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Abstract
In this paper, first, we introduce several types of the Ulam-Hyers stability, the well-posedness and the limit shadowing

property of fixed point problems in Ms-metric spaces. Second, we give such results for fixed point problems of Banach and
Kannan contractive mappings in Ms-metric spaces. Finally, we give some examples to illustrate the validity of our main results.
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1. Introduction and preliminaries

In 1922, Banach [1] proved a famous theorem, which is well-known as ”Banach’s contraction principle”
or ”Banach’s fixed point theorem”, to establish the existence of solutions for integral equations.

Theorem 1.1 ([1]). Let (X,d) be a complete metric space and T : X 7→ X be a contractive mapping, that is, there
exists k ∈ [0, 1) such that

d(Tx, Ty) 6 kd(x,y),

for all x,y ∈ X. Then T has a unique fixed point z ∈ X, that is, Tz = z. Furthermore, for each x0 ∈ X, the sequence
{xn} defined by

xn+1 = Txn,

for all n > 0 converges to the fixed point z of T .
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Since then, because of its simplicity, usefulness and applications, it has become a very popular and
useful tool in solving the existence problems in many branches of mathematical analysis.

From Banach’s contraction principle, it follows that the contractive mapping is continuous. It is in-
spired to consider that do there exist some contractive conditions which need the mapping T has not to be neces-
sarily continuous?

The answer for this inquiry was provided by Kannan [5] in 1969 who proved “Kannan’s fixed point
theorem” for the following contractive mapping, which is called Kannan’s contraction.

Theorem 1.2 ([5]). Let (X,d) be a complete metric space and T : X 7→ X be a contractive mapping, that is, there
exists k ∈ [0, 1

2) such that

d(Tx, Ty) 6 k[d(x, Tx) + d(y, Ty)],

for all x,y ∈ X. Then, T has a unique fixed point z ∈ X, that is, Tz = z.

In 1975, Subrahmanyam [12] proved that Kannan’s contraction characterizes the metric completeness,
that is, if every Kannan’s contractive mapping has a fixed point, then a metric space (X,d) is complete.

Recently, some authors have introduced some extensions of metric spaces in several ways and studied
fixed point theory and applications in these metric spaces.

Especially, in 2012, Sedghi et al. [11] introduced the concept of S-metric spaces which is a space with
three dimensions and they studied the topological properties of S-metric spaces and showed the existence
and uniqueness of a fixed point for certain generalized contractive mappings in the setting of S-metric
spaces. In 2014, Mlaiki et al. [7] established an extension of S-metric spaces to partial S-metric spaces
and, also, they pointed out that every S-metric space is a partial S-metric space, but the converse is not
true. Recently, the concept of a partial S-metric space was extended to the concept of Ms-space by Mlaiki
et al. [8]. Moreover, they showed the existence and uniqueness of a fixed point for a self-mapping in
Ms-metric spaces under Banach’s and Kannan’s contractive mappings, which are the generalizations of
Banach’s and Kannan’s fixed point theorems in the framework of partial S-metric spaces.

Theorem 1.3 ([8]). Let (X,ms) be a complete Ms-metric space and T : X 7→ X be a self-mapping on X satisfying
the following condition:

ms(Tx, Ty, Tz) 6 kms(x,y, z),

for all x,y, z ∈ X, where k ∈ [0, 1). Then T has a unique fixed point u ∈ X, such that ms(u,u,u) = 0.

Theorem 1.4 ([8]). Let (X,ms) be a complete Ms-metric space and T : X 7→ X be a self-mapping on X satisfying
the following condition:

ms(Tx, Tx, Ty) 6 λ[ms(x, x, Tx) +ms(y,y, Ty)],

for all x,y ∈ X, where λ ∈ [0, 1
2). Then T has a unique fixed point u ∈ X such that ms(u,u,u) = 0.

On the other hand, recently, some authors studied and extended the Ulam-Hyers stability, the well-
posedness and the limit shadowing property of for fixed point problems in various spaces (see [2–4, 6, 9,
10]).

In this paper, we first present various types of the Ulam-Hyers stability, the well-posedness and the
limit shadowing property of the fixed point problem in an Ms-metric space which is an extension of
a metric space. Second, we study the Ulam-Hyers stability, the well-posedness and the limit shadowing
property of the fixed point problem for Banach’s and Kannan’s contractive mappings inMs-metric spaces.
Finally, we give some examples to illustrate the validity of our main results.

Throughout this paper, we denote by N, R+, and R the sets of positive integers, nonnegative real
numbers, and real numbers, respectively. The following definitions, notations and lemmas are needed in
the following discussion.
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Definition 1.5 ([7]). Let X be a nonempty set. A partial S-metric on X is a function Sp : X3 7→ [0,∞)
satisfying the following conditions: for all x,y, z, t ∈ X,

(sp1) Sp(x,y, z) > 0;
(sp2) x = y if and only if sp(x, x, x) = sp(y,y,y) = sp(x, x,y);
(sp3) sp(x,y, z) 6 sp(x, x, t) + sp(y,y, t) + sp(z, z, t) − sp(t, t, t);
(sp4) sp(x, x, x) 6 sp(x,y, z);
(sp5) sp(x, x,y) = sp(y,y, x).

