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Abstract
In this paper, we introduce two iterative algorithms (one implicit algorithm and one explicit algorithm) based on the

hybrid steepest descent method for solving the split common fixed point problems. We establish the strong convergence of
the sequences generated by the proposed algorithms to a solution of the split common fixed point problems, which is also a
solution of a certain variational inequality. In particular, the minimum norm solution of the split common fixed point problems
is obtained. As applications, variational problems and equilibrium problems are considered. c©2017 All rights reserved.
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1. Introduction

The split feasibility problem (in short, SFP) is formulated as

find x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where C and Q are two nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively,
and A : H1 → H2 is a bounded linear operator. The SFP (1.1) in finite-dimensional Hilbert spaces was
first introduced by Censor and Elfving [8] for modeling inverse problems which arise in phase retrievals
and in medical image reconstruction [4]. In [7, 9, 10], it has been shown that the SPF (1.1) can also be
used to model the intensity-modulated radiation therapy. Various iterative algorithms have been studied
to solve the SFP (1.1), see, e.g., [8, 14, 16, 18, 22, 25, 27, 30–32] and the references therein. In particular,
Jung [16] introduced iterative algorithms based on the Yamada’s hybrid steepest descent method [28] for
solving SFP (1.1). He established strong convergence of sequences generated by the proposed algorithms
to a solution of SFP (1.1), which is a solution of a certain variational inequality defined over the set of
solutions of SFP (1.1).

Recently, several split type feasibility problems have been considered because of their applications in
science, engineering, medical sciences, etc. One of the split type problems is the split common fixed point
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problem (in short, SCFPP) which is to find a fixed point of an operator such that its image under the
bounded linear operator is a fixed point of another operator, that is,

find x∗ ∈ Fix(T) such that Ax∗ ∈ Fix(S), (1.2)

where Fix(T) and Fix(S) denote the set of fixed points of the operators T : H1 → H1 with Fix(T) 6= ∅ and
S : H2 → H2 with Fix(S) 6= ∅, respectively. We denote by Ω the set of solutions of the SCFPP (1.2) and
assume that Ω 6= ∅. The SCFPP (1.2) was introduced by Censor and Segal [11]. They considered a parallel
algorithm for solving the SCFPP (1.2) for a class of directed operators in finite dimensional spaces. Later,
Ansari et al. [2], Cui and Wang [13], Krailkaew and Saejung [17] and Moudafi [20, 21] proposed different
kinds of algorithms for solving SCFPP (1.2) in the Hilbert space setting.

In this paper, motivated by the works [2, 16], we present two iterative algorithms based on Yamada’s
the hybrid steepest descent method [28] for solving the SCFPP (1.2). First, we introduce an implicit
algorithm. Next, by discretizing the continuous implicit algorithm, we provide an explicit algorithm.
Under some appropriate conditions, we show the strong convergence of proposed algorithms to some
solution of the SCFPP (1.2) which solves a certain variational inequality. As special cases, we obtain two
algorithms which converges strongly to the minimum norm solution of the SCFPP (1.2). As applications,
using our iterative algorithms, we study some variational inequality problem and equilibrium problems.
The paper can be considered as a continuation of study for solving the SCFPP (1.2) via fixed point
methods.

2. Preliminaries and lemmas

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let K be a nonempty closed
convex subset of H. Recall that the (nearest point or metric) projection from H onto K, denoted by PK, is
defined in such a way that, for each x ∈ H, PKx is the unique point in K with the property

‖x− PK(x)‖ = min{‖x− y‖ : y ∈ K}.

We recall ([1, 5, 6, 29]) that

(1) a mapping f : H→ H is k-contractive if ‖fx− fy‖ 6 k‖x− y‖ for a constant k ∈ [0, 1) and ∀x, y ∈ H;
(2) a mapping V : H → H is l-Lipschitzian if ‖Vx − Vy‖ 6 l‖x − y‖ for a constant l ∈ [0,∞) and
∀x, y ∈ H;

(3) a mapping T : H→ H is nonexpansive if ‖Tx− Ty‖ 6 ‖x− y‖, ∀x, y ∈ H;
(4) a mapping T : H→ H is strongly nonexpansive if T is nonexpansive and

lim
n→∞ ‖(xn − yn) − (Txn − Tyn)‖ = 0,

whenever {xn} and {yn} are bounded sequences in H and limn→∞(‖xn − yn‖− ‖Txn − Tyn‖) = 0;
(5) a mapping T : H → H is firmly quasi-nonexpansive if ‖Tx− p‖2 6 ‖x− p‖2 − ‖Tx− p‖2 for all x ∈ H

and p ∈ Fix(T);
(6) a mapping T : H → H is averaged if T = (1 − ν)I + νG, where ν ∈ (0, 1) and G : H → H is

nonexpansive. In this case, we also say that T is ν-averaged;
(7) a mapping A : H→ H is monotone if 〈Ax−Ay, x− y〉 > 0, ∀x, y ∈ H;
(8) a mapping T : H→ H is α-inverse strongly monotone (α-ism) if there exists α > 0 such that

〈Tx− Ty, x− y〉 > α‖Tx− Ty‖2,∀x, y ∈ H;

(9) an operator F : H → H is κ-Lipschitzian and η-strongly monotone with constants κ > 0 and η > 0 if
‖Fx− Fy‖ 6 κ‖x− y‖ and 〈Fx− Fy, x− y〉 > η‖x− y‖2, ∀x, y ∈ H, respectively.
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The following result is well-known.

