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Abstract
There are discrete phenomena which happen only on discrete time or hold discrete space structures such as economy series,

population dynamics et al.. Then there is a tool needed for these discrete issues or applications. Time scale is one of the useful
tools to solve some discrete problems. In this paper, time scale is used to establish discrete Pfaff-Birkhoff principle and achieve
discrete Birkhoff equations, discrete Noether identity and discrete conserved quantity for the discrete Birkhoffian system. Firstly,
Birkhoff equations, Noether identity and Noether theorem with nabla derivatives on time scales are investigated by using the
isochronous variational principle. Secondly, some special cases, especially the discrete Birkhoffian system are discussed. Thirdly,
another method, i.e., the duality principle is introduced for the Birkhoffian system on time scales. And finally, an example is
given to illustrate the results and methods. c©2017 All rights reserved.
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1. Introduction

In 1973, Turrittin in [68], pointed out: ”On becoming familiar with difference equations, I was in
hopes that the theory of difference equations could be brought completely abreast with that for ordinary
differential equations.” Much earlier than Turrittin, Bell in 1937 in [20], once mentioned: ”A major task of
mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive
mathematics, and to eliminate obscurity from both.” Under this kind of background, Hilger introduced
the definition of time scale in his PhD thesis in 1988, see [41]. A time scale is an arbitrary nonempty
closed subset of real numbers. From the definition, the continuous analysis can be gotten when the time
scale is the set of real numbers, and the discrete analysis can be gotten when the time scale is the set of
integers. However, since there are many other time scales than just the sets of real numbers and integers,
one can get much more results. Therefore, unification and extension are two main features of time scales.
Time scale calculus mainly refers to two kinds of calculus: time scale delta calculus and time scale nabla
calculus, both of them have received a lot of attention and some results on time scales have been obtained,
we refer the readers, for instance, to [5, 6, 8, 10, 15–17, 25, 26, 30, 34, 42, 52–54]. In addition, the theory
of time scales has also been applied to practical problems such as the optimal control problems, see
[17, 43, 78], and some problems on physics and economics, see [4, 8, 27].
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It is worth mentioning that some basic properties such as Laplace transform and existence of solutions
of difference equations on time scales have been systemically discussed [3, 28]. In order to consider
the memory effects, References [1, 9, 11] studied the fractional difference on time scales, which gives a
useful tool for discrete fractional modelling. Some properties of fractional difference have been studied
[1, 2, 9, 31, 39, 40, 44], such as Laplace transform [44], existence and stability [31], initial value problems
[9], boundary value problems [39, 40] and so on. Recently, fractional differences which become more
and more popular have been used to study the diffusion over random media of discrete structures [73],
discrete fractional chaos [45, 69–71, 74, 75], discrete fractional control [59, 60] and so forth.

Noether theory was introduced by Noether in 1918 during the process of getting the solutions of
differential equations in [61]. Noether symmetry means the invariance of Hamilton action under the
infinitesimal transformations of the time and the coordinates. Actually, it is hard to obtain analytical
solutions for dynamic equations of motion for constrained mechanical systems. However, we can get
conserved quantities, which can help reduce the degrees of freedom of the equations of motion, through
the Noether symmetry. Conserved quantities for constrained mechanical systems can not only simplify
the dynamical problems, but also reveal the internal physical regularity to some extent. Hence, it is of
great significance to study. Up to now many results about Noether theory have been obtained, such as
Noether theory based on fractional models, see [7, 35, 80, 81]; Noether theory with time delay, see [46, 77];
Noether theory for nonlinear dynamical systems, see [36, 82]; as well as Noether theory for fractional
systems of variable order, see [62, 76]. Recently, Noether theory was extended to time scales, see for
instance, [18, 29, 50, 51, 55, 63, 79, 83].

However, most of the results about Noether theory on time scales just referred to Lagrangian system
and Hamiltonian system. There is another more general mechanical system, i.e., Birkhoffian system.

Birkhoffian mechanics, whose quintessence is the Birkhoff equations and Pfaff-Birkhoff principle is
a generalization of Hamiltonian mechanics, we refer to [24, 64]. Hamilton canonical equations keep the
same forms under canonical transformations, and become the Birkhoff equations under non-canonical
transformations. Therefore, Hamilton canonical equations are special cases of Birkhoff equations. Hamil-
ton principle is also a special case of the Pfaff-Birkhoff principle. Hence, the theory of Birkhoffian me-
chanics can be applied to Hamiltonian mechanics, Lagrangian mechanics and Newtonian mechanics, as
well as general holonomic and nonholonomic mechanics, see [57]. Besides, Birkhoffian mechanics is also
applicable to statistical mechanics, quantum mechanics, biological physics, hadron physics, atomic and
molecular physics and engineering, and other fields, see [64]. Galiullan in 1989 said that Birkhoffian
mechanics is an important developmental direction of modern analytical mechanics in [37]. And in 1996,
the theoretical framework of Birkhoffian mechanics was established by Mei et al. in [57]. Since then,
scholars continue to study Birkhoffian mechanics deeply, we refer the readers for instance to [32, 33, 47–
49, 56, 58, 65–67, 76, 77, 80, 81].