The pair (X, sp) is called a partial S-metric space.

Note that every S-metric space is a partial S-metric space, but not every partial S-metric space is an
S-metric space.

Now, we give an example to show that a partial S-metric space needs not to be necessarily an S-metric
space.

Example 1.6. Let X = [0, 1] and define a function sp : X3 7→ R+ by sp(x,y, z) = max{x,y, z} for all
x,y, z ∈ X. Then sp is a partial S-metric, but it is not an S-metric on X. Indeed, for any 0 < x < 1, we have
sp(x, x, x) = x 6= 0.

Next, we present the definition of an Ms-metric space, but first we introduce the following notations
which are useful in the sequel:

(1) msx,y,z = min{ms(x, x, x),ms(y,y,y),ms(z, z, z)};
(2) Msx,y,z = max{ms(x, x, x),ms(y,y,y),ms(z, z, z)}.

Definition 1.7 ([8]). An Ms-metric on a nonempty set X is a function ms : X3 7→ R+ that satisfies the
following conditions: for all x,y, z, t ∈ X,

(ms1) ms(x, x, x) = ms(y,y,y) = ms(z, z, z) = ms(x,y, z) if and only if x = y = z;
(ms2) msx,y,z 6 ms(x,y, z);
(ms3) ms(x, x,y) = ms(y,y, x);
(ms4) (ms(x,y, z) −msx,y,z) 6 (ms(x, x, t) −msx,x,t) + (ms(y,y, t) −msy,y,t) + (ms(z, z, t) −msz,z,t).

Then the pair (X,ms) is called an Ms-metric space.

Example 1.8. Let X = [0,∞) and ms : X3 7→ R+ be a mapping defined by

ms(x,y, z) = max{x,y, z}− min{x,y, z},

for all x,y, z ∈ X. Then ms is an Ms-metric on X.

Example 1.9. Let X be a nonempty set and d be the ordinary metric on X. Define the mapping ms : X3 7→
[0,∞) by

ms(x,y, z) = d(x,y) + d(x, z) + d(y, z),

for all x,y, z ∈ X. Then ms is an Ms-metric on X.

Example 1.10. Let X = {1, 2, 3} and define a mapping ms on X by

ms(1, 2, 3) = 6, ms(1, 1, 2) = ms(2, 2, 1) = 10, ms(1, 1, 3) = ms(3, 3, 1) = ms(2, 2, 3) = ms(3, 3, 2) = 7,
ms(2, 2, 2) = 9, ms(3, 3, 3) = 5, ms(1, 1, 1) = 8.

Then ms is an Ms-metric on X, but ms is not a partial S-metric since ms(1, 1, 1) � ms(1, 2, 3).
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Example 1.11. Let (X, s) be an S-metric space with the S-metric s. Let φ : [0,∞) 7→ [0,∞) be an injective
and nondecreasing mapping such that

φ(x+ y+ z) 6 φ(x) +φ(y) +φ(z) − 2φ(0).

Then ms(x,y, z) = φ(s(x,y, z)) is an Ms-metric on X.

Proof. It is easy to prove that the conditions (ms1), (ms2), and (ms3) are satisfied. For the condition
(ms4), it follows that, for for all x,y, z, t ∈ X,

φ(s(x,y, z)) 6 φ(s(x, x, t) + s(y,y, t) + s(z, z, t))
6 φ(s(x, x, t)) +φ(s(y,y, t)) +φ(s(z, z, t)) − 2φ(0),

φ(s(x,y, z)) −φ(0) 6 (φ(s(x, x, t)) −φ(0)) + (φ(s(y,y, t)) −φ(0)) + (φ(s(z, z, t)) −φ(0)),
(ms(x,y, z) −msx,y,z) 6 (ms(x, x, t) −msx,x,t) + (ms(y,y, t) −msy,y,t) + (ms(z, z, t) −msz,z,t).

This completes the proof.

Example 1.12. Let (X, s) be an S-metric space with the S-metric s. Then the mapping ms defined by
ms(x,y, z) = as(x,y, z) + b for all x,y, z ∈ X, where a,b > 0, is an Ms-metric since we can put φ(t) =
at+ b.