Proposition 2.1 ([5]). Let H be a real Hilbert space, and let T : H→ H be an operator.

(a) If T is ν-ism, then for γ > 0, γT is νγ -ism.
(b) T is averaged if and only if the complement I − T is ν-ism for some ν > 1

2 . Indeed, for α ∈ (0, 1), T is
α-averaged if and only if (I− T) is 1

2α -ism.
(c) The composite of finitely many averaged mappings is averaged.
(d) If the mappings {Ti}Ni=1 are averaged and have a common fixed point, then

N⋂
i=1

Fix(Ti) = Fix(T1 · · · TN).

As in [2], using Proposition 2.1, we can prove the following. So we omit its proof.

Proposition 2.2. Let H1 and H2 be real Hilbert spaces, let A : H1 −H2 be a bounded linear operator, let A∗ be the
adjoint A, and let S : H2 → H2 be a nonexpansive mapping with Fix(S) 6= ∅. Then

(i) A∗(I− S)A is 1
2‖A‖2 -ism;

(ii) U := I− γA∗(I− S)A is averaged for γ ∈ (0, 1
‖A‖2 ) and hence U is nonexpansive;

(iii) Ax ∈ Fix(S) implies x ∈ Fix(U), and x ∈ Fix(U) implies Ax ∈ Fix(S).

We also need the following lemmas for the proof of our main results.

Lemma 2.3 ([1]). In a real Hilbert space H, the following inequality holds:

‖x+ y‖2 6 ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

Lemma 2.4 (Demiclosedness principle, [15]). Let C be a nonempty closed convex subset of a real Hilbert space
H, and let S : C → C be a nonexpansive mapping. Then, the mapping I− S is demiclosed. That is, if {xn} is a
sequence in C such that xn ⇀ x∗ and (I− S)xn → y, then (I− S)x = y.

Lemma 2.5 ([19]). Let C be a nonempty closed convex subset of a real Hilbert space H. Assume that the mapping
F : C → H is monotone and weakly continuous along segments (i.e., F(x + ty) ⇀ F(x) as t → 0). Then the
variational inequality

x∗ ∈ C, 〈Fx∗, x− x∗〉 > 0, x ∈ C,

is equivalent to the dual variational inequality

x∗ ∈ C, 〈Fx, x− x∗〉 > 0, x ∈ C.

Lemma 2.6 ([23]). Let {xn} and {zn} be bounded sequences in a Banach space E and {γn} be a sequence in [0, 1]
which satisfies the following condition:

0 < lim inf
n→∞ γn 6 lim sup

n→∞ γn < 1.

Suppose that xn+1 = γnxn + (1 − γn)zn, n > 0, and

lim sup
n→∞ (‖zn+1 − zn‖− ‖xn+1 − xn‖) 6 0.

Then limn ‖zn − xn‖ = 0.

Lemma 2.7 ([26]). Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 6 (1 − λn)sn + λnδn, ∀n > 0,

where {λn} and {δn} satisfy the following conditions:



J. S. Jung, J. Nonlinear Sci. Appl., 10 (2017), 2214–2228 2217

(i) {λn} ⊂ [0, 1] and
∑∞
n=0 λn =∞,

(ii) lim supn→∞ δn 6 0 or
∑∞
n=0 λn|δn| <∞.

Then limn→∞ sn = 0.

The following lemma can be easily proven, and therefore, we omit the proof (see also [28]).

Lemma 2.8. Let H be a real Hilbert space H. Let F : H→ H be a κ-Lipschizian and η-strongly monotone operator
with constants κ > 0 and η > 0. Let 0 < µ < 2η

κ2 and 0 < t < ξ 6 1. Then G := ξI− tµF : H→ H is a contractive
mapping with constant ξ− tτ, where τ = 1 −

√
1 − µ(2η− µκ2).

From now, we will use the following notations:

• xn ⇀ x stands for the weak convergence of {xn} to x;
• xn → x stands for the strong convergence of {xn} to x.

3. Iterative algorithms

Throughout the rest of this paper, we always assume the followings:

• H1 and H2 are real Hilbert spaces;
• A : H1 → H2 is a bounded linear operator and A∗ is the adjoint of A;
• T : H1 → H1 is a firmly nonexpansive mapping with Fix(T) 6= ∅;
• S : H2 → H2 is a nonexpansive mapping with Fix(S) 6= ∅;
• V : H1 → H1 is l-Lipschitzian with constant l ∈ [0,∞);
• F : H1 → H1 is a κ-Lipschitzian and η-strongly monotone operator with constants κ > 0 and η > 0;
• constants µ, σ, l, τ, and γ satisfy 0 < µ < 2η

κ2 , 0 < σl < τ = 1 −
√

1 − µ(2η− µκ2), and 0 < γ < 1
‖A‖2 ;

• Ω is the set of solutions of SCFPP (1.2).

First, we introduce the following iterative algorithm that generates a net {xt}t∈(0, 1
τ−σl )

in an implicit
way:

xt = T [I− γA
∗(I− S)A]T [tσVxt + (I− tµF)xt]. (3.1)

We prove strong convergence of {xt} as t → 0 to a x∗ which is a solution of the following variational
inequality:

x∗ ∈ Ω such that 〈σVx∗ − µFx∗, x̃− x∗〉 6 0, ∀x̃ ∈ Ω. (3.2)

Now, for t ∈ (0, 1
τ−σl), consider a mapping Wt : C→ C defined by

Wtx := T [I− γA
∗(I− S)A]T [tσVx+ (I− tµF)x], x ∈ C.