Hence, in this paper, we intend to study Noether theory for Birkhoffian systems on time scales with
nabla derivatives. Two methods are used: the isochronous variational principle and the duality princi-
ple. In Section 2, some necessary definitions and properties about time scale calculus and the duality
approach are reviewed. In Section 3, the isochronous variational principle is used to study Noether the-
ory for Birkhoffian systems on time scales with nabla derivatives, where Pfaffian variational problem on
time scales with nabla derivatives is presented for the first time, the Birkhoff equations and the Noether
theorem on time scales with nabla derivatives are derived, and some special cases, especially the discrete
Birkhoffian system, of the main results are also discussed. The duality principle is used in Section 4, in
which Noether equations, Noether identity and conserved quantity for Birkhoffian systems on time scales
with nabla derivatives are achieved again. Finally, an example is given to illustrate the results in Section
5.

2. Preliminaries

We assume that the reader is familiar with the time scale calculus in [33]. Here we mainly review
some necessary results about duality from [30].
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If T is an arbitrary time scale, we denote T∗ = {s ∈ R|− s ∈ T} as the dual time scale of T, and the
corresponding dual objects of T∗ are σ̂, ρ̂, µ̂ and ν̂.

Definition 2.1. Given a function f : T → R defined on a time scale T, we define the dual function
f∗ : T∗ → R by f∗(s) = f(−s) for all s ∈ T∗.

Proposition 2.2. Let f : T→ R, a,b ∈ T, a < b, then

(1) (Tκ)∗ = (T∗)κ and (Tκ)
∗ = (T∗)κ;

(2) ([a,b])∗ = [−b,−a] and ([a,b]κ)∗ = [−b,−a]κ ⊆ T∗;
(3) σ̂(s) = −ρ(−s) = −ρ∗(s) and ρ̂(s) = −σ(−s) = −σ∗(s) for all s ∈ T∗;
(4) µ̂(s) = ν∗(s) and ν̂(s) = µ∗(s) for all s ∈ T∗;
(5) f ∈ Crd (resp. f ∈ Cld)⇔ f∗ ∈ Cld (resp. f∗ ∈ Crd), f ∈ C1

rd (resp. f ∈ C1
ld)⇔ f∗ ∈ C1

ld (resp. f∗ ∈ C1
rd);

(6) if f is delta (resp. nabla) differentiable at t0 ∈ Tκ (resp. t0 ∈ Tκ), then f∗ is nabla (resp. delta) differentiable
at −t0 ∈ (T∗)κ (resp. −t0 ∈ (T∗)κ), and

f4(t0) = −(f∗)∇̂(−t0) (resp. f∇(t0) = −(f∗)4̂(−t0)),

f4(t0) = −((f∗)∇̂)∗(t0) (resp. f∇(t0) = −((f∗)4̂)∗(t0)),

(f4)∗(−t0) = −(f∗)∇̂(−t0) (resp. (f∇)∗(−t0) = −(f∗)4̂(−t0));

(7)
∫b
a f(t)4t =

∫−a
−b f

∗(s)∇̂s,
∫b
a f(t)∇t =

∫−a
−b f

∗(s)4̂s.

Lemma 2.3 ([54]). Let g ∈ Cld, g : [a,b]→ R, if∫b
a

g(t)η∇(t)∇t = 0,

holds for all η ∈ C1
ld with η(a) = η(b) = 0, then

g(t) = c, t ∈ [a,b]κ,

for some c ∈ R.

3. Main results obtained by the isochronous variational principle

In this section, we intend to study Birkhoff equations, Noether identity and Noether theorem for
Birkhoffian systems on time scales with nabla derivatives.

3.1. Birkhoff equations with nabla derivatives
We consider the following problem

S̄(ai(·)) =
∫d
c

[Rj(s,a
ρ
i (s)) · a

∇
j (s) −B(s,a

ρ
i (s))]∇s→ min, (3.1)

for all ai(·) ∈ C1
ld with ai(c) = Ai, ai(d) = Bi, where aρi (s) = (ai ◦ ρ)(s), a∇j (s) is the nabla derivatives,

B : R×R2n → R, B ∈ C1
ld is called Birkhoffian, Rj : R×R2n → R, Rj ∈ C1

ld are called Birkhoff functions,
i, j = 1, 2, · · · , 2n. We denote the partial derivatives of Rj and B with respect to their first variable by ∂0Rj
and ∂0B, and denote the partial derivatives of Rj, B with respect to their l+ 1 − th variable by ∂lRj, ∂lB,
l = 1, 2, · · · , 2n.

The isochronous variational principle
δS̄ = 0, (3.2)
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with the exchange relationships
(δai)

∇ = δa∇i , (δai)
ρ = δaρi , (3.3)

and the boundary value conditions
δai|s=c = δai|s=d = 0,

is called Pfaff-Birkhoff principle on time scales with nabla derivatives, where formula (3.3) can be proved
as (δai)

4 = δa4i , (δai)σ = δaσi in [29].
Expanding formula (3.2), we obtain

δS̄ =

∫d
c

[δRj(s,a
ρ
i ) · a

∇
j + Rj(s,a

ρ
i ) · δa

∇
j − δB(s,aρi )]∇s

=

∫d
c

[∂lRj(s,a
ρ
i )δa

ρ
l · a

∇
j + Rj(s,a

ρ
i ) · δa

∇
j − ∂lB(s,a

ρ
i )δa

ρ
l ]∇s

=

∫d
c

{[−

∫s
c

(∂lRj(τ,aρi (τ)) · a
∇
j (τ))∇τ+ Rl +

∫s
c

∂lB(τ,aρi (τ))∇τ](δal)
∇}∇s

= 0.

Hence, from Lemma 2.3, we get

∂lRj(s,a
ρ
i ) · a

∇
j − ∂lB(s,a

ρ
i ) − R

∇
l = 0. (3.4)

Equations (3.4) are called Birkhoff equations on time scales with nabla derivatives.

