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1. Introduction

Fractional order integral and differential equations have been demonstrated to be an efficient tool
in numerous applications, for example, fractal phenomena [3, 23–28], contact mechanics problems [15],
control problems [20], fluid mechanics problems [16] and so on [4, 21, 22, 30].

The maximum and minimum principles of fractional partial differential equations have captured spe-
cial attention in mathematical analysis. Because they enable to obtain some important propositions of
solutions for partial differential systems, such as the existence and uniqueness of solution. They were
systematically introduced by Luchko in [12] in which the existence and uniqueness of solution for time-
fractional diffusion equations were obtained. Then the maximum principles for Riemann-Liouville type
operators were established in [1]. Recently, Al-Refai et al. and Ye et al. gave the maximum principles to
the multi-term Riemann-Liouville cases [2] and the multi-term Riesz-Caputo space equations [29], respec-
tively. Liu et al. [11] proved the generalized maximum and minimum principles for multi-term space-
times variable-order fractional diffusion equations. On the other hand, using those maximum principles
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mentioned above, a formal solution of a Fourier series in regard to the eigenfunctions of Sturm-Liouville
eigenvalue problems were achieved in [13], and non-axisymmetric solutions to time-fractional diffusion-
wave equation in an infinite cylinder were established by Povstenko [18]. For more details on this topics
readers are suggested to consult [6, 7, 14] and the references therein.

Consider the following time-fractional Caputo-Katugampola (C-K) diffusion equation

Pα,ρ(u) = F(t, x,u), (t, x) ∈ ΩT := (0, l)× (0, T),

with the following initial-boundary conditions{
u(0, t) = g1(t), t ∈ [0, T ],

u(l, t) = g2(t), t ∈ [0, T ],

and
u(x, 0) = Φ(x), x ∈ [0, l].

In this paper, Pα,ρ is called to be the fractional C-K diffusion operator and defined by

Pα,ρ(u) =
CD

α,ρ
0+ u(x, t) − Lu, (1.1)

where L is a second order differential operator

Lu = a(x, t)uxx + b(x, t)ux + c(x, t)u,

and CD
α,ρ
a+ is the generalized fractional derivative (see Definition 2.10, below) with α ∈ (0, 1) and ρ > 0

defined by
CD

α,ρ
0+ f(t) :=

ραt1−ρ

Γ(1 −α)

d

dt

∫t
0

sρ−1

(tρ − sρ)α
[f(s) − f(0)]ds.

Let the parameter ρ = 1. Then we can obtain the time-fractional Caputo diffusion equation,

1
Γ(1 −α)

∫t
0
(t− s)−αut(s, x)ds = Lu+ F(t, x,u), (t, x) ∈ ΩT := (0, l)× (0, T),

which has been studied by Luchko [12], Al-Refai and Luchko [2] and Ye et al. [29].
The rest of the paper is structured as follows. In Section 2 we review some preliminary material

needed in the study of time-fractional C-K diffusion equation. The maximum and minimum principles
fractional C-K diffusion operator, (1.1), were obtained in Section 3. Section 4 is devoted to prove the
uniqueness and continuous dependence of solution for time-fractional C-K diffusion equation by use of
the maximum principles.

2. Preliminaries

In this paper we recall the basic notation and some results which are needed in the sequel, see [10, 17,
19, 20].

Definition 2.1 (Riemann-Liouville fractional integral). Let f ∈ L1[a,b] and α > 0. The Riemann-Liouville
(R-L) fractional integral of order α with the lower limit zero for the function f : [a,b] → R can be written
as

Iαa+f(t) :=
1
Γ(α)

∫t
a

(t− s)α−1f(s)ds, (2.1)

provided that the right side is point-wise defined on [a,b], where Γ is the well-known gamma function
defined by

Γ(α) :=

∫+∞
0

tα−1e−tdt.
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Definition 2.2 (R-L fractional derivative). Let f ∈ L1[a,b] and α ∈ (0, 1]. The R-L fractional derivative of
order α with the lower limit zero for function f : [a,b]→ R can be expressed as

Dαa+f(t) :=
1

Γ(1 −α)

d

dt

∫t
0
(t− s)−αf(s)ds.