It is easy to see that Wt is a contractive mapping with constant 1 − t(τ − σl). Indeed, note that T and
I− γA∗(I− S)A are nonexpansive (by Proposition 2.2). Thus, by Lemma 2.8, we have for x, y ∈ C,

‖Wtx−Wty‖ = ‖T [I− γA∗(I− S)A]T [tσVx+ (I− tµF)x] − T [I− γA∗(I− S)A]T [tσVy+ (I− tµF)y]‖
6 tσ‖Vx− Vy‖+ ‖(I− µtF)x− (I− µtF)y‖
6 tσl‖x− y‖+ (1 − tτ)‖x− y‖
= [1 − t(τ− σl)]‖x− y‖.

Therefore Wt is a contractive mapping when t ∈ (0, 1
τ−σl). By the Banach contraction principle, Wt has a

unique fixed point in C, denoted by xt, that is,

xt = T [I− γA
∗(I− S)A]T [tσVxt + (I− tµF)xt],

which is exactly (3.1).
We summarize the basic properties of {xt}.
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Proposition 3.1. Let Ω 6= ∅, and let {xt} be defined via (3.1). Then

(i) {xt} is bounded for t ∈ (0, 1
τ−σl);

(ii) limt→0 ‖xt − T [I− γA∗(I− S)A]Txt‖ = 0;

(iii) xt defines a continuous path from (0, 1
τ−σl) into H1.

Proof.

(i) Let x̃ be any point in Ω. Then x̃ ∈ Fix(T) and Ax̃ ∈ Fix(S). Set

U = I− γA∗(I− S)A.

Then, from Proposition 2.2 (iii), we have x̃ ∈ Fix(U), and we can rewrite (3.1) as

xt = TUT [tσVxt + (I− tµF)xt], t ∈
(

0,
1

τ− σl

)
.

It follows that

‖xt − x̃‖ = ‖TUT [tσVxt + (I− tµF)xt] − x̃‖
6 ‖tσ(Vxt − Vx̃)‖+ ‖(I− tµF)xt − (I− tµF)x̃‖+ ‖tσVx̃− tµFx̃‖
6 tσ‖xt − x̃‖+ (1 − tτ)‖xt − x̃‖+ t‖σVx̃− µFx̃‖
= [1 − (τ− σl)t]‖xt − x̃‖+ t‖σVx̃− µFx̃‖.

Hence
‖xt − x̃‖ 6

1
τ− σl

‖σVx̃− µFx̃‖.

Then {xt} is bounded and so are {Vxt}, {Uxt}, and {Fxt}.

(ii) From (3.1), we have

‖xt − T [I− γA∗(I− S)A]Txt‖ = ‖TUT [tσVxt + (I− tµF)xt] − TUTxt‖ 6 t‖σVxt − µFxt‖.

By boundedness of {Vxt} and {Fxt}, we obtain

lim
t→0
‖xt − T [I− γA∗(I− S)A]Txt‖ = 0.

(iii) Let t, t0 ∈ (0, 1
τ−σl). We calculate

‖xt − xt0‖ = ‖T [I− γA
∗(I− S)A]T [tσVxt + (I− tµF)xt] − T [I− γA

∗(I− S)A]T [t0σVxt0 + (I− tµF)xt0 ]‖
6 ‖tσVxt + (I− tµF)xt − (t0σVxt0 + (I− tµF)xt0)‖
6 ‖tσVxt − t0σVxt‖+ ‖(I− tµF)xt − (I− tµF)xt0‖

+ ‖t0σVxt − t0σVxt0‖+ ‖(I− tµF)xt0 − (I− t0µF)xt0‖
6 σ‖Vxt‖|t− t0|+ (1 − tτ)‖xt − xt0‖+ t0σl‖xt − xt0‖+ µ‖Fxt0‖|t− t0|.

This implies that

‖xt − xt0‖ 6
σ‖Vxt‖+ µ‖Fxt0‖

tτ− t0σl
|t− t0|.

This completes the proof.

Theorem 3.2. Let Ω 6= ∅, and let the net {xt} be defined via (3.1). Then xt converges strongly to a point x∗ as
t→ 0, which solves the variational inequality (3.2).
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Proof. First, we show easily the uniqueness of a solution of the variational inequality (3.2). In fact, noting
that 0 6 σl < τ and µη > τ⇐⇒ κ > η, it follows that

〈(µF− σV)x− (µF− σV)y, x− y〉 > (µη− σl)‖x− y‖2.

That is, µF− σV is strongly monotone for 0 6 σl < τ 6 µη. So the variational inequality (3.2) has only
one solution.