3.2. Noether theorem with nabla derivatives
Firstly, we consider the infinitesimal transformations without transforming the time.

Definition 3.1. Under the following transformations

s̃ = s, ãi(s) = ai(s) + εξi(s,aj) + o(ε), (3.5)

where ε is an infinitesimal parameter, ξi, i = 1, 2, · · · , 2n are called the infinitesimal generators of the
transformations, formula (3.1) is said to be invariant if and only if∫sd

sc

[Rj(s,a
ρ
i )a
∇
j −B(s,aρi )]∇s =

∫sd
sc

[Rj(s, ã
ρ
i )ã
∇
j −B(s, ãρi )]∇s,

holds for any [sc, sd] ⊆ [c,d].

Definition 3.2. A quantity I(s,ai,a
ρ
i ,a∇i ) (resp. I(s,ai,aσi ,a4i )) is said to be a conserved quantity of the

Birkhoffian system with nabla derivatives (resp. the Birkhoffian system with delta derivatives) if and only
if ∇∇sI(s,ai,a

ρ
i ,a∇i ) = 0 (resp. 44sI(s,ai,a

σ
i ,a4i ) = 0) holds along the equations of motion for the system.

Theorem 3.3. Under the transformations (3.5), if formula (3.1) is invariant, then

∂lRj(s,a
ρ
i )ξ

ρ
l a
∇
j + Rj(s,a

ρ
i )ξ
∇
j − ∂lB(s,a

ρ
i )ξ

ρ
l = 0, (3.6)

where ξρi (s,aj) = ξi(ρ(s),aj(ρ(s))), ξ
∇
i (s,aj) =

∇
∇sξi(s,aj).

Proof. From Definition 3.1, we get

Rj(s,a
ρ
i )a
∇
j −B(s,aρi ) = Rj(s,a

ρ
i + εξ

ρ
i )(a

∇
j + εξ∇j ) −B(s,a

ρ
i + εξ

ρ
i ). (3.7)

Differentiating both sides of formula (3.7) with respect to ε and letting ε = 0, we can get the intended
result.
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Theorem 3.4. If formula (3.1) is invariant under Definition 3.1, then

I(s,ai,a
ρ
i ,a∇i ) = Rj(s,a

ρ
i )ξj(s,ai),

is a conserved quantity for the Birkhoffian system (3.4).

Proof. From (3.4) and formula (3.6), we have

∇
∇s
I(s,ai,a

ρ
i ,a∇i ) =

∇
∇s

[Rj(s,a
ρ
i )ξj(s,ai)] = Rjξ

∇
j + R∇j ξ

ρ
j

= Rjξ
∇
j + [∂lRi(s,a

ρ
j ) · a

∇
i − ∂lB(s,a

ρ
j )]ξ

ρ
l = 0.

Secondly, we consider the general infinitesimal transformations:

s̃ = P(s,aj, ε) = s+ εξ0(s,aj) + o(ε), ãi(s̃) = Qi(s,aj, ε) = ai(s) + εξi(s,aj) + o(ε), (3.8)

where ε is an infinitesimal parameter, ξ0 : [c,d]×R2n → R and ξi : [c,d]×R2n → R are the infinitesimal
generators, and both of them are nabla differential functions.

Let U = {ai|ai : [c,d]→ R,ai ∈ C1
ld} ⊆ C1

ld, suppose that the map s ∈ [c,d] 7→ α(s) := P(s,aj, ε) ∈ R is
an increasing C1

ld function and its image is a new time scale, whose backward jump operator and nabla
operator are ρ̃ and ∇̃, respectively. And we can easily get

ρ̃ ◦α = α ◦ ρ.

Definition 3.5. Under the transformations (3.8), formula (3.1) is said to be invariant if and only if∫sd
sc

[Rj(s,a
ρ
i )a
∇
j −B(s,aρi )]∇s =

∫ s̃d
s̃c

[Rj(s̃, ãiρ̃(s̃))ãj∇̃(s̃) −B(s̃, ãiρ̃(s̃))]∇̃s̃,

holds for any [sc, sd] ⊆ [c,d].

Theorem 3.6. Under the infinitesimal transformations (3.8), formula (3.1) is invariant if and only if

(∂0Rj · a∇j − ∂0B)ξ0 + (∂iRj · a∇j − ∂iB)ξ
ρ
i + Rjξ

∇
j −Bξ∇0 = 0. (3.9)

Proof. Since ∫sd
sc

[Rj(s,a
ρ
i )a
∇
j −B(s,aρi )]∇s

=

∫α(sd)
α(sc)

[Rj(s̃, ãiρ̃(s̃))ãj∇̃((̃s)) −B(s̃, ãiρ̃(s̃))]∇̃s̃

=

∫sd
sc

[Rj(α(s), (ãi ◦ ρ̃ ◦α)(s))ãj∇̃(α(s)) −B(α(s), (ãi ◦ ρ̃ ◦α)(s))]α∇(s)∇s

=

∫sd
sc

[Rj(α(s), (ãi ◦α ◦ ρ)(s))
(ãj ◦α)∇(s)
α∇(s)

−B(α(s), (ãi ◦α ◦ ρ)(s))]α∇(s)∇s

=

∫sd
sc

[Rj(P,Qρi )
Q∇j
P∇

−B(P,Qρi )]P
∇∇s,

holds for any [sc, sd] ⊆ [c,d], we have

Rj(s,a
ρ
i )a
∇
j −B(s,aρi ) = [Rj(P,Qρi )

Q∇j
P∇

−B(P,Qρi )]P
∇. (3.10)

Then differentiating both sides of formula (3.10) with respect to ε and letting ε = 0, we can get the
intended result.
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Formula (3.9) is called Noether identity for Birkhoffian systems on time scales with nabla derivatives.