Remark 1.13. According to Example 1.12, from Banach’s contraction, that is, there exists k ∈ [0, 1) such
that

ms(Tx, Ty, Tz) 6 kms(x,y, z),

for all x,y, z ∈ X, we have

ms(Tx, Ty, Tz) = as(Tx, Ty, Tz) + b 6 kas(x,y, z) + kb⇒ s(Tx, Ty, Tz) 6 ks(x,y, z) +
b(k− 1)
a

,

which does not imply the ordinary Banach contraction in S-metric spaces (see [11]), that is, there exists
k ∈ [0, 1) such that

s(Tx, Tx, Ty) 6 ks(x, x,y),

for all x,y ∈ X, where T is a self-mapping on X.
Conversely, the ordinary Banach contraction in S-metric spaces implies Banach’s contraction in Ms-

metric spaces. Thus this states that, even if the Ms-metric ms and the ordinary S-metric s have the same
topology, Banach’s contraction for theMs-metricms does not imply Banach’s contraction for the ordinary
S-metric s.

For example, let X be a nonempty set and d be the ordinary metric on X. Define two mappings
s : X3 7→ [0,∞) and ms : X3 7→ [0,∞) by

s(x,y, z) = d(x, z) + d(y, z), ms(x,y, z) = d(x,y) + d(x, z) + d(y, z)

for all x,y, z ∈ X, respectively. Then s and ms are an S-metric and an Ms-metric, respectively. Obviously,
it follows that the S-metric s and the Ms-metric ms generate two topologies τs and τms on X, respectively,
where

Bs(x, ε) := {y ∈ X : s(x, x,y) < ε} = {y ∈ X : d(x,y) < ε}
and

Bms(x, ε) := {y ∈ X : ms(x, x,y) −msx,x,y < ε} = {y ∈ X : 2d(x,y) < ε}
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form the base of τs and τms , respectively. Notice that τs and τms are the same topology. However, by
Banach’s contraction in Ms-metric spaces, we have

ms(Tx, Tx, Ty) < kms(x, x,y)⇒ d(Tx, Ty) < 2kd(x,y),

for some k ∈ [0, 1), which does not imply the ordinary Banach contraction in S-metric, that is,

s(Tx, Tx, Ty) < ks(x, x,y)⇒ d(Tx, Ty) < kd(x,y),

for some k ∈ [0, 1).

Lemma 1.14. Let (X,ms) be an Ms-metric space. Then, for all x,y, z, t ∈ X,

(1) ms(x,y,y) 6 ms(x, x,y);
(2) ms(x,y, x) 6 2ms(x, x,y);
(3) ms(x,y, z) −msx,y,z 6 (ms(x, x, z) −msx,x,z) + (ms(y,y, z) −msy,y,z);
(4) ms(x,y, z) −msx,y,z 6 (ms(x, x,y) −msx,x,y) + (ms(z, z,y) −msz,z,y);
(5) ms(x,y, z) −msx,y,z 6 (ms(y,y, x) −msy,y,x) + (ms(z, z, x) −msz,z,x);
(6) ms(x,y, z) −msx,y,z 6

2
3 [(ms(x, x, z) −msx,x,z) + (ms(z, z,y) −msz,z,y) + (ms(y,y, x) −msy,y,x)];

(7) (Msx,y,z −msx,y,z) 6 (Msx,x,t −msx,x,t) + (Msy,y,t −msy,y,t) + (Msz,z,t −msz,z,t).

Proof. (1)-(7) can be directly obtained from Definition 1.7.

Remark 1.15. If ms is an Ms-metric on a nonempty set X, then two mappings mws ,m∗s : X2 7→ R+ defined
by

mws (x,y, z) = ms(x,y, z) − 2msx,y,z +Msx,y,z

and

m∗s(x,y, z) =

{
ms(x,y, z) −msx,y,z , x 6= y 6= z,
0, x = y = z = 0,

for all x,y, z ∈ X are two ordinary S-metrics on X. In fact, if mws (x,y, z) = 0, then we have

ms(x,y, z) = 2msx,y,z −Msx,y,z . (1.1)

But, from equation (1.1) and (ms2), it follows that

msx,y,z =Msx,y,z = ms(x, x, x) = ms(y,y,y) = ms(z, z, z).

So, by equation (1.1), we have that ms(x,y, z) = ms(x, x, x) = ms(y,y,y) = ms(z, z, z) and so x = y = z.
We can get the inequality property in the definition of an S-metric from Lemma 1.14 (7) and (ms4).

2. Topologies for Ms-metrics

It is clear that each Ms-metric ms on X generates a topology τms on X. The set

{Bms(x, ε) : x ∈ X, ε > 0},

where

Bms(x, ε) := {y ∈ X : ms(x, x,y) −msx,x,y < ε},

for all x ∈ X and ε > 0, forms a base of τms .
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Definition 2.1. Let (X,ms) be an Ms-metric space. Then:

(1) A sequence {xn} in X is said to be convergent to a point x if

lim
n→∞(ms(xn, xn, x) −msxn ,xn ,x) = 0.

(2) A sequence {xn} in X is called an Ms-Cauchy sequence if lim
n,m→∞(ms(xn, xn, xm) −msxn ,xn ,xm

) and

lim
n,m→∞(Msxn ,xn ,xm

−msxn ,xn ,xm
) exist and finite.