Next, we show that {xt} is relatively norm-compact as t → 0+. To this end, set U = I− γA∗(I− S)A
and let x̃ be any point in Ω. Then x̃ ∈ Fix(T), Ax̃ ∈ Fix(S), and x̃ ∈ Fix(U) (by Proposition 2.2 (iii)). Let
{tn} ⊂ (0, 1

τ−σl) be such that tn → 0 as n→∞. Put xn := xtn . From Proposition 3.1 (ii), we have

lim
n→∞ ‖xn − TUTxn‖ = 0. (3.3)

Put zt = tσVxt + (I− tµF)xt, yt = T [tσVxt + (I− tµF)xt] = Tzt, zn := ztn , and yn := ytn = Tzn. Then
we have, for any x̃ ∈ Ω,

yt − x̃ = yt − zt + zt − x̃ = yt − zt + tσ(Vxt − Vx̃) + (I− tµF)xt − (I− tµF)x̃+ t(σVx̃− µFx̃). (3.4)

Since T is a firmly nonexpansive mapping with a fixed point x̃, we have

〈yt − zt,yt − x̃〉 6 0. (3.5)

Combining (3.4) with (3.5) along with Lemma 2.8, we get

‖yt − x̃‖2 = 〈yt − x̃,yt − x̃〉
= 〈yt − zt,yt − x̃〉+ tσ〈Vxt − Vx̃,yt − x̃〉

+ 〈(I− tµF)xt − (I− tµF)x̃,yt − x̃〉+ t〈σVx̃− µFx̃,yt − x̃〉
6 tσl‖xt − x̃‖‖yt − x̃‖+ (1 − tτ)‖xt − x̃‖‖yt − x̃‖+ t〈σVx̃− µFx̃,yt − x̃〉
= [1 − (τ− σl)t]‖xt − x̃‖‖yt − x̃‖+ t〈σVx̃− µFx̃,yt − x̃〉

6
1 − (τ− σl)t

2
‖xt − x̃‖2 +

1
2
‖yt − x̃‖2 + t〈σVx̃− µFx̃,yt − x̃〉.

It follows that
‖yt − x̃‖2 6 [1 − (τ− σl)t]‖xt − x̃‖2 + 2t〈σVx̃− µFx̃,yt − x̃〉.

Thus, from Proposition 2.2, we have

‖xt − x̃‖2 = ‖TUTzt − TUTx̃‖2 6 ‖TUyt − TUx̃‖2

6 ‖yt − x̃‖2 6 [1 − (τ− σl)t]‖xt − x̃‖2 + 2t〈σVx̃− µFx̃,yt − x̃〉.

Hence, we obtain

‖xt − x̃‖2 6
2

τ− σl
〈σVx̃− µFx̃,yt − x̃〉.

In particular, we have

‖xn − x̃‖2 6
2

τ− σl
〈σVx̃− µFx̃,yn − x̃〉, x̃ ∈ Ω. (3.6)

Note that
‖xt − zt‖ = ‖xt − [tσVxt + (I− tµF)xt]‖ 6 t‖σVxt − µFxt‖ → 0 as t→ 0.

So,
lim
n→∞ ‖xn − zn‖ = 0. (3.7)
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Observe that
‖zn − x̃‖ = ‖tnσVxn + (I− tnµF)xn − x̃‖

= ‖(xn − x̃) + tn(σVxn − µFxn)‖
6 ‖xn − x̃‖+ tn‖σVxn − µFxn‖.

(3.8)

Then, since every firmly nonexpansive mapping with a fixed point is firmly quasi-nonexpansive, from
(3.8) we deduce

‖xn − x̃‖2 = ‖TUTzn − TUTx̃‖2

6 ‖Tzn − x̃‖2

6 ‖zn − x̃‖2 − ‖Tzn − zn‖2

6 (‖xn − x̃‖+ tn‖σVxn − µFxn‖)2 − ‖Tzn − zn‖2

6 ‖xn − x̃‖2 + tnM− ‖Tzn − zn‖2,

where M > 0 is an appropriate constant. This implies that

lim
n→∞ ‖yn − zn‖ = lim

n→∞ ‖Tzn − zn‖ = 0. (3.9)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} which converges weakly to a point x∗.
Without loss of generality, we may assume that {xn} converges weakly to x∗. Then by (3.7) and (3.9),
yn ⇀ x∗. Noticing (3.3), we can use Lemma 2.4 to get x∗ = TUTx∗. By Proposition 2.1 (iv), we have
Tx∗ = x∗ and Ux∗ = x∗, and hence S(Ax∗) = Ax∗. Thus x∗ ∈ Fix(T) and Ax∗ ∈ Fix(S), that is, x∗ ∈ Ω.
Therefore, we can substitute x∗ for x̃ in (3.6) to obtain

‖xn − x∗‖2 6
2

τ− σl
〈σVx∗ − µFx∗,yn − x∗〉.

Consequently, yn ⇀ x∗ actually implies that xn → x∗. This proves the relative norm-compactness of the
net {xt} as t→ 0+.

Letting n→∞ in (3.6), we have

‖x∗ − x̃‖2 6
2

τ− σl
〈σVx̃− µFx̃, x∗ − x̃〉, x̃ ∈ Ω.

This implies that x∗ ∈ Ω solves the variational inequality

〈σVx̃− µFx̃, x̃− x∗〉 6 0, x̃ ∈ Ω. (3.10)

By Lemma 2.5, (3.10) is equivalent to its dual variational inequality

〈σVx∗ − µFx∗, x̃− x∗〉 6 0, x̃ ∈ Ω.

This is exactly (3.2). By uniqueness of the solution of the variational inequality (3.2), we deduce that each
cluster point of {xt} as t→ 0+ equals to x∗. Therefore xt → x∗ as t→ 0+. This completes the proof.

Taking F = I and µ = 1 in Theorem 3.2, we have the following corollary.