Theorem 3.7. If formula (3.1) is invariant under Definition 3.5, then

I(s,aj,a
ρ
j ,a∇j ) = Ri(s,a

ρ
j )ξi(s,aj) + [ν(s)(∂0Rj · a∇j − ∂0B) −B]ξ0,

is a conserved quantity for the Birkhoffian system on time scales with nabla derivatives.

Proof. The idea of this proof is to transform the invariance of formula (3.1) under Definition 3.5 to the
invariance of formula (3.1) under Definition 3.1, and then make use of Theorem 3.4.

We denote
S̄(ai(·)) =

∫sd
sc

[Rj(s,a
ρ
i )a
∇
j −B(s,aρi )]∇s

·
=

∫sd
sc

G(s,aρi ,a∇i )∇s.

¯̄S(θ(·),ai(·)) =
∫sd
sc

[Rj(θ
ρ + ν(s)θ∇,aρi )

a∇j
θ∇

−B(θρ + ν(s)θ∇,aρi )]θ
∇∇s

·
=

∫sd
sc

Ḡ(s, θρ,aρi , θ∇,a∇i )∇s.

When θ(s) = s, we have∫sd
sc

[Rj(s,a
ρ
i )a
∇
j −B(s,aρi )]∇s =

∫sd
sc

[Rj(θ
ρ + ν(s)θ∇,aρi )

a∇j
θ∇

−B(θρ + ν(s)θ∇,aρi )]θ
∇∇s.

That is,
S̄(ai(·)) = ¯̄S(θ(·),ai(·)).

Hence, when θ(s) = s, we have

¯̄S(θ(·),ai(·)) = S̄(ai(·)) =
∫sd
sc

[Rj(s,a
ρ
i )a
∇
j −B(s,aρi )]∇s

=

∫α(sd)
α(sc)

[Rj(s̃, ãiρ̃(s̃))ãj∇̃((̃s)) −B(s̃, ãiρ̃(s̃))]∇̃s̃

=

∫sd
sc

[Rj(α(s), (ãi ◦ ρ̃ ◦α)(s))ãj∇̃(α(s)) −B(α(s), (ãi ◦ ρ̃ ◦α)(s))]α∇(s)∇s

=

∫sd
sc

[Rj(α(s), (ãi ◦α ◦ ρ)(s))
(ãj ◦α)∇(s)
α∇(s)

−B(α(s), (ãi ◦α ◦ ρ)(s))]α∇(s)∇s

=

∫sd
sc

[Rj(α
ρ + ν(s)α∇, (ãi ◦α)ρ(s))

(ãj ◦α)∇

α∇
−B(αρ + ν(s)α∇, (ãi ◦α)ρ(s))]α∇∇s

·
=

∫sd
sc

Ḡ(s,αρ, (ãi ◦α)ρ,α∇, (ãi ◦α)∇)∇s = ¯̄S(α(·), (ãi ◦α)(·)).

For θ(s) = s, we have

(α(s), (ãi ◦α)(s)) = (P(s,aj, ε),Qi(s,aj, ε)) = (P(θ(s),aj, ε),Qi(θ(s),aj, ε)).

That is, ¯̄S is invariant on ¯̄U = {(θ,ai)| θ(s) = s,ai ∈ U} under the following transformations

(θ̃, ãi) = (P(θ,aj, ε),Qi(θ,aj, ε)),

in the sense of Definition 3.1. Therefore, when θ(s) = s, we get from Theorem 3.4 that

I =
∂Ḡ(s, θρ,aρi , θ∇,a∇i )

∂θ∇
ξ0 +

∂Ḡ(s, θρ,aρi , θ∇,a∇i )
∂a∇j

ξj, (3.11)
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where
∂Ḡ(s, θρ,aρi , θ∇,a∇i )

∂a∇j
= Rj(θ

ρ + ν(s)θ∇,aρi ) = Rj(s,a
ρ
i ), (3.12)

∂Ḡ(s, θρ,aρi , θ∇,a∇i )
∂θ∇

= ν(s)∂0Rj(θ
ρ + ν(s)θ∇,aρi ) · a

∇
j

− ν(s)∂0B(θ
ρ + ν(s)θ∇,aρi ) · θ

∇ −B(θρ + ν(s)θ∇,aρi )

= ν(s)[∂0Rj(s,a
ρ
i ) · a

∇
j − ∂0B(s,a

ρ
i )] −B(s,a

ρ
i ).

(3.13)

The intended result can be obtained by substituting formula (3.12) and formula (3.13) into formula (3.11).

3.3. Special cases
In this section, we discuss some special cases such as the continuous Birkhoffian system, the dis-

crete Birkhoffian system, the Hamiltonian system on time scales with nabla derivatives, as well as the
Lagrangian system on time scales with nabla derivatives.

Corollary 3.8. If T = R, we have

ρ(s) = s, ν(s) = 0, f∇(s) = ḟ(s).

In this case, (3.4) reduces to the classical Birkhoff equations

(
∂Rj

∂ai
−
∂Ri
∂aj

)ȧj −
∂B(s,aj)
∂ai

−
∂Ri(s,aj)

∂s
= 0. (3.14)

Formula (3.9) gives the classical Noether identity for the Birkhoffian system (3.14)

(
∂Rj

∂s
−
∂B

∂s
)ξ0 + (

∂Rj

∂ai
ȧj −

∂B

∂ai
)ξi + Rjξ̇j −Bξ̇0 = 0.