Definition 2.3 (Caputo fractional derivative). Let f ∈ L1[a,b] and α ∈ (0, 1]. The Caputo fractional
derivative of order α for function f : [a,b]→ R can be expressed as

CDαa+f(t) :=
1

Γ(1 −α)

d

dt

∫t
a

(t− s)−α[f(s) − f(a)]ds. (2.2)

Remark 2.4. Particularly, if f is of class C1[a,b], then we have an equivalent form of (2.2)

CDαa+f(t) =
1

Γ(1 −α)

∫t
a

(t− s)−αf ′(s)ds.

We also recall the Caputo-Hadamard integral and derivative operators, see [10, 17, 19, 20].

Definition 2.5 (Riemann-Hadamard fractional integral). Let f ∈ L1[a,b] and α > 0. The Riemann-
Hadamard (R-H) fractional integral of order α for function f : [a,b]→ R can be expressed as

HIαa+f(t) :=
1
Γ(α)

∫t
a

f(s)

s(ln t− ln s)1−αds. (2.3)

Definition 2.6 (Caputo-Hadamard fractional derivative). Let f ∈ L1[a,b] and α ∈ (0, 1]. The Caputo-
Hadamard (C-H) fractional derivative of order α for function f : [a,b]→ R can be expressed as

HDαa+f(t) :=
t

Γ(1 −α)

d

dt

∫t
a

(ln t− ln s)−α
f(s) − f(a)

s
ds. (2.4)

Remark 2.7. Similarly, when f ∈ C1[a,b], then we get the equivalent form of (2.4)

HDαa+f(t) =
1

Γ(1 −α)

∫t
a

(ln t− ln s)−αf ′(s)ds.

We now introduce the generalized fractional operators (one can refer to [8, 9]) as follows, which will
be used in the sequel to consider the time fractional diffusion problems.

Definition 2.8 (Riemann-Katugampola fractional integral). Let f ∈ L1[a,b], α > 0 and ρ > 0. The
Riemann-Katugampola (R-K) fractional integral of α for function f : [a,b] → R with respect to param-
eter ρ can be expressed as

I
α,ρ
a+ f(t) :=

ρ1−α

Γ(α)

∫t
a

sρ−1f(s)

(tρ − sρ)1−αds. (2.5)

Remark 2.9. It is obvious that R-K fractional integral (2.5) reduces to R-L fractional integral (2.1) for ρ = 1.
In addition, taking ρ ↓ 0+, we have by the L’Hospital rule

lim
ρ↓0+

I
α,ρ
a+ f(t)dt =

1
Γ(α)

∫t
a

lim
ρ↓0+

f(s)sρ−1
(
tρ − sρ

ρ

)α−1

ds

=
1
Γ(α)

∫t
a

f(s)

s(ln t− ln s)1−αds,

which implies that C-K fractional integral (2.5) can be reduced to C-H fractional integral (2.3), for ρ ↓ 0+.
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Also, we give the following C-K fractional derivative.

Definition 2.10 (C-K fractional derivative). Let f ∈ L1[a,b], α ∈ (0, 1] and ρ > 0. The C-K fractional
derivative of α for function f : [a,b]→ R with respect to parameter ρ can be expressed as

CD
α,ρ
a+ f(t) :=

ραt1−ρ

Γ(1 −α)

d

dt

∫t
a

sρ−1

(tρ − sρ)α
[f(s) − f(a)]ds. (2.6)

The following lemma gives an equivalent form of C-K fractional derivative (2.6), when f ∈ C1[a,b].