(3) An Ms-metric space is said to be complete if every ms-Cauchy sequence {xn} in X converges, with
respect to τms , to a point x ∈ X such that

lim
n→∞(ms(xn, xn, x) −msxn ,xn ,x) = 0, lim

n→∞(Msxn ,xn ,x −msxn ,xn ,x) = 0.

Lemma 2.2. Let (X,ms) be an Ms-metric space. Then:
(1) {xn} is an Ms-Cauchy sequence in (X,ms) if and only if it is an S-Cauchy sequence in the S-metric space

(X,mws ).
(2) An Ms-metric space (X,ms) is complete if and only if the S-metric space (X,mws ) is complete. Furthermore,

lim
n→∞mws (xn, xn, x) = 0 =⇒ lim

n→∞(ms(xn, xn, x) −msxn ,xn ,x) = 0, lim
n→∞(Msxn ,xn ,x −msxn ,xn ,x) = 0.

Proof. It obviously follows from the definitions of Ms-Cauchy sequence, Ms-completeness, S-Cauchy
sequence and S-completeness.

Meanwhile, the above assertions are true for m∗s.

Lemma 2.3. Assume that xn → x and yn → y as n→∞ in an Ms-metric space (X,ms). Then

lim
n→∞ms(xn, xn,yn) −msxn ,xn ,yn

= ms(x, x,y) −msx,x,y .

Proof. We have

|(ms(xn, xn,yn) −msxn ,xn ,yn
) − (ms(x, x,y) −msx,x,y)|

6 2|ms(xn, xn, x) −msxn ,xn ,x |+ 2|ms(yn,yn,y) −msyn ,yn ,y |.

From Lemma 2.3, we can deduce the following lemma.

Lemma 2.4. Assume that xn → x as n→∞ in an Ms-metric space (X,ms). Then

lim
n→∞ms(xn, xn,y) −msxn ,xn ,y = ms(x, x,y) −msx,x,y ,

for all y ∈ X.

Lemma 2.5. Assume that xn → x and xn → y as n → ∞ in an Ms-metric space (X,ms). Then, ms(x, x,y) =
msx,x,y . Furthermore, if ms(x, x, x) = ms(y,y,y), then x = y.

Proof. By Lemma 2.3, we have

0 = lim
n→∞ms(xn, xn, xn) −msxn ,xn ,xn

= ms(x, x,y) −msx,x,y .

Lemma 2.6. Let {xn} be a sequence in Ms-metric space (X,ms) such that there exists r ∈ [0, 1) such that

ms(xn+1, xn+1, xn) 6 rms(xn, xn, xn−1), (2.1)

for all n ∈N. Then we have
(1) lim

n→∞ms(xn, xn, xn−1) = 0;
(2) lim

n→∞ms(xn, xn, xn) = 0;



M. Zhou, X.-L. Liu, Y. J. Cho, B. Damjanović, J. Nonlinear Sci. Appl., 10 (2017), 2296–2308 2302

(3) lim
n,m→∞msxn ,xn ,xm

= 0;

(4) {xn} is an Ms−Cauchy sequence.

Proof. From the equation (2.1), we have

ms(xn, xn, xn−1) 6 rms(xn−1, xn−1, xn−2) 6 r
2ms(xn−2, xn−2, xn−3) 6 · · · 6 rnms(x1, x1, x0)

and so lim
n→∞ms(xn, xn, xn−1) = 0, which implies that (A) holds. From (ms2) and (1), we have

lim
n→∞msxn ,xn ,xn−1

6 lim
n→∞ms(xn, xn, xn−1) = 0,

that is, (2) holds. Clearly, (3) and (4) hold.

Theorem 2.7. The topology τms is not Hausdorff.

Proof. Let x,y, z ∈ X be such that a := ms(x, x, x) < ms(z, z, z) = a+b
2 < b := ms(y,y,y) with

b

2
<
k

2
< ms(y,y,y) < Msx,x,y = b, r = 2ms(x, x,y) − a− b > 0,

max{ms(x, x, z),ms(z, z,y)} 6 (2ms(x, x,y) − k)
ε

r
.

Without loss of generality, we assume that, for each ε > 0, ε < r. Now, we need to prove that the
intersection of the following neighborhoods is not empty:

Ux = {z ∈ X : ms(x, x, z) −msx,x,z < ε}, Vy = {z ∈ X : ms(y,y, z) −msy,y,z < ε}.

To prove z ∈ Ux, we have

ms(x, x, z) < (2ms(x, x,y) − k)
ε

r
,

ms(x, x, z) −msx,x,z < (2ms(x, x,y) − k)
ε

r
− a < (2ms(x, x,y) − k− a)

ε

r
< (2ms(x, x,y) − a− b)

ε

r
= ε

and, for any z ∈ Vy, we also have

ms(y,y, z) < (2ms(x, x,y) − k)
ε

r
,

ms(y,y, z) −msy,y,z < (2ms(x, x,y) − k)
ε

r
−
a+ b

2

< (2ms(x, x,y) − k)
ε

r
−
a+ b

2
ε

r

< (2ms(x, x,y) − k−
a+ b

2
)
ε

r
< (2ms(x, x,y) − a− b)

ε

r
= ε.