And Theorem 3.7 gives the classical conserved quantity for the Birkhoffian system (3.14)

I = Ri(s,aj)ξi(s,aj) −Bξ0 = const. .

The results in Corollary 3.8 coincide with the results in [37].

Corollary 3.9. Consider the following transformations:

a
ρ
i =

{
q
ρ
i , i = 1, 2, · · · ,n

pi−n, i = n+ 1,n+ 2, · · · , 2n , Ri =

{
pi, i = 1, 2, · · · ,n
0, i = n+ 1,n+ 2, · · · , 2n , B = H, (3.15)

where qm denotes the generalized coordinate, pm denotes the generalized momentum, m = 1, 2, · · · , 2n, H is the
Hamiltonian. From formula (3.15), we can get the following Hamilton action with nabla derivatives

S̄H =

∫d
c

(pmq
∇
m −H)∇s, m = 1, 2, · · · ,n.

Then (3.4) reduces to the Hamilton canonical equations on time scales with nabla derivatives

q∇χ =
∂H(s,qρm,pm)

∂pχ
, p∇χ = −

∂H(s,qρm,pm)

∂q
ρ
χ

, χ = 1, 2, · · · ,n. (3.16)

Formula (3.9) gives the Noether identity for the Hamiltonian system (3.16)

pmξ
∇
m −

∂H(s,qρm,pm)

∂s
ξ0 −

∂H

∂q
ρ
m
ξρm −Hξ∇0 = 0.

And Theorem 3.7 gives the conserved quantity for the Hamiltonian system (3.16)

IH = pmξm − [ν(s)
∂H

∂s
+H]ξ0 = const. .
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Corollary 3.10. Consider

pχ =
∂L(s,qρm,q∇m)

∂q∇χ
, H = pχq

∇
χ − L,

where L is the Lagrangian. Then Euler-Lagrange equations, Noether identity and conserved quantity for Lagrangian
systems on time scales with nabla derivatives can be achieved as follows

∇
∇s
∂L(s,qρm,q∇m)

∂q∇χ
=
∂L(s,qρm,q∇m)

∂q
ρ
χ

,

∂L(s,qρm,q∇m)

∂s
ξ0 +

∂L

∂q
ρ
χ
ξρχ +

∂L

∂q∇χ
ξ∇χ + Lξ∇0 −

∂L

∂q∇χ
q∇χ ξ

∇
0 = 0,

IL =
∂L(s,qρm,q∇m)

∂q∇χ
ξχ + [L−

∂L

∂q∇m
q∇m + ν(s)

∂L

∂s
]ξ0 = const. .

The results in Corollary 3.10 coincide with the results in [30, 55].
In the remainder of this section, we consider the discrete Birkhoffian system in detail. In this section,

we restrict ourselves to the time scale T = {c, c+ 1, · · · ,d} , where c,d ∈ T . And we assume that T has
enough points to ensure the following calculations. It is obvious that [c,d]κ = [σ(c),d]. Since T = Z, we
have

ρ(s) = s− 1, ν(s) = 1, f∇(s) = f(s) − fρ(s)
·
= ∇nf(s).

Then formula (3.1) gives the following discrete Pfaff action

S̄D =

d∑
s=c+1

[Rj(s,a
ρ
i )∇naj −B(s,a

ρ
i )].

The isochronous variational principle
δS̄D = 0,

with the exchange relationships

∇n(δai) = δ(∇nai), δa
ρ
i = (δai)

ρ,

and boundary value conditions
δai|s=c = δai|s=d = 0,

is called discrete Pfaff-Birkhoff principle.
Using the discrete Pfaff-Birkhoff principle, we can derive

∂Rj

∂a
ρ
i

· ∇naj −∇nRi −
∂B

∂a
ρ
i

= 0, s ∈ {c+ 2, c+ 3, · · · ,d}. (3.17)

Equations (3.17) are the discrete Birkhoff equations.
Formula (3.9) gives the discrete Noether identity for the discrete Birkhoffian system

(
∂Rj

∂s
∇naj −

∂B

∂s
)ξ0 + (

∂Rj

∂a
ρ
i

∇naj −
∂B

∂a
ρ
i

)ξρi + Rj · ∇nξj −B · ∇nξ0 = 0.

And Theorem 3.7 gives the discrete conserved quantity for the discrete Birkhoffian system

I(s,aj,a
ρ
j ,∇naj) = Ri(s,aρj )ξi(s,aj) + [(

∂Rj

∂s
· ∇naj −

∂B

∂s
) −B]ξ0 = const. .

Remark 3.11. It follows from the results of the discrete Birkhoffian system that time scale is an important
tool to study the discrete problems.
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4. Main results obtained by the duality principle

In this section, we use the duality principle to get the Birkhoff equations, the Noether identity and the
conserved quantity for the Birkhoffian system on time scales with nabla derivatives.

4.1. Results with delta derivatives
Some results for the Birkhoffian system on time scales with delta derivatives are reviewed, see [66].
We consider the following problem

S(ai(·)) =
∫b
a

[Rj(t,aσi (t)) · a
4
j (t) −B(t,a

σ
i (t))]4t→ min, (4.1)

under the given boundary conditions ai(a) = αi, ai(b) = βi, where aσi (t) = (ai ◦ σ)(t), a4j (t) =
4
4taj(t),

t ∈ T, ai(·) ∈ C1
rd, the Birkhoff’s functions Rj : R×R2n → R, and the Birkhoffian B : R×R2n → R are all

C1
rd functions, i, j = 1, 2, · · · , 2n.