Lemma 2.11. Assume that f : [a,b]→ R is satisfied to f ∈ C1[a,b], then the C-K fractional operator (2.6) has the
following equivalent form

CD
α,ρ
a+ f(t) =

ρα

Γ(1 −α)

∫t
a

f ′(s)

(tρ − sρ)α
ds

= I1−α,ρ
a+

(
s1−ρ d

ds
f

)
(t).

Proof. We easily calculate

ρα

Γ(1 −α)
t1−ρ d

dt

∫t
a

sρ−1

(tρ − sρ)α
f(a)ds =

ρα

Γ(1 −α)
t1−ρ d

dt

(
f(a)

∫tρ
aρ

ds

ρ(tρ − s)α
ds

)
=

ρα

Γ(1 −α)
t1−ρ d

dt

(
−

f(a)

(1 −α)ρ
(tρ − s)1−α

∣∣∣∣tρ
aρ

)
(2.7)

=
ρα

Γ(1 −α)
t1−ρ d

dt

(
f(a)

(1 −α)ρ
(tρ − aρ)1−α

)
.

Considering the fact f ∈ C1[a,b], we take integrating by parts to obtain

ραt1−ρ

Γ(1 −α)

d

dt

∫t
a

sρ−1

(tρ − sρ)α
f(s)ds

=
ραt1−ρ

Γ(1 −α)

d

dt

[
−

(tρ − sρ)1−α

ρ(1 −α)
f(s)

∣∣∣∣t
a

+
1

(1 −α)

∫t
a

(tρ − sρ)1−αf ′(s)

ρ
ds

]
=
ραt1−ρ

Γ(1 −α)

d

dt

(
(tρ − aρ)1−α

ρ(1 −α)
f(a)

)
+

ραt1−ρ

ρΓ(2 −α)

d

dt

∫t
a

(tρ − sρ)1−αf ′(s)ds

=
ραt1−ρ

Γ(1 −α)

d

dt

(
(tρ − aρ)1−α

ρ(1 −α)
f(a)

)
+

ρα

Γ(1 −α)

∫t
a

(tρ − sρ)−αf ′(s)ds.

From (2.7), we directly get

CD
α,ρ
a+ f(t) =

ραt1−ρ

Γ(1 −α)

d

dt

∫t
a

sρ−1

(tρ − sρ)α
f(s)ds−

ραt1−ρ

Γ(1 −α)

d

dt

∫t
a

sρ−1

(tρ − sρ)α
f(a)ds

=
ρα

Γ(1 −α)

∫t
a

(tρ − sρ)−αf ′(s)ds.

This completes the proof.

Remark 2.12. Let ρ = 1. We can see that C-K fractional derivative (2.6) is reduced to the classical one,
Caputo fractional derivative (2.2). Analogously to the L’Hospital rule, if f ∈ C1[a,b], then we have

lim
ρ↓0+

CD
α,ρ
a+ f(t) =

1
Γ(1 −α)

∫t
a

f ′(s)

(ln t− ln s)α
ds, 0 < α < 1.



L. Cao, H. Kong, S.-D. Zeng, J. Nonlinear Sci. Appl., 10 (2017), 2257–2267 2261

3. Maximum and minimum principles

In this section, we focus our attention to investigate the C-K fractional derivatives at extreme points
and prove the maximum and minimum principles for fractional C-K diffusion operator (1.1). In the rest
of the paper, we assume that a(x, t) > 0 and c(x, t) 6 0 for (x, t) ∈ (0, l)× (0, T).

The following theorem plays a significant role to obtain the maximum and minimum principles for
(1.1), which has been proved by Cao in [5].

Theorem 3.1. If f ∈ C1[0, T ] obtains the maximum at the point t0 ∈ (0, T) and α ∈ (0, 1], then the following
inequality holds

CD
α,ρ
0+ f(t0) >

ραt
−αρ
0

Γ(1 −α)
[f(t0) − f(0)] > 0.

