider the following NTDS with parameters listed in [13, 17, 18, 39] and demonstrate the
results of comparison between the existing methods and our method. Parameters are given as:

A =

[
−0.9 0.2
0.1 −0.9

]
, Ad =

[
−1.1 −0.2
−0.1 −1.1

]
, C =

[
−0.2 0
0.2 −0.1

]
.

Table 4: The maximum admissible upper of time delay h for Example 5.4.
Method [39] [13] [17] [18] Corollary 3.8 (N=3) Corollary 3.8 (N=4)
h 1.7856 1.8266 1.9132 2.0054 2.0649 2.0863

When N = 3 and N = 4, the corresponding maximum admissible upper bounds derived by Corollary 3.8
is given in Table 4. From Table 4, it is clear to see that the stability criterion proposed in this paper gives
much less conservative results than those in the existing literature [13, 17, 18, 39]. Set ρ1 = 1

3 and ρ2 = 2
3 ,

then h = τ = 2.0649, we can obtain the following feasible parameters by Corollary 3.8 in our paper:

P =

[
249.4705 95.9433
95.9433 469.1108

]
, P1 =

[
1.7884 −1.7663
−1.7663 3.3732

]
, P2 =

[
67.9874 −57.0689
−57.0689 99.0575

]
,
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W =

[
0.5049 −0.4571
−0.4571 0.9544

]
, R1 =

[
239.8302 64.7760
64.7760 449.0936

]
, R2 =

[
291.8865 114.6423
114.6423 555.4165

]
,

R3 =

[
343.8066 164.5078
164.5078 661.8171

]
, W1 =

[
69.6059 67.2373
67.2373 141.4748

]
, W2 =

[
69.5574 67.1758
67.1758 141.5071

]
,

W3 =

[
69.3951 67.3458
67.3458 141.6744

]
, T1 =

[
213.2610 80.6756
79.8984 394.1250

]
, T2 =

[
248.9866 96.6918
95.9811 468.0007

]
.

Moreover, Figures 10 and 11 may show that the trajectories of NTDS are asymptotically stable. Similarly,
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Figure 10: The response of the state dynamics x(t) in the plane for h = 2.0649 in Example 5.4.

−5 −4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

4

5

x
1
(t)

x 2
(t

)

 

 

(x
1
t),x

2
(t))

(−5,5)

(0,0)

Figure 11: Phase trajectory of model of x(t) in the plane for h = 2.0649 in Example 5.4.

when N = 4, ρ1 = 0.25, ρ2 = 0.50 and ρ3 = 0.75, we can obtain the maximum upper bound on the
allowable delay to be h = τ = 2.0863.

Example 5.5. Finally, we consider the following NTDS with parameters listed in [8, 10, 12, 27] and demon-
strate the results of comparison between the existing methods and our method. Parameters are given as:

A =

[
−2 0
0 −0.9

]
, Ad =

[
−11 0
−1 −1

]
, C =

[
0.1 0
0 0.1

]
.

Table 5: The maximum admissible upper of time delay h for Example 5.5.
Method [8] [10] [27] [12] Corollary 3.8 (N=3) Corollary 3.8 (N=4)
h 3.49 4.33 4.35 4.42 4.5262 4.5586
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Figure 12: The response of the state dynamics x(t) in the plane for h = 4.5262 in Example 5.5.

For N = 3, ρ1 = 1
3 and ρ2 = 2

3 , and N = 4, ρ1 = 1
4 , ρ2 = 1

2 and ρ2 = 3
4 , the corresponding results for the

maximum allowable upper bounds of the time delay h = τ are given in Table 5. From Table 5, we can see
clearly that stability criterion established in this paper is less conservative than the results compared in
[8, 10, 12, 27]. Thus, it can be seen that WII used in this paper plays a key role reducing the conservatism
of results. Besides, N = 3 and h = 4.5262, the response of the state trajectories for the above TDS which is
asymptotically stable are shown in Figure 12.

6. Conclusions

In this paper, the problem of delay-dependent robust stability analysis for time-varying uncertain
NTLNCS with mixed time delays is investigated by developing some new methods. In order to estimate
the bounds of integral terms more exactly, we construct an augmented LKF based on DPM. Moreover, by
getting the utmost out of WII, less conservative delay-dependent stability conditions are obtained in terms
of LIMs. Finally, the feasibility and effectiveness of the proposed methods have been demonstrated by
five numerical simulation examples. The foregoing results have the potential to be useful for the further
study of TDSs.
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