Theorem 4.1. If problem (4.1) has a minimizer ai0(·), then we have the following Birkhoff equations on time scales
for all t ∈ [a,b]κ:

∂lRj(t,aσi0(t)) · a
4
j (t) − ∂lB(t,a

σ
i0(t)) − R

4
l (t,a

σ
i0(t)) = 0, i, j, l = 1, 2, · · · , 2n. (4.2)

Equations (4.2) are the Birkhoff equations on time scales with delta derivatives.

Theorem 4.2. If formula (4.1) is invariant under the transformations

t̃ = Y(t,ai, ε) = t+ εζ0(t,ai) + o(ε), ãj(t̃) = Zj(t,ai, ε) = aj(t) + εζj(t,ai) + o(ε), (4.3)

then we have

[∂0Rj(t,aσi (t)) · a
4
j (t) − ∂0B(t,aσi (t))] · ζ0(t,ai(t)) + Rj(t,aσi (t))ζ

4
j (t,ai(t))

+ [∂lRj(t,aσi (t)) · a
4
j (t) − ∂lB(t,a

σ
i (t))] · ζσl (t,ai(t)) −B(t,aσi (t))ζ

4
0 (t,ai(t)) = 0.

(4.4)

Formula (4.4) is the Noether identity for the Birkhoffian system on time scales with delta derivatives.

Theorem 4.3. If formula (4.1) is invariant under the transformations (4.3), then

I = Rj(t,aσi (t)) · ζj(t,ai(t)) − {µ(t)[∂0Rj(t,aσi (t)) · a
4
j (t) − ∂0B(t,aσi (t))] +B(t,a

σ
i (t))} · ζ0(t,ai(t))

= const. .

Theorem 4.3 is the Noether theorem for the Birkhoffian system on time scales with delta derivatives.

4.2. Results with nabla derivatives
In this section, we consider the problem (3.1) using the duality principle.

Definition 4.4. Given the Birkhoff’s functions Rj : T×R2n → R and the Birkhoffian B : T×R2n → R,
we define the dual R∗j : T∗ ×R2n → R and B∗ : T∗ ×R2n → R by R∗j (x,yi) = −Rj(−x,yi) and B∗(x,yi) =
B(−x,yi), i, j = 1, 2, · · · , 2n.

Remark 4.5. It is easy to check that

∂0R
∗
j (x,yi) = ∂0Rj(−x,yi),

∂lR
∗
j (x,yi) = −∂lRj(−x,yi),

∂0B
∗(x,yi) = −∂0B(−x,yi),

and
∂lB
∗(x,yi) = ∂lB(−x,yi), i, j, l = 1, 2, · · · , 2n.
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Proposition 4.6. Given the Birkhoff’s functions Rj : T×R2n → R and the Birkhoffian B : T×R2n → R, then
for all ai ∈ C1

ld([c,d]), we have∫d
c

[Rj(s,a
ρ
i (s)) · a

∇
j (s) −B(s,a

ρ
i (s))]∇s =

∫−c
−d

[R∗j (t, (a
∗
i )
σ̂(t)) · (a∗j )4̂(t) −B∗(t, (a∗i )σ̂(t))]4̂t.

Proof. From Proposition 2.2 and Definition 4.4, we have

R∗j (t, (a
∗
i )
σ̂(t)) · (a∗j )4̂(t) −B∗(t, (a∗i )σ̂(t)) = −R∗j (t,a

∗
i (−ρ(−t))) · a∇j (−t) −B∗(t,a∗i (−ρ(−t)))

= Rj(−t,a
ρ
i (−t)) · a

∇
j (−t) −B(−t,a

ρ
i (−t)).

Hence, we can get the intended result using Proposition 2.2.

Theorem 4.7. If problem (3.1) has a minimizer āi0, then we have the following Birkhoff equations on time scales
for all s ∈ [c,d]κ:

∂lRj(s, ā
ρ
i0(s)) · a

∇
j (s) − ∂lB(s, ā

ρ
i0(s)) − R

∇
l (s, ā

ρ
i0(s)) = 0, i, j, l = 1, 2, · · · , 2n.

Proof. Since āi0 is a minimizer of problem (3.1), then it follows from Proposition 4.6 that ā∗i0 is a minimizer
for the following variational problem

S̄∗(gi) =

∫−c
−d

[R∗j (t,g
σ̂
i (t)) · (a∗j )4̂(t) −B∗(t,gσ̂i (t))]4̂t, gi(−c) = Ai, gi(−d) = Bi,

where gi ∈ C1
rd. Therefore, we can apply Theorem 4.1 to get the Birkhoff equations for all t ∈ [−d,−c]κ

as follows:
∂lR
∗
j (t, (ā

∗
i0)
σ̂(t)) · (a∗j )4̂(t) − ∂lB∗(t, (ā∗i0)σ̂(t)) − (R∗l )

4̂(t, (ā∗i0)
σ̂(t)) = 0. (4.5)

The following work is to rewrite formula (4.5).
Since

R∗j (t, (ā
∗
i0)
σ̂(t)) = −Rj(−t, ā

ρ
i0(−t)), B∗(t, (ā∗i0)

σ̂(t)) = B(−t, āρi0(−t)), (4.6)

from Proposition 2.2 and Remark 4.5, we can obtain

∂lR
∗
j (t, (ā

∗
i0)
σ̂(t)) = −∂lRj(−t, ā

ρ
i0(−t)), ∂lB

∗(t, (ā∗i0)
σ̂(t)) = ∂lB(−t, ā

ρ
i0(−t)),

(R∗l )
4̂(t, (ā∗i0)

σ̂(t)) = R∇l (−t, ā
ρ
i0(−t)), (a∗j )

4̂(t) = −a∇j (−t).
(4.7)

Substituting formula (4.7) into formula (4.5), we have

∂lRj(−t, ā
ρ
i0(−t)) · a

∇
j (−t) − ∂lB(−t, ā

ρ
i0(−t)) − R

∇
l (−t, ā

ρ
i0(−t)) = 0.