So, we can find x,y ∈ X such that, for all nonempty neighborhoods Ux of x and Vy of y, Ux ∩ Vy 6= ∅.
This completes the proof.

3. Main results

3.1. On fixed point problems under Banach’s contractive condition in Ms-metric spaces
In this section, we introduce the concepts of the Ulam-Hyers stability, the well-posedness and the limit

shadowing property of the fixed point problem in Ms-metric spaces. Then we study the corresponding
results for the fixed point problem under Banach’s contractive condition in Ms-metric spaces.
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Definition 3.1. Let (X,ms) be an Ms-metric space and T : X 7→ X be a mapping. The fixed point problem

x = Tx (3.1)

is said to be Ulam-Hyers stable if there exists c > 0 such that, for any ε > 0 and for each w∗ ∈ X which is
an ε-solution of the fixed point problem (3.1), i.e., w∗ satisfies the inequality

ms(w
∗,w∗, Tw∗) 6 ε,

there exists a solution x∗ ∈ X of the equation (3.1) such that

ms(x
∗,w∗,w∗) 6 cε.

Definition 3.2. Let (X,ms) be an Ms-metric space and T : X 7→ X be a mapping. The fixed point problem
of T is said to be well-posed if the following conditions hold:
(1) T has a unique fixed point x∗ of T ;
(2) for any sequence {xn} in X with lim

n→∞ms(xn, Txn, Txn) = 0, we have lim
n→∞ms(x∗, xn, xn) = 0.

Definition 3.3. Let (X,ms) be an Ms-metric space and T : X 7→ X be a mapping. The fixed point
problem of T is said to have the limit shadowing property in X if, for any sequence {xn} in X with
lim
n→∞ms(xn, Txn, Txn) = 0, it follows that there exists z ∈ X such that lim

n→∞ms(Tnz, xn, xn) = 0.

Theorem 3.4. Let (X,ms) be an Ms-metric space and T : X 7→ X be a Banach contractive mapping with constant
k ∈ [0, 1). Then the following assertions hold:
(1) the fixed point problem of T is Ulam-Hyers stable;
(2) the fixed point problem of T is well-posed;
(3) the fixed point problem of T has the limit shadowing property in X.

Proof. From Theorem 1.3, it follows that T has a unique fixed point x∗ ∈ X with ms(x∗, x∗, x∗) = 0.
Next, we first claim that the fixed point problem of T is Ulam-Hyers stable. Let ε2 > 0 and w∗ ∈ X be

an ε
2 −solution of (3.1), i.e.,

ms(w
∗,w∗, Tw∗) 6

ε

2
. (3.2)

From (ms4) together with (3.2), we obtain

ms(x
∗,w∗,w∗) 6 [ms(x

∗, x∗, Tw∗) −msx∗ ,x∗ ,Tw∗ ] + 2[ms(w∗,w∗, Tw∗) −msw∗ ,w∗ ,Tw∗ ] +msx∗ ,w∗ ,w∗

= [ms(Tx
∗, Tx∗, Tw∗) −msx∗ ,x∗ ,Tw∗ ] + 2[ms(w∗,w∗, Tw∗) −msw∗ ,w∗ ,Tw∗ ] +msx∗ ,w∗ ,w∗

6 [kms(x
∗, x∗,w∗) −msx∗ ,x∗ ,Tw∗ ] + 2[ms(w∗,w∗, Tw∗) −msw∗ ,w∗ ,Tw∗ ] +msx∗ ,w∗ ,w∗

= [kms(x
∗, x∗,w∗) −msx∗ ,x∗ ,Tw∗ ] + 2ms(w∗,w∗, Tw∗) + min{ms(x∗, x∗, x∗),ms(w∗,w∗,w∗)}

− 2 min{ms(w∗,w∗,w∗),ms(Tw∗, Tw∗, Tw∗)}
= [kms(x

∗, x∗,w∗) −msx∗ ,x∗ ,Tw∗ ] + 2ms(w∗,w∗, Tw∗) − 2ms(Tw∗, Tw∗, Tw∗)

6 kms(x
∗, x∗,w∗) + ε,

which implies ms(x∗, x∗,w∗) 6 cε, where c = 1
1−k . Therefore, the fixed point of T is Ulam-Hyers stable.