Applying Theorem 3.1, we now give the maximum principle for fractional C-K diffusion operator
(1.1).

Theorem 3.2. Let u : [0, l]× [0, T ]→ R be such that u ∈ C2,1(ΩT ) and

Pα,ρ(u) 6 0, ∀ (x, t) ∈ ΩT .

If c(x, t) 6 0 for each (x, t) ∈ ΩT , then the inequality holds

max
(x,t)∈ΩT

u(x, t) 6 max
{

max
(x,t)∈∂ΩT

u(x, t), 0
}

, (3.1)

where ∂ΩT is the boundary of rectangle ΩT .

Proof. If u reaches the maximum at the boundary ∂ΩT , then it is obvious that (3.1) is satisfied. Otherwise,
we can assume that there exists a point (x0, t0) ∈ ΩT such that

u(x0, t0) > max
{

max
(x,t)∈∂ΩT

u(x, t), 0
}

:=M > 0.

Then, let us consider the auxiliary function u∗(x, t) given by

u∗(x, t) := u(x, t) +
ε

2
Tρ − tρ

Tρ
, (x, t) ∈ ΩT ,

here ε := u(x0, t0) −M > 0.
Therefore, we obtain

CD
α,ρ
0+ u

∗(x, t) = CD
α,ρ
0+ u(x, t) +

ε

2
CD

α,ρ
0+

(
Tρ − tρ

Tρ

)
= CD

α,ρ
0+ u(x, t) −

εραtρ(1−α)

2TρΓ(2 −α)
.

On the other hand, we have

u∗(x, t) 6 u(x, t) +
ε

2
, ∀(x, t) ∈ ΩT .

From the definition of M, we can see

u∗(x0, t0) > u(x0, t0) =M+ ε > ε+ u(x, t) > u∗(x, t) +
ε

2
, ∀(x, t) ∈ ∂ΩT ,
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which means that u∗ cannot reach the maximum on the boundary of ΩT . We assume u∗ at (x1, t1) ∈ ΩT
arrives at its maximum value, and we get

u∗(x1, t1) > u
∗(x0, t0) > ε+M > ε > 0.

According to Theorem 3.1, we have

CD
α,ρ
0+ u

∗(x1, t1) =
CD

α,ρ
0+ u(x1, t1) −

εραt
ρ(1−α)
1

2TρΓ(2 −α)
> 0.

Furthermore, we can calculate

Pα,ρ(u
∗)(x1, t1) =

CD
α,ρ
0+ u

∗(x1, t1) − L(u
∗)

= CD
α,ρ
0+ u

∗(x1, t1) − [a(x1, t1)u
∗
xx(x1, t1) + b(x1, t1)u

∗
x(x1, t1) + c(x1, t1)u

∗(x1, t1)],

because u∗ obtains its maximum at (x1, t1) and a(x, t) > 0, c(x, t) 6 0 for all (x, t) ∈ ΩT , then we get

u∗xx(x1, t1) 6 0, u∗x(x1, t1) = 0, and u∗(x1, t1) > ε > 0.

Hence, we derive
Pα,ρ(u

∗)(x1, t1) > −c(x1, t1)u
∗(x1, t1) > −εc(x1, t1).

This means

Pα,ρ(u)(x1, t1) =
CD

α,ρ
0+ u(x1, t1) − L(u)

= CD
α,ρ
0+ u

∗(x1, t1) − L(u
∗) +

εραt
ρ(1−α)
1

2TρΓ(2 −α)
+
ε(Tρ − tρ1 )

2Tρ
c(x1, t1)

>
εραt

ρ(1−α)
1

2TρΓ(2 −α)
+
ε(Tρ − tρ1 )

2Tρ
c(x1, t1) − εc(x1, t1),

>
εραt

ρ(1−α)
1

2TρΓ(2 −α)
− εc(x1, t1)

(
1 −

Tρ − tρ1
Tρ

)
> 0,

which contradicts with the fact, Pα,ρ(u)(x, t) 6 0 for all (x, t) ∈ ΩT . Consequently, we conclude that (3.1)
holds.