Since t ∈ [−d,−c]κ, let s = −t ∈ [c,d]κ, we can get

∂lRj(s, ā
ρ
i0(s)) · a

∇
j (s) − ∂lB(s, ā

ρ
i0(s)) − R

∇
l (s, ā

ρ
i0(s)) = 0.

Theorem 4.8. If formula (3.1) is invariant under the infinitesimal transformations (3.8), then we have

[∂0Rj(s, ā
ρ
i0(s)) · a

∇
j (s) − ∂0B(s, ā

ρ
i0(s))] · ξ0(s, āi0(s)) + [∂lRj(s, ā

ρ
i0(s)) · a

∇
j (s) − ∂lB(s, ā

ρ
i0(s))]

× ξρl (s, āi0(s)) + Rj(s, ā
ρ
i0(s)) · ξ

∇
j (s, āi0(s)) −B(s, ā

ρ
i0(s)) · ξ

∇
0 (s, āi0(s)) = 0,

(4.8)

for all s ∈ [c,d]κ.
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Proof. If S̄ is invariant under the infinitesimal transformations (3.8) on U, then S̄∗ is invariant on Ū =
{gi|gi : [−d,−c]→ R,gi ∈ C1

rd} under the infinitesimal transformations

t̃ = t− εξ∗0(t,gi) + o(ε), g̃j(t̃) = gj(t) + εξ
∗
j (t,gi) + o(ε),

where ξ∗0(x,y) = ξ0(−x,y), ξ∗j (x,y) = ξj(−x,y). Hence, from Theorem 4.2, for all t ∈ [−d,−c]κ, we get

[∂0R
∗
j (t, (ā

∗
i0)
σ̂(t)) · (a∗j )4̂(t) − ∂0B

∗(t, (ā∗i0)
σ̂(t))] · [−ξ∗0(t, ā∗i0(t))]

+ [∂lR
∗
j (t, (ā

∗
i0)
σ̂(t)) · (a∗j )4̂(t) − ∂lB∗(t, (ā∗i0)σ̂(t))] · (ξ∗l )σ̂(t, ā∗i0(t))

+ R∗j (t, (ā
∗
i0)
σ̂(t))(ξ∗j )

4̂(t, ā∗i0(t)) −B
∗(t, (ā∗i0)

σ̂(t)) · [−(ξ∗0)
4̂(t, ā∗i0(t))] = 0.

(4.9)

From Proposition 2.2 and Remark 4.5, we get

∂0R
∗
j (t, (ā

∗
i0)
σ̂(t)) = ∂0Rj(−t, ā

ρ
i0(−t)), ∂0B

∗(t, (ā∗i0)
σ̂(t)) = −∂0B(−t, ā

ρ
i0(−t)),

(ξ∗l )
σ̂(t, ā∗i0(t)) = ξ

ρ
l (−t, āi0(−t)), (ξ∗j )

4̂(t, ā∗i0(t)) = −ξ∇j (−t, āi0(−t)),

ξ∗0(t, ā
∗
i0(t)) = ξ0(−t, āi0(−t)), (ξ∗0)

4̂(t, ā∗i0(t)) = −ξ∇0 (−t, āi0(−t)).

(4.10)

Using formulae (4.6), (4.7) and (4.10), we can rewrite formula (4.9), and get the intended result.

Formula (4.8) is the Noether identity for the Birkhoffian system on time scales with nabla derivatives.

Theorem 4.9. If formula (3.1) is invariant under the infinitesimal transformations (3.8), then we obtain the follow-
ing conserved quantity for the Birkhoffian system on time scales with nabla derivatives for all s ∈ [c,d]κ

I = Rj(s, ā
ρ
i0(s)) · ξj(s, āi0(s)) + {ν(s)[∂0Rj(s, ā

ρ
i0(s)) · a

∇
j (s)

− ∂0B(s, ā
ρ
i0(s))] −B(s, ā

ρ
i0(s))} · ξ0(s, āi0(s)) = const. .

(4.11)

Proof. From Theorem 4.3, for all t ∈ [−d,−c]κ, we can conclude that

I = R∗j (t, (ā
∗
i0)
σ̂(t)) · ξ∗j (t, ā∗i0(t)) − {µ̂(t)[∂0R

∗
j (t, (ā

∗
i0)
σ̂(t)) · (a∗j )4̂(t)

− ∂0B
∗(t, (ā∗i0)

σ̂(t))] +B∗(t, (ā∗i0)
σ̂(t))} · [−ξ∗0(t, ā∗i0(t))],

is a constant. It follows from formulae (4.6), (4.7), (4.10) and Proposition 2.2 that formula (4.11) holds.

Theorem 4.9 is the Noether theorem for the Birkhoffian system on time scales with nabla derivatives.