Next, we prove that the fixed point problem of T is well-posed. Assume that {xn} is a sequence in X
such that lim

n→∞ms(xn, Txn, Txn) = 0. Now, we show that lim
n→∞ms(x∗, xn, xn) = 0. By (ms4), we have

ms(x
∗, xn, xn) 6 [ms(x

∗, x∗, Txn) −msx∗ ,x∗ ,Txn
] + 2[ms(xn, xn, Txn) −msxn ,xn ,Txn

] +msx∗ ,xn ,xn

= [ms(Tx
∗, Tx∗, Txn) −msx∗ ,x∗ ,Txn

] + 2[ms(xn, xn, Txn) −msxn ,xn ,Txn
] +msx∗ ,xn ,xn

6 [kms(x
∗, x∗, xn) −msx∗ ,x∗ ,Txn

] + 2ms(xn, xn, Txn) +msx∗ ,xn ,xn
− 2msxn ,xn ,Txn

= [kms(x
∗, x∗, xn) −msx∗ ,x∗ ,Txn

] + 2ms(xn, xn, Txn)

− 2 min{ms(xn, xn, xn),ms(Txn, Txn, Txn)}
6 kms(x

∗, x∗, xn) + 2ms(xn, xn, Txn),
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for all n ∈N, which implies that

ms(x
∗, x∗, xn) 6

2
1 − k

ms(xn, xn, Txn), (3.3)

for all n ∈ N. Taking the limit as n → ∞ in (3.3), we have lim
n→∞ms(x∗, x∗, xn) = 0 and hence the fixed

point problem of T is well-posed.
Finally, we prove that T has the limit shadowing property. Let {xn} be any sequence in X such that

lim
n→∞ms(xn, Txn, Txn) = 0. From the discussion above, we have lim

n→∞ms(x∗, xn, xn) = 0. Since x∗ is a
fixed point of T , we have

lim
n→∞ms(xn, xn, Tnx∗) = lim

n→∞ms(xn, xn, x∗) = 0.

Therefore, T has the limit shadowing property. This completes the proof.

Now, we give an example to illustrate the validity of Theorem 3.4.

Example 3.5. Let X = [0,∞) and ms : X3 7→ [0,∞) be a mapping defined by

ms(x,y, z) = max{x,y, z}− min{x,y, z},

for all x,y, z ∈ X. Then (X,ms) is a complete Ms-metric space. Define a mapping T : X 7→ X by Tx = x
2 for

all x ∈ X. For each x,y, z ∈ X, we obtain

ms(Tx, Ty, Tz) =
1
2
(max{x,y, z}− min{x,y, z}) =

1
2
ms(x,y, z).

It follows that T is the Banach contraction with constant k = 1
2 ∈ [0, 1).

First, we claim that the fixed point problem of T is Ulam-Hyers stable. Assume that ε > 0 and w∗ ∈ X
is an ε-solution of the fixed point problem of T , that is,

ms(w
∗,w∗, Tw∗) 6 ε =⇒ 1

2

(
max

{
w∗,w∗,

w∗

2

}
− min

{
w∗,w∗,

w∗

2

})
=
w∗

4
6 ε.

It is easy to see that x∗ = 0 is a solution of the fixed point problem of T and

ms(x
∗, x∗,w∗) =

1
2
(max{0, 0,w∗}− min{0, 0,w∗}) =

w∗

2
6 2ε

with the constant c in Definition 3.1 taken by 2 > 0. Hence the fixed point problem of T is Ulam-Hyers
stable.

Next, we prove that the fixed point problem of T is well-posed. We can see that x∗ = 0 is a unique
fixed point of T . Now, we assume that {xn} is a sequence in X such that lim

n→∞ms(xn, Txn, Txn) = 0, that
is,

lim
n→∞1

2

(
max

{
xn,

xn

2
,
xn

2

}
− min

{
xn,

xn

2
,
xn

2

})
= 0 =⇒ lim

n→∞xn = 0.

Then we obtain that lim
n→∞ms(x∗, xn, xn) = lim

n→∞ms(0, xn, xn) = lim
n→∞xn = 0 and so the fixed point prob-

lem of T is well-posed.
Finally, we state that the fixed point problem of T has the limit shadowing property in X. Suppose

that {xn} is any sequence in X such that lim
n→∞ms(xn, Txn, Txn) = 0. It follows that lim

n→∞xn = 0. We can
see that there exists z = 0 ∈ X such that

lim
n→∞ms(Tnz, xn, xn) = lim

n→∞ms(0, xn, xn) = lim
n→∞xn = 0,

which implies that the fixed point problem of T has the limit shadowing property in X.
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3.2. On fixed point problems under Kannan’s contractive condition in Ms-metric spaces
The purpose of this section is to introduce another type of the Ulam-Hyers stability, the well-posedness

and the limit shadowing property of the fixed point problem in Ms-metric spaces. Then we also give the
analogous results for the fixed point problem of Kannan contractive mappings in Ms-metric spaces.