Similarly, we can present the minimum principle for fractional C-K diffusion operator (1.1).

Theorem 3.3. Let u : [0, l]× [0, T ]→ R be such that u ∈ C2,1(ΩT ) and

Pα,ρ(u) > 0, ∀(x, t) ∈ ΩT .

If c(x, t) 6 0 for each (x, t) ∈ ΩT , then the inequality holds

min
(x,t)∈ΩT

u(x, t) > min
{

min
(x,t)∈∂ΩT

u(x, t), 0
}

.

According to Theorem. 3.2 and Theorem. 3.3, we have results in the case of Pα,ρ(u) = 0.

Theorem 3.4. Let u : [0, l]× [0, T ]→ R be such that u ∈ C2,1(ΩT ) and

Pα,ρ(u) = 0, ∀(x, t) ∈ ΩT .

If c(x, t) 6 0 for each (x, t) ∈ ΩT , and the function reaches the maximum and minimum at a few points that are
part of ΩT , subsequently the function u is a constant, that is u(x, t) = 0, (x, t) ∈ ΩT .
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4. Applications of the maximum principles

In this section, we apply the main results in Section 3 to prove the properties of solution for one-
dimensional time-fractional C-K diffusion equation.

First, we focus our attention to investigate the one-dimensional time-fractional C-K linear diffusion
equation as follows

CD
α,ρ
0+ u(x, t) − L(u) = f(x, t), (x, t) ∈ ΩT , (4.1)

and it satisfies the initial-boundary conditions{
u(0, t) = g1(t), t ∈ [0, T ],

u(l, t) = g2(t), t ∈ [0, T ],
(4.2)

and
u(x, 0) = Φ(x), x ∈ [0, l]. (4.3)

From the maximum and minimum principles, see Theorems 3.2 and 3.3, we can get the results as follows.

Theorem 4.1. Assume f(x, t) 6 0 for all (x, t) ∈ ΩT , Φ(x) 6 0 for all x ∈ [0, l]; g1(t) 6 0 and g2(t) 6 0 for all
t ∈ [0, T ], c(x, t) 6 0 for all (x, t) ∈ ΩT . If u ∈ C2,1(ΩT ) is a solution of problem (4.1) with initial condition (4.3)
and boundary conditions (4.2), then

u(x, t) 6 0, (x, t) ∈ ΩT .

Hence, the problem (4.1), (4.2), (4.3) does not possess any positive solutions in C2,1(ΩT ).

Proof. By using Theorem 3.2, we easily get this theorem.

Theorem 4.2. Assume f(x, t) > 0 for all (x, t) ∈ ΩT , Φ(x) > 0 for all x ∈ [0, l], g1(t) > 0 and g2(t) > 0 for all
t ∈ [0, T ], c(x, t) 6 0 for every (x, t) ∈ ΩT . If u ∈ C2,1(ΩT ) is a solution of problem (4.1) with initial condition
(4.3) and boundary condition (4.2), then

u(x, t) > 0, (x, t) ∈ ΩT ,

thus we obtain the problem (4.1), (4.2), (4.3) does not possess any negative solutions in C2,1(ΩT ).

Proof. From Theorem 3.2, we can directly prove this theorem.

Remark 4.3. In fact, if u ∈ C2,1(ΩT ) is a solution of the problem (4.1) satisfying initial conditions (4.3) and
boundary conditions (4.2) with f(t, x) = 0 for all (t, x) ∈ ΩT , then the C-K linear diffusion equation (4.1),
(4.2), (4.3) has only zero solution in C2,1(ΩT ).