Corollary 3.3. Let the net {xt} be defined by

xt = T [I− γA
∗(I− S)A]T [tσVxt + (1 − t)xt], t ∈

(
0,

1
1 − σl

)
. (3.11)

Then {xt} converges strongly as t→ 0 to a point x∗ which is the unique solution of variational inequality

x∗ ∈ Ω such that 〈σVx∗ − x∗, x̃− x∗〉 6 0, ∀x̃ ∈ Ω.

Taking V = 0 in (3.11), we get the following corollary.
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Corollary 3.4. Let the net {xt} be defined by

xt = T [I− γA
∗(I− S)A]T [(1 − t)xt], t ∈ (0, 1). (3.12)

Then {xt} converges strongly as t→ 0 to a point x∗ which is the minimum norm solution of the SCFPP (1.2).

Proof. If we take V = 0, then (3.11) reduces to (3.12). Thus, xt → x∗ ∈ Ω which satisfies

〈−x∗, x̃− x∗〉 6 0, ∀x̃ ∈ Ω.

Thus
‖x∗‖2 6 〈x∗, x̃〉 6 ‖x∗‖‖x̃‖, ∀x̃ ∈ Ω,

which implies ‖x∗‖ 6 ‖x̃‖ for all x̃ ∈ Ω. That is, x∗ is the minimum norm solution of the SCFPP (1.2).
This completes the proof.

Next, we propose the following iterative algorithm which generates a sequence in an explicit way:

xn+1 = T [I− γA∗(I− S)A]T [αnσVxn + (I−αnµF)xn], n > 0, (3.13)

where {αn} ⊂ [0, 1] and x0 ∈ H1 is an arbitrary initial guess, and establishes strong convergence of this
sequence to a point x∗, which is also a solution of the variational inequality (3.2).

Theorem 3.5. Let Ω 6= ∅, and let {xn} be the sequence generated by the explicit algorithm (3.13), where {αn}

satisfies the following conditions:

(C1) {αn} ⊂ [0, 1], limn→∞ αn = 0;
(C2)

∑∞
n=0 αn =∞.

Then {xn} converges strongly to a point x∗ ∈ Ω as n→∞, which solves the variational inequality (3.2).

Proof. Let x̃ ∈ Ω and let U = I− γA∗(I− S)A. Then (3.13) becomes

xn+1 = TUT [αnσVxn + (I−αnµF)xn], n > 0.

We divide the proof into the following steps:

Step 1. We show that {xn} is bounded. In fact, from (3.13), we deduce

‖xn+1 − x̃‖ = ‖TUT [αnσVxn + (I−αnµF)xn] − TUTx̃‖
6 ‖αnσVxn + (I−αnµF)xn − x̃‖
6 αnσ‖Vxn − Vx̃‖+ ‖(I−αnµF)xn − (I−αnµF)x̃‖+αn‖σVx̃− µFx̃‖
6 αnl‖xn − x̃‖+ (1 −αnτ)‖xn − x̃‖+αn‖σVx̃− µFx̃‖

= [1 − (τ− σl)αn]‖xn − x̃‖+ (τ− σl)αn
‖σVx̃− µFx̃‖

τ− σl
.

It follows by induction that

‖xn+1 − x̃‖ 6max
{
‖xn − x̃‖, ‖σVx̃− µFx̃‖

τ− σl

}
6 · · · 6 max

{
‖x0 − x̃‖,

‖σVx̃− µFx̃‖
τ− σl

}
.

This means that {xn} is bounded. It is easy to deduce that {Vxn}, {Uxn} and Fxn} are also bounded.

Step 2. We show that limn→∞ ‖TUTzn − zn‖ = 0. To this end, set

yn := T [αnσVxn + (I−αnµF)xn],

and
zn := αnσVxn + (I−αnµF)xn, n > 0.

Since U is averaged by Proposition 2.2 (ii) and also, every firmly nonexpansive mapping is averaged, thus
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T is averaged. Since the composite of finitely many averaged mappings is averaged by Proposition 2.1 (c),
TU is averaged. Hence, there exists a positive constant λ1 ∈ (0, 1) such that TU = (1 − λ1)I+ λ1G1, where
G1 is a nonexpansive mapping. Since T is averaged, there exists λ2 ∈ (0, 1) such that T = (1 − λ2)I+ λ2G2,
where G2 is a nonexpansive mapping. It follows that

yn = Tzn

= ((1 − λ2)I+ λ2G2)zn

= ((1 − λ2)I+ λ2G2)(αnσVxn + (I−αnµF)xn)

= (1 − λ2)(αnσVxn + (I−αnµF)xn) + λzG2zn

= (1 − λ2)(xn +αn(σVxn − µFxn)) + λ2G2zn

= (1 − λ2)xn + λ2

[
(1 − λ2)

λ2
αn(σVxn − µFxn) +G2zn

]
= (1 − λ2)xn + λ2qn,

(3.14)

where

qn =
(1 − λ2)

λ2
αn(σVxn − µFxn) +G2zn.

Moreover, we get

‖qn+1 − qn‖

= ‖(1 − λ2)

λ2
αn+1(σVxn+1 − µFxn+1) +G2zn+1) −

(1 − λ2)

λ2
αn(σVxn − µFxn) −G2zn‖

6 ‖G2zn+1 −G2zn‖+
(1 − λ2)

λ2
[αn+1‖σVxn+1 − µFxn+1‖+αn‖σVxn − µFxn‖]

6 ‖zn+1 − zn‖+
(1 − λ2)

λ2
[αn+1‖σVxn+1 − µFxn+1‖+αn‖(σVxn − µFxn)‖].