Definition 3.6. Let (X,ms) be an Ms-metric space and T : X 7→ X be a mapping. The fixed point problem
(3.1) is said to be Ulam-Hyers stable type (K) if there exists c > 0 such that, for any ε > 0 and for each
w∗ ∈ X which is an ε-solution of the fixed point problem (3.1), i.e., w∗ satisfies the inequality

ms(w
∗,w∗, Tw∗) 6 ε,

there exists a solution x∗ ∈ X of the (3.1) such that

ms(x
∗,w∗,w∗) − cms(x∗, x∗, x∗) 6 cε.

Remark 3.7. It is obvious that the Ulam-Hyers stability of the fixed problem implies the Ulam-Hyers
stability type (K).

Definition 3.8. Let (X,ms) be an Ms-metric space and T : X 7→ X be a mapping. The fixed point problem
of T is said to be well-posed type (K) if the following conditions hold:

(1) T has a unique fixed point x∗ of T ;
(2) there exists c > 0 such that, for any sequence {xn} in X with lim

n→∞ms(xn, Txn, Txn) = 0, we have

lim
n→∞ms(xn, x∗, x∗) = cms(x∗, x∗, x∗).

Definition 3.9. Let (X,ms) be an Ms-metric space and T : X 7→ X be a mapping. The fixed point prob-
lem of T is said to have the limit shadowing property type (K) in X if there exists c > 0 such that for
any sequence {xn} in X with lim

n→∞ms(xn, Txn, Txn) = 0, it follows that there exists z ∈ X such that

lim
n→∞ms(Tnz, xn, xn) = cms(z, z, z).

Theorem 3.10. Let (X,ms) be anMs-metric space and T : X 7→ X be a Kannan contractive mapping with constant
k ∈ [0, 1

2). Then the following assertions hold:

(1) The fixed point problem of T is Ulam-Hyers stable type (K).
(2) The fixed point problem of T is well-posed type (K).
(3) The fixed point problem of T has the limit shadowing property type (K) in X.

Proof. From Theorem 1.4, it follows that T has a unique fixed point x∗ ∈ X with ms(x∗, x∗, x∗) = 0.
Now, we first claim that the fixed point problem of T is Ulam-Hyers stable type (K). Let ε2 > 0 and

w∗ ∈ X be an ε
2 -solution of the equation (3.1), i.e.,

ms(w
∗,w∗, Tw∗) 6

ε

2
. (3.4)

From (ms4) together with (3.4), we obtain

ms(x
∗,w∗,w∗) 6 [ms(x

∗, x∗, Tw∗) −msx∗ ,x∗ ,Tw∗ ] + 2[ms(w∗,w∗, Tw∗) −msw∗ ,w∗ ,Tw∗ ] +msx∗ ,w∗ ,w∗

= [ms(Tx
∗, Tx∗, Tw∗) −msx∗ ,x∗ ,Tw∗ ] + 2[ms(w∗,w∗, Tw∗) −msw∗ ,w∗ ,Tw∗ ] +msx∗ ,w∗ ,w∗

6 ms(Tx
∗, Tx∗, Tw∗) + 2ms(w∗,w∗, Tw∗) +msx∗ ,w∗ ,w∗

6 k[ms(x
∗, x∗, Tx∗) +ms(w∗,w∗, Tw∗)] + 2ms(w∗,w∗, Tw∗) +msx∗ ,w∗ ,w∗

= k[ms(x
∗, x∗, x∗) +ms(w∗,w∗, Tw∗)] + 2ms(w∗,w∗, Tw∗) +ms(x∗, x∗, x∗)

6 (k+ 1)ms(x∗, x∗, x∗) + (2 + k)ε

6 (k+ 2)[ms(x∗, x∗, x∗) + ε],
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which implies ms(x∗, x∗,w∗) − cms(x∗, x∗, x∗) 6 cε, where c = k+ 2 > 0. Thus the fixed point of T is
Ulam-Hyers stable (K).

Next, we prove that the fixed point problem of T is well-posed type (K). Assume that {xn} is a sequence
in X such that lim

n→∞ms(xn, Txn, Txn) = 0. Now, we show that lim
n→∞ms(x∗, xn, xn) = 0. By (ms4), it follows

that

ms(x
∗, xn, xn) 6 [ms(x

∗, x∗, Txn) −msx∗ ,x∗ ,Txn
] + 2[ms(xn, xn, Txn) −msxn ,xn ,Txn

] +msx∗ ,xn ,xn

= [ms(Tx
∗, Tx∗, Txn) −msx∗ ,x∗ ,Txn

] + 2[ms(xn, xn, Txn) −msxn ,xn ,Txn
] +msx∗ ,xn ,xn

6 ms(Tx
∗, Tx∗, Txn) + 2ms(xn, xn, Txn) +msx∗ ,xn ,xn

6 k[ms(x
∗, x∗, Tx∗) +ms(xn, xn, Txn)] + 2ms(xn, xn, Txn) +msx∗ ,xn ,xn

= k[ms(x
∗, x∗, x∗) +ms(xn, xn, Txn)] + 2ms(xn, xn, Txn) +ms(x∗, x∗, x∗)