Next, we focus our attention on the C-K nonlinear diffusion equation as follows

CD
α,ρ
0+ u(x, t) − L(u) = F(x, t,u), (x, t) ∈ ΩT . (4.4)

Theorem 4.4. If F : [0, l]× [0, T ]×R → R is such that ∂uF = ∂uF(x, t,u) exists and satisfies ∂uF(x, t,u) +
c(x, t) 6 0 for all (x, t,u) ∈ ΩT ×R, then time-fractional C-K nonlinear diffusion equation (4.4) with the initial
condition (4.3) and boundary conditions (4.2) owns at most one solution in the function space C2,1(ΩT ).

Proof. Arguing by contradiction, we assume that the nonlinear diffusion equation (4.4) has two distinct
solutions u1 and u2 with the initial condition (4.3) and boundary conditions (4.2), which pertain to the
function space C2,1(ΩT ). Denote u(x, t) = u1(x, t) − u2(x, t), (x, t) ∈ ΩT . We easily get

CD
α,ρ
0+ u(x, t) = a(x, t)uxx(x, t) + b(x, t)ux(x, t) + c(x, t)u(x, t) + F(t, x,u1) − F(t, x,u2).

In addition, the function u satisfies the homogeneous initial-boundary conditions,

u(x, t) = 0, (x, t) ∈ ∂ΩT .
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Because the partial derivative ∂uF = ∂uF(x, t,u) exists, we use the mean value theorem that

F(t, x,u1) − F(t, x,u2) =
∂F

∂u
(u∗)(u1(x, t) − u2(x, t)), ∀(x, t) ∈ Ω,

where u∗ = λu1 + (1 − λ)u2, for some λ ∈ [0, 1].
Therefore, we have{

CD
α,ρ
0+ u(x, t) = a(x, t)uxx(x, t) + b(x, t)ux(x, t) + h(x, t)u(x, t), (x, t) ∈ ΩT ,

u(x, t) = 0, (x, t) ∈ ∂ΩT ,

where h(x, t) := ∂F
∂u(u

∗) + c(x, t) for all (x, t) ∈ ΩT .
By using Theorems 4.1 and 4.2, one has

u(x, t) 6 0 and u(x, t) > 0, (x, t) ∈ ΩT .

This means u(x, t) = 0 for all (x, t) ∈ ΩT , i.e., u1 = u2. Consequently, we prove that time-fractional C-K
nonlinear diffusion equation (4.4) with initial condition (4.3) and boundary condition (4.2) owns no more
than one solution within the function space C2,1(ΩT ).

Remark 4.5. The condition ∂uF(x, t,u) + c(x, t) 6 0 plays a significant role. In fact, if F is a nonincreasing
function in regard to the third variable, then ∂uF(x, t,u) + c(x, t) 6 0 is obviously satisfied.

Corollary 4.6. If c(x, t) 6 0, (x, t) ∈ ΩT , then time-fractional linear C-K diffusion equation (4.1) with boundary
condition (4.2) and initial condition (4.3) has no more than one solution within the function space C2,1(ΩT ).

In the end, we present some applications of the maximum principles about stability results for solution
of the linear initial-boundary-valued (4.1), (4.2), (4.3).

Theorem 4.7. Let u1(x, t) and u2(x, t) ∈ C2,1(ΩT ) be two solutions of the time-fractional linear C-K diffu-
sion equation (4.1) that gratify the same boundary conditions (4.2), and initial conditions u1(x, 0) = Φ1(x) and
u2(x, 0) = Φ2(x), x ∈ [0, l], respectively. If c(x, t) 6 0 for all (x, t) ∈ ΩT , then the inequality is satisfied

max
(x,t)∈ΩT

∣∣u1(x, t) − u2(x, t)
∣∣ 6 max

x∈[0,l]

∣∣Φ1(x) −Φ2(x)
∣∣.