Remark 4.10. Both methods produce the same results of Noether equations, Noether identity and con-
served quantity for Birkhoffian system on time scales with nabla derivatives.

5. An example

Try to find the conserved quantities for the following Birkhoffian system

B = (aρ2 )
2 + 2t · aρ2 , R1 = aρ2 , R2 = 0.

From Theorem 4.8, we can get the following Noether identity

−2aρ2 · ξ0 + (a∇1 − 2aρ2 − 2t) · ξρ2 + aρ2 · ξ
∇
1 − [(aρ2 )

2 + 2t · aρ2 ] · ξ
∇
0 = 0.

By calculation, we have
ξ0 = 1, ξ1 = 2t, ξ2 = 0.
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If we consider this system on the time scale T = {3n|n ∈N
⋃
{0}}, we have

ρ(t) =
1
3
t, ν(t) = t− ρ(t) =

2
3
t.

From Theorem 4.9, we get the conserved quantity

I = −
4
3
t · aρ2 − (aρ2 )

2 = const. .

If we consider this system on the time scale T = hZ = {hk|k ∈ Z}, h > 0, we have

ρ(t) = t− h, ν(t) = t− ρ(t) = h.

In this case, we get the conserved quantity

I = −2h · aρ2 − (aρ2 )
2 = const. .

And if we consider this system on the time scale T = R, we have

ρ(t) = t, ν(t) = 0.

In this case, we get the conserved quantity

I = −t · a2 − (a2)
2 = const. . (5.1)

Formula (5.1) can be found in [58].

6. Conclusion

Birkhoff equations, Noether identity and Noether theorem on time scales with nabla derivatives for
the Birkhoffian system are obtained in this paper, where Theorem 3.3–3.7, Theorem 4.7–4.9, and Corollary
3.9 are new works. Corollary 3.8 and Corollary 3.10 coincide with the original results.

The main results are achieved through two methods: the isochronous variational principle and the
duality principle. It is obtained that only when the dual results have been achieved, can the duality
principle be used, though it is elegant. Therefore, the isochronous variational principle is more general.

On the basis of those results obtained in this paper, perhaps further research such as perturbation
to Noether symmetry and adiabatic invariants on time scales for constrained mechanical systems can be
studied. Apart from Noether symmetry method, Lie symmetry method and Mei symmetry method are
also important modern integral methods. It is hoped that they can also be used to study the constrained
mechanical systems on time scales.

In addition, fractional calculus has been applied to various fields of science and engineering, such as
quantum mechanics, chaotic mechanics, anomalous diffusion, plasma physics and so on. Fractional me-
chanics can describe both conservative and non-conservative systems. Recently, fractional Euler-Lagrange
equations [14], fractional Hamilton equations [12], Hamiltonian structure of fractional first order La-
grangian [38], constant of motion in fractional multi time Hamiltonian and the dual action for fractional
mechanics [13], etc. have been obtained. Besides, the research on fractional calculus on time scales [19, 21–
23] has also just started. Therefore, studying fractional mechanical systems on time scales will be a good
topic in future.

What is more, lattice fractional diffusion equations obtained through fractional differences [72, 73]
have also been studied to some extent. Hence, the discrete fractional variational problem on lattices on
time scales is also an aspect to study in future.
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[15] Z. Bartosiewicz, Ü. Kotta, E. Pawuszewicz, Equivalence of linear control systems on time scales, Proc. Estonian Acad.

Sci. Phys. Math., 55 (2006), 43–52. 1
[16] Z. Bartosiewicz, N. Martins, D. F. M. Torres, The second Euler-Lagrange equation of variational calculus on time scales,

Eur. J. Control, 17 (2011), 9–18.
[17] Z. Bartosiewicz, E. Pawluszewicz, Realizations of nonlinear control systems on time scales, IEEE Trans. Automat.

Control, 53 (2008), 571–575. 1
[18] Z. Bartosiewicz, D. F. M. Torres, Noether’s theorem on time scales, J. Math. Anal. Appl., 342 (2008), 1220–1226. 1
[19] N. R. O. Bastos, D. Mozyrska, D. F. M. Torres, Fractional derivatives and integrals on time scales via the inverse

generalized Laplace transform, Int. J. Math. Comput., 11 (2011), 1–9. 6
[20] E. T. Bell, Men of mathematics, Simon and Schuster, New York, (1937). 1
[21] N. Benkhettou, A. M. B. da Cruz, D. F. M. Torres, A fractional calculus on arbitrary time scales: fractional differentiation

and fractional integration, Signal Process., 107 (2015), 230–237. 6
[22] N. Benkhettou, A. Hammoudi, D.F.M. Torres, Existence and uniqueness of solution for a fractional Riemann-Liouville

initial value problem on time scales, J. King Saud Univ. Sci., 28 (2016), 87–92.
[23] N. Benkhettou, S. Hassani, D.F.M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ.

Sci., 28 (2016), 93–98. 6
[24] G. D. Birkhoff, Dynamical systems, With an addendum by Jurgen Moser, American Mathematical Society Collo-

quium Publications, American Mathematical Society, Providence, R.I., (1966). 1
[25] M. Bohner, Calculus of variations on time scales, Dynam. Systems Appl., 13 (2004), 339–349. 1
[26] M. Bohner, G. S. Guseinov, Partial differentiation on time scales, Dynam. Systems Appl., 13 (2004), 351–379. 1
[27] M. Bohner, A. Peterson, Dynamic equations on time scales. An introduction with applications, Birkhäuser Boston, Inc.,
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