(3.15)

In view of (3.13) and (3.14), we have

xn+1 = TUyn

= ((1 − λ1)I+ λ− 1G1)yn

= (1 − λ1)yn + λ1G1yn

= (1 − λ1)[(1 − λ2)xn + λ2qn] + λ1G1yn

= (1 − λ1)(1 − λ2)xn + (1 − λ1)λ2qn + λ1G1yn

= (1 − (λ1 + λ2 − λ1λ2))xn + (1 − λ1)λ2qn + λ1G1yn

= (1 − λ3)xn + λ3

[
(1 − λ1)λ2

λ3
qn +

λ1

λ3
G1yn

]
= (1 − λ3)xn + λ3pn,

(3.16)

where λ3 = λ1 + λ2 − λ1λ2 and pn =
(1−λ1)λ2
λ3

qn + λ1
λ3
G1yn. Thus, from (3.15), we derive

‖pn+1 − pn‖ = ‖
(1 − λ1)λ2

λ3
qn+1 +

λ1

λ3
G1yn+1 −

(1 − λ1)λ2

λ3
qn −

λ1

λ3
G1yn‖

= ‖(1 − λ1)λ2

λ3
(qn+1 − qn) +

λ1

λ3
(G1yn+1 −G1yn)‖

6
(1 − λ1)λ2

λ3
‖qn+1 − qn‖+

λ1

λ3
‖G1yn+1 −G1yn‖

6
(1 − λ1)λ2

λ3
‖qn+1 − qn‖+

λ1

λ3
‖yn+1 − yn‖
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=
(1 − λ1)λ2

λ3
‖qn+1 − qn‖+

λ1

λ3
‖Tzn+1 − Tzn‖

6
(1 − λ1)λ2

λ3
‖qn+1 − qn‖+

λ1

λ3
‖zn+1 − zn‖

6
(1 − λ1)λ2

λ3
‖zn+1 − zn‖

+
(1 − λ1)(1 − λ2)

λ3
[αn+1‖σVxn+1 − µFxn+1‖+αn‖σVxn − µFxn‖] +

λ1

λ3
‖zn+1 − zn‖

=
λ1 + λ2 − λ1λ2

λ3
‖zn+1 − zn‖

+
(1 − λ3)

λ3
[αn+1‖σVxn+1 − µFxn+1‖+αn‖σVxn − µFxn‖]

= ‖zn+1 − zn‖+
(1 − λ3)

λ3
[αn+1‖σVxn+1 − µFxn+1‖+αn‖σVxn − µFxn‖]

= ‖(αn+1σVxn+1 + (I−αn+1µF)xn+1 − (αnσVxn + (I−αnµFxn)n‖

+
(1 − λ3)

λ3
[αn+1‖(σVxn+1 − µFxn+1)‖+αn‖(σVxn − µFxn)‖]

= ‖(xn+1 − xn) +αn+1(σVxn+1 − µFxn+1) −αn(σVxn − µFxn)‖

+
(1 − λ3)

λ3
[αn+1‖σVxn+1 − µFxn+1‖+αn‖σVxn − µFxn‖]

6 ‖xn+1 − xn‖+αn+1‖σVxn+1 − µFxn+1‖+αn‖σVxn − µFxn‖

+
(1 − λ3)

λ3
[αn+1‖σVxn+1 − µFxn+1‖+αn‖σVxn − µFxn‖].

This implies that

‖pn+1 − pn‖− ‖xn+1 − xn‖ 6 αn+1‖σVxn+1 − µFxn+1‖+αn‖σVxn − µFxn‖

+
(1 − λ3)

λ3
[αn+1‖σVxn+1‖− µFxn+1‖+αn‖σVxn − µFxn‖]

and
lim sup
n→∞ (‖pn+1 − pn‖− ‖xn+1 − xn‖) 6 0. (3.17)

Thus, from (3.16), (3.17), and Lemma 2.6, we obtain

lim
n→∞ ‖pn − xn‖ = 0. (3.18)

Also, by (3.16) and (3.18), we get

lim
n→∞ ‖xn+1 − xn‖ = λ3 lim

n→∞ ‖pn − xn‖ = 0, (3.19)

and
lim
n→∞ ‖zn − xn‖ = lim

n→∞αn‖σVxn − µFxn‖ = 0. (3.20)

Therefore, from (3.19) and (3.20), we have

‖TUTzn − zn‖ = ‖TUTzn − xn + xn − zn‖
6 ‖TUTzn − xn‖+ ‖xn − zn‖
= ‖xn+1 − xn‖+ ‖xn − zn‖ → 0 as n→∞.

Step 3. We show that limn→∞ ‖Tzn − zn‖ = limn→∞ ‖yn − zn‖ = 0. To this end, let x̃ ∈ Ω. Then we
have

|‖TUTzn − x̃‖− ‖zn − x̃‖| 6 ‖TUTzn − zn‖.
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Taking limit on the both sides and using Step 2, we have

lim
n→∞ |(‖TUTzn − x̃‖− ‖zn − x̃‖)| = 0,

| lim
n→∞(‖TUTzn − x̃‖− ‖zn − x̃‖)| = 0,

lim
n→∞(‖TUTzn − x̃‖− ‖zn − x̃‖) = 0.