Proof. Since u1,u2 ∈ C2,1(ΩT ) are two solutions of the linear diffusion equation (4.1), then we have

CD
α,ρ
0+ ui = L(u) + f(x, t), (x, t) ∈ ΩT ,

ui(0, t) = g1(t), t ∈ [0, T ],

ui(l, t) = g2(t), t ∈ [0, T ],

ui(x, 0) = Φi(x), x ∈ [0, l],

where i = 1, 2.
Let u = u1 − u2. One yields 

CD
α,ρ
0+ u = L(u), (x, t) ∈ ΩT ,

u(0, t) = u(l, t) = 0, t ∈ [0, T ],

u(x, 0) = Φ1(x) −Φ2(x), x ∈ [0, l].

Using the maximum and minimum principles, i.e., Theorems 3.2 and 3.3, we conclude

max
(x,t)∈ΩT

u(x, t) 6 max
{

max
x∈[0,l]

(Φ1(x) −Φ2(x)), 0
}

, (4.5)
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and
min

(x,t)∈ΩT
u(x, t) > min

{
min
x∈[0,l]

(Φ1(x) −Φ2(x)), 0
}

, (4.6)

respectively.
Combining (4.5) and (4.6), we get

max
(x,t)∈ΩT

|u(x, t)| = max
(x,t)∈ΩT

|u1(x, t) − u2(x, t)| 6 max
(x,t)ΩT

|Φ1(x) −Φ2(x)|.

This completes the proof.

Theorem 4.8. Let u1(x, t) and u2(x, t) ∈ C2,1(ΩT ) be two solutions of the time-fractional C-K linear diffusion
equation (4.1) that satisfy the same initial condition (4.3) and boundary conditions{

u1(0, t) = g1(t),

u1(l, t) = g2(t),
t ∈ [0, T ],

and {
u2(0, t) = ĝ1(t),

u2(l, t) = ĝ2(t),
t ∈ [0, T ],

respectively. If c(x, t) 6 0 for all (x, t) ∈ ΩT , then the following inequality holds

max
(x,t)∈ΩT

|u1(x, t) − u2(x, t)| 6 max
{

max
t∈[0,T ]

|g1(t) − ĝ1(t)|, max
t∈[0,T ]

|g2(t) − ĝ2(t)|

}
.

Proof. By the same arguments as that in Theorem 4.7, let u = u1 − u2, then

CD
α,ρ
0+ u(x, t) = L(u), (x, t) ∈ ΩT ,

u(0, t) = g1(t) − ĝ1(t), t ∈ [0, T ],

u(L, t) = g2(t) − ĝ2(t), t ∈ [0, T ],

u(x, 0) = 0, x ∈ [0, l].

Applying the maximum and minimum principles again (see, Theorem 3.2 and Theorem 3.3), we can
obtain

max
(x,t)∈ΩT

(u1(x, t) − u2(x, t)) 6 max
{

max
t∈[0,T ]

{g1(t) − ĝ1(t)}, max
t∈[0,T ]

{g2(t) − ĝ2(t)}, 0
}

,

and

min
(x,t)∈ΩT

(u1(x, t) − u2(x, t)) > min
{

min
t∈[0,T ]

{g1(x) − ĝ1(t)}, min
t∈[0,T ]

{g2(t) − ĝ2(t)}, 0
}

,

respectively.
As a result, we obtain

max
(x,t)∈ΩT

|u1(x, t) − u2(x, t)| 6 max
{

max
t∈[0,T ]

|g1(x) − ĝ1(t)|, max
t∈[0,T ]

|g2(x) − ĝ2(t)|

}
.

This completes the proof.

5. Conclusions

In this study, we mainly develop the maximum principles for fractional partial differential equations.
We first introduce the C-K derivatives and give the relationship between C-K fractional operators, Ca-
puto fractional operators and Caputo-Hadamard fractional operators. Then we establish the maximum
principles for time-fractional C-K diffusion operators. Finally, these principles are employed to derive
the uniqueness of solutions of the time-fractional C-K diffusion equations and continuous dependence of
solutions on initial-boundary value conditions.
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