6 (k+ 2)[ms(x∗, x∗, x∗) +ms(xn, xn, Txn)],

for all n ∈N. Taking the limit as n→∞ in the last inequality above, we have

lim
n→∞ms(xn, xn, Tnx∗) = lim

n→∞ms(xn, xn, x∗) = (k+ 2)ms(x∗, x∗, x∗). (3.5)

Hence the fixed point problem of T is well-posed type (K).
Finally, we prove that T has the limit shadowing property type (K). Let {xn} be any sequence in X such

that lim
n→∞ms(xn, Txn, Txn) = 0. Since x∗ is a fixed point of T , from (3.5), we have lim

n→∞ms(x∗, xn, xn) = 0.
Since x∗ is a fixed point of T , we have

lim
n→∞ms(xn, xn, Tnx∗) = lim

n→∞ms(xn, xn, x∗) = (k+ 2)ms(x∗, x∗, x∗).

Therefore, T has the limit shadowing property type (K). This completes the proof.

Now, we present an example to illustrate Theorem 3.10.

Example 3.11. Let X = [0,∞) and define a mapping ms : X3 7→ [0,∞) by

ms(x,y, z) = max{x2,y2, z2}− min{x2,y2, z2},

for all x,y, z ∈ X. Then (X,ms) is a complete Ms-metric space. Define a mapping T : X 7→ X by Tx = x
2 for

all x ∈ X. For each x,y ∈ X, we obtain

ms(Tx, Tx, Ty) =
(

max
{x2

4
,
x2

4
,
y2

4

}
− min

{x2

4
,
x2

4
,
y2

4

})
=
∣∣∣x2

4
−
y2

4

∣∣∣
6
∣∣∣x2

4

∣∣∣+ ∣∣∣y2

4

∣∣∣
=

1
3

[(
max

{x2

4
,
x2

4
, x2
}
− min{

x2

4
,
x2

4
, x2
})

+
(

max
{y2

4
,
y2

4
,y2
}
− min

{y2

4
,
y2

4
,y2
})]

=
1
3
(ms(x, x, Tx) +ms(y,y, Ty).

It follows that T is a Kannan contractive mapping with constant k = 1
3 ∈ [0, 1

2).
First, we claim that the fixed point problem of T is Ulam-Hyers stable type (K). Assume that ε > 0

and w ∈ X is an ε-solution of the fixed point problem of T , that is,

ms(w,w, Tw) 6 ε =⇒
(

max
{
w2,w2,

w2

4

}
− min

{
w2,w2,

w2

4

})
=

3w2

4
6 ε.
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It is easy to see that x∗ = 0 is a solution of the fixed point problem of T and

ms(x
∗, x∗,w) = (max{0, 0,w2}− min{0, 0,w2}) = w2 6

4
3
ε

with the constant c in Definition 3.6 taken by 4
3 > 0. Hence the fixed point problem of T is Ulam-

Hyers stable type (K). Now, we prove that the fixed point problem of T is well-posed type (K). We
can see that x∗ = 0 is a unique fixed point of T . We assume that {xn} is a sequence in X such that
lim
n→∞ms(xn, Txn, Txn) = 0, that is,

lim
n→∞

(
max

{
x2
n,
x2
n

4
,
x2
n

4

}
− min

{
x2
n,
x2
n

4
,
x2
n

4

})
= lim
n→∞3x2

n

4
= 0 =⇒ lim

n→∞x2
n = 0.

Then we obtain

lim
n→∞ms(x∗, xn, xn) = lim

n→∞ms(0, xn, xn) = lim
n→∞x2

n = 0

and so the fixed point problem of T is well-posed type (K).
Finally, we state that the fixed point problem of T has the limit shadowing property type (K) in X.

Suppose that {xn} is any sequence in X such that lim
n→∞ms(xn, Txn, Txn) = 0. It follows that lim

n→∞x2
n = 0.

We can see that there exists z = 0 ∈ X such that

lim
n→∞ms(Tnz, xn, xn) = lim

n→∞ms(0, xn, xn) = lim
n→∞x2

n = 0,

which implies that the fixed point problem of T has the limit shadowing property type (K) in X.
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[4] F. S. De Blasi, J. Myjak, Sur la porosité de l’ensemble des contractions sans point fixe, (French) [[On the porosity of the
set of contractions without fixed points]] C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 51–54. 1

[5] R. Kannan, Some results on fixed points, II, Amer. Math. Monthly, 76 (1969), 405–408. 1, 1.2
[6] B. K. Lahiri, P. Das, Well-posedness and porosity of a certain class of operators, Demonstratio Math., 38 (2005), 169–176.

1
[7] N. M. Mlaiki, A contraction principle in partial S-metric spaces, Univers. J. Math. Math. Sci., 5 (2014), 109–119. 1, 1.5
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