(3.21)

By nonexpansiveness of TU and T , we get

‖TUTzn − x̃‖ 6 ‖Tzn − x̃‖ 6 ‖zn − x̃‖,

and so,
‖TUTzn − x̃‖− ‖zn − x̃‖ 6 ‖Tzn − x̃‖− ‖zn − x̃‖ 6 0.

Thus, from (3.21), we induce
lim
n→∞(‖Tzn − x̃‖− ‖zn − x̃‖) = 0.

Since T is firmly nonexpansive and hence strongly nonexpansive [6], we have

lim
n→∞ ‖Tzn − zn‖ = lim

n→∞ ‖yn − zn‖ = 0.

Step 4. We show that lim supn→∞〈σVx∗ − µFx∗, Tzn − x∗〉 6 0, where x∗ is the unique solution of the
variational inequality (3.2). Indeed, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞ 〈σVx∗ − µFx∗, xn − x∗〉 = lim

i→∞〈σVx∗ − µFx∗, xni − x∗〉.
Since {xni} is bounded, there exists a subsequence of {xni} which converges weakly to a point x̃. Without
loss of generality, we may assume that {xni} converges weakly to x̃. Therefore, from Step 2, (3.20), and
Lemma 2.4, we have xni → x̃ ∈ Fix(TUT). Since T and U are averaged, by Proposition 2.1 (iv), we have
z ∈ Fix(T) and z ∈ Fix(U), and hence Az ∈ Fix(S) by Proposition 2.2 (iii). Thus z ∈ Ω. Therefore we
derive

lim sup
n→∞ 〈σVx∗ − µFx∗, xn − x∗〉 = lim

i→∞〈σVx∗ − µFx∗, xni − x∗〉 = 〈σVx∗ − µFx∗, x̃− x∗〉 6 0.

This together with (3.20) and Step 3 imply that

lim sup
n→∞ 〈σVx∗ − µFx∗, Tzn − x∗〉 6 0.

Step 5. We show that limn→∞ xn = x∗, where x∗ is the unique solution of the variational inequality (3.2).
We observe that

‖Tzn − x∗‖2 = 〈Tzn − yn, Tzn − x∗〉+ 〈zn − x∗, Tzn − x∗〉.
Since T is a firmly nonexpansive mapping with a fixed point x∗, we have 〈Tzn − zn, Tzn − x∗〉 6 0. Thus
we derive

‖Tzn − x∗‖2 6 〈zn − x∗, Tzn − x∗〉
= 〈αnσ(Vxn − Vx∗) + (I−αnµF)xn − (I−αnµF)x

∗, Tzn − x∗〉+αn〈σVx∗ − µFx∗, Tzn − x∗〉
6 (αnσl‖xn − x∗‖+ (1 −αnτ)‖xn − x∗‖)‖Tzn − x∗‖+αn〈σVx∗ − µFx∗, Tzn − x∗〉
= (1 −αn(τ− σl))‖xn − x∗‖‖Tzn − x∗‖+αn〈σVx∗ − µFx∗, Tzn − x∗〉

6
1 −αn(τ− σl)

2
‖xn − x∗‖2 +

1
2
‖Tzn − x∗‖2 +αn〈σVx∗ − µFx∗, Tzn − x∗〉.

It follows that

‖Tzn − x∗‖2 6 [1 −αn(τ− σl)]‖xn − x∗‖2 + 2αn〈σVx∗ − µFx∗, Tzn − x∗〉. (3.22)
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From (3.13) and (3.22), we have

‖xn+1 − x
∗‖2 = ‖TUTzn − x∗‖2

6 ‖Tzn − x∗‖2

6 [1 −αn(τ− σl)]‖xn − x∗‖2 +αn(τ− σl)
2

τ− σl
〈σVx∗ − µFx∗, Tzn − x∗〉.

(3.23)

Put λn = αn(τ− σl) and

δn =
2

τ− σl
〈σVx∗ − µFx∗, Tzn − x∗〉.

It can be easily seen from Step 4 and conditions (C1) and (C2) that λn → 0,
∑∞
n=0 λn = ∞, and

lim supn→∞ δn 6 0. Since (3.23) reduces to

‖xn+1 − x
∗‖2 6 (1 − λn)‖xn − x∗‖2 + λnδn,

by Lemma 2.7, we conclude that limn→∞ ‖xn − x∗‖ = 0. This completes the proof.

Putting µ = 1 and F = I in Theorem 3.5, we obtain the following corollary.

Corollary 3.6. Let {xn} be generated by the following algorithm:

xn+1 = T [I− γA∗(I− S)A]T [αnσVxn + (1 −αn)xn], n > 0. (3.24)

Assume that the sequence {αn} ∈ [0, 1] satisfies the conditions (C1) and (C2) in Theorem 3.5. Then {xn} converges
strongly to a point x∗ ∈ Ω which is the unique solution of the variational inequality (3.9).

Putting V = 0 in (3.24), we get the following corollary.

Corollary 3.7. Let {xn} be generated by the following algorithm:

xn+1 = T [I− γA∗(I− S)A]T [(1 −αn)xn], n > 0.

Assume that the sequence {αn} satisfies the conditions (C1) and (C2) in Theorem 3.5. Then {xn} converges strongly
to a point x∗ which is the minimum norm solution of the SCFPP (1.2).

Remark 3.8.

1) It is well-known that the metric projection is firmly nonexpansive and hence nonexpansive. Thus
iterative algorithms (3.1) and (3.13) are more general than [16, iterative algorithms (3.1) and (3.11)],
respectively. Indeed, if we consider T = PC, S = PQ, Fix(T) = C and Fix(S) = Q, then Theorem 3.2
and Theorem 3.5 generalize [16, Theorem 3.2] and [16, Theorem 3.5], respectively.

2) Theorem 3.2 and Theorem 3.5 also improve [2, Theorem 3.5 and Theorem 3.7] and [31, Theorem 3.1
and Theorem 3.5], respectively.

3) Corollary 3.3 and Corollary 3.6 generalize [16, Corollary 3.3 and Corollary 3.6] and [31, Corollary
3.2 and Corollary 3.7], respectively.

4) Corollary 3.4 and Corollary 3.7 improve [31, Corollary 3.3 and Corollary 3.9], respectively.

4. Applications

Now, as in [2], we apply our iterative algorithms to study some problems from nonlinear and convex
analysis.
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4.1. Variational problems via resolvent operators
For a given a maximal monotone operator M : H1 → 2H1 , it is well-known that its associated resolvent

operator JMr = (I+ rM)−1 is firmly nonexpansive and 0 ∈M(x)⇐⇒ JMr (x) = x for r > 0; see, for instance,
[1, 24]. This means zeros of M are exactly fixed points of its resolvent operator. Let T = JMr and S = JNr ,
where N : H2 → 2H2 is a maximal monotone operator. We consider the problem of finding x∗ ∈ Ω1 such
that

〈σVx∗ − µFx∗, x̃− x∗〉 6 0, ∀x̃ ∈ Ω1,

where Ω1 =M−1(0)∩A−1(N−1(0)). Under these restrictions, iterative algorithms (3.1) and (3.13) reduce
the following iterative algorithms, respectively.

Algorithm 4.1. For any t ∈ (0, 1
τ−σl), define a net {xt} ⊂ H1 in an implicit way:

xt = J
M
r [I− γA∗(I− JNr )A]J

M
r [tσVxt + (I− tµF)xt].

Algorithm 4.2. For an arbitrarily chosen x0 ∈ H1, compute in an explicit way:

xn+1 = JMr [I− γA∗(I− JNr )A]J
M
r [αnσVxn + (I−αnµF)xn], n > 0,

where {αn} ⊂ [0, 1].

Since the resolvent operators are firmly nonexpansive, the strong convergence of the net {xt} (respec-
tively, the sequence {xn}) generated by Algorithm 4.1 (respectively, Algorithm 4.2) can be derived from
Theorem 3.2 (respectively, Theorem 3.5).

4.2. Equilibrium problems via resolvent operators
Let C be a nonempty closed convex subset of a Hilbert space, and let Θ : C×C → R be a bifunction.

Consider the following equilibrium problem: find z ∈ C such that

Θ(z,y) > 0, ∀y ∈ C. (4.1)

The set of all z ∈ C which satisfies (4.1) is denoted by EP(C,Θ), i.e.,

EF(C,Θ) = {z ∈ C : Θ(z,y) > 0,∀y ∈ C}.

For solving the equilibrium problem, let us assume that the bifunction Θ satisfies the following conditions:

(H1) Θ(x, x) = 0, ∀x−nC;
(H2) Θ is monotone, i.e., Θ(x,y) +Θ(y, x) 6 0, ∀x, y ∈ C;
(H3) limt↓0Θ(tz+ (1 − t)x,y) 6 Θ(x,y), ∀x, y, z ∈ C;
(H4) for each x ∈ H, y 7→ Θ(x,y) is convex and lower semicontinuous.

It is well-known ([3, 12]) that the associated resolvent operator TΘr : H→ C defined by

TΘr x = {z ∈ C : Θ(z,y) +
1
r
〈y− z, z− x〉 > 0, ∀y ∈ C},

is firmly nonexpansive and Fix(TΘr ) = EP(C,Θ). Let T = TΘr and S = SΦν , where Φ : Q×Q→ R is another
function. We consider the problem of finding x∗ ∈ Ω2 such that

〈σVx∗ − µFx∗, x̃− x∗〉 6 0, ∀x̃ ∈ Ω2,

where Ω2 = EP(C,Θ) ∩ A−1(EP(Q,Φ)). Under these restrictions, iterative algorithms (3.1) and (3.13)
reduces the following iterative algorithms, respectively.



J. S. Jung, J. Nonlinear Sci. Appl., 10 (2017), 2214–2228 2227

Algorithm 4.3. For any t ∈ (0, 1
τ−σl), define a net {xt} ⊂ H1 in an implicit way:

xt = T
Θ
r [I− γA∗(I− SΦν )A]T

Θ
r [tσVxt + (I− tµF)xt].

Algorithm 4.4. For an arbitrarily chosen x0 ∈ H1, compute in an explicit way:

xn+1 = TΘr [I− γA∗(I− SΦν )A]T
Θ
r [αnσVxn + (I−αnµF)xn], n > 0,

where {αn} ⊂ [0, 1].

Since the resolvent operators are firmly nonexpansive, the strong convergence of the net {xt} (respec-
tively, the sequence {xn}) generated by Algorithm 4.3 (respectively, Algorithm 4.4) can be derived from
Theorem 3.2 (respectively, Theorem 3.5).
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