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Abstract

This paper studies the stability problem of a class of neutral delay systems. It firstly establishes two novel integral inequal-
ities, which are better than the same type inequalities found in the literature. Then it derives, by using the new inequalities
and the Lyapunov functional method, some sufficient delay-dependent conditions for asymptotic stability of the neutral delay
systems. Three numerical examples are provided to illustrate the advantage and effectiveness of the obtained results. (©)2017 All
rights reserved.
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1. Introduction

In the past decades, a great deal of attention have been drawn to the delay-dependent stability criteria
of neutral delay systems (see, e.g., [1-4, 7-9, 11, 12, 15, 17, 18]). Various interesting methods have been
introduced to obtain delay-dependent stability conditions for neutral delay systems, such as model trans-
formation approach [8], delay partitioning technique [2], discretized Lyapunov functional method [11],
free-weighting matrix approach [9, 12], and integral inequality method [1]. With the help of these ap-
proaches, improved delay-dependent stability conditions have been presented gradually, such as [3, 11, 15]
and the references therein. It is known that Jensen’s like inequalities have played an important role in
obtaining delay-dependent stability conditions.

However, Jensen’s like inequality inevitably introduces some undesirable conservatism. It has been
improved by [13] which dealt with single integral and double integral terms. As a result, a new class of
inequalities are presented, which produce tighter bounds than what the Jensen inequality produces in [13].
Very recently, a less conservative inequality was introduced based on the free-matrix ideal [21, 22]. They
provided a better condition on the single integral inequality than [13]. On the other hand, research on
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double integral inequality and triple integral inequality should not be ignored, because such inequalities
may play an important role in obtaining delay-dependent stability condition for neutral delay systems.

Motivated by the above discussion, we investigate, in this paper, the conventional neutral systems
to obtain delay-dependent stability by using the new introduced inequalities. The rest of the paper is
organized as follows. In Section 2, a new class of inequalities are provided. In Section 3, stability analysis
for neutral delay systems is presented. Sufficient conditions are formed in terms of LMlIs, which can
be easily calculated by Matlab control toolbox. Many cases are compared in the tables based on the
conventional numerical examples, which are used to show the validity and less conservativeness of our
approach in Section 4. A conclusion is given in Section 5.

2. Preliminaries

Let R™ denote the n-dimensional Euclidean space and R™*™ is the set of all m x n real matrices. For
a real symmetric matrix X, X > 0 (X > 0) means that X is positive definite (semi-positive definite). I is the
identity matrix of appropriate dimensions. The superscript “T” stands for the transpose of a matrix or a
vector. I is the identity matrix of appropriate dimensions. We shall first establish two novel inequalities
for late use.

Lemma 2.1. For a given symmetric positive definite matrix R > 0 and any differentiable function x : [a, b] — R™,
the following inequality holds:
b (b b
6 5(b—
J J J % (s)Rx(s)dsdudd> ————ATRA + 2(b=a)prpg 2.1)
aJo Ju (b — a) 2

where

2 b b
A= (b—a) x(b)—J J x(u)dudo,

2 a Jo
6 b b 16 b b b
B=x(b)+ b a2 L L x (u) dudo — b—af L L L x(s)dsdud®.

Proof. For a continuously differentiable function x(t), t € [a, b], define the function z by

where
g(s) =4s—3b—aq,

A and B are defined in Lemma 2.1. It is easy to obtain that

Jb Jb Jb x(s)dsdud® = (b— a)Zx (b) — Jb Jb x(u)dudd = A,

adJo Ju 2 aJo
b b b
J J J g (s)dsdudb =0,
aJo Ju
b b b 5 b b b 3
b— b—
J J J g2 (s)dsdud6 = ( a) , J J J g (s)x(s)dsdudb = ( a) B.
alJo Ju 10 aJo Ju 2

With R > 0, the computation of fz fg fﬁ 2" (s)Rz(s)dsdud® leads to

b b b b rb b 6 5(b—a)
J J J ZT(S)Rz(s)dsdudE):J J J x"(s)Rx(s)dsdudd — ATRA—="_—BTRB > 0.
aJo Ju aJo Ju (b_a)3 2

Clearly, the above inequality is equivalent to inequality (2.1). This completes the proof. O
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Remark 2.2. Compared to the conventional Jensen’s like inequality for triple integral, our inequality has
additional positive term 2BTRB. Consequently, this inequality is less conservative than the inequality
given in [1].

Lemma 2.3. For a given symmetric positive definite matrix R > 0 and any differentiable function x : [a,b] — R™,
and N1, Ny, N3 € R X" then the following inequality holds:

b b
J J %7 (s)Rx(s)dsd® < v'Qv, (2.2)
aJo
where
—q)? _q)2 N2
= (b 2(1) NlRilNir-i- (b-a) NzRilN;—-i- (b—q) N3R71N3T—|—(b—a)sym{NﬂTl+N2ﬂ2+N3ﬂ3},

I =e;—ey, Tlh=e1+2ey—6e;3, Tl3=-e;—3e,+24e;—60ey,
T
V= [ xT(b) Lo [2xT(s)ds (b—lia)Z I faxT(s)dsd® s 7 fo [ xT(s)dsdud® } ,

(b—a)?

Proof. Define

N=[N NJ NI ]T, os)=[ vl fi(shvT fas)v? }T,
3s—2b—a 10s?> — 4(3b +2a)s + 3b? + a? + 6ab
fi(s) = —/———, fa(s) = 5 .
b—a (b—a)

It is easy to see that
— 20T (s)Nx(s) = ¢ (s)NRTINT(s) + %" (s)Rx(s). (2.3)

Integrating (2.3) from a to b yields
—2(b—a)v'Ni(e; —ex)v—2(b—a)v Ny(e; +2e, — 6e3)v—2(b—a)v'
x N3z(e1 —3e; + 24e3 — 60e4)v

(b—a)? (b—a)?
2

(2.4)

InT 1T(b*a)2 1TbbT
< N{R™ Nl + N2R™"N, + 6 N3R™ N3 +J J x' (s)Rx(s)dsdo.

aJo

Rearranging (2.2) yields (2.4), and this completes the proof. O

Remark 2.4. Two functions fi(s) and f»(s) play very important role in the proof of Lemma 2.3. Less con-
servative results are obtained by employing the free matrices N1, N2 and N3 to deal with the relationships

among x(b), fz x(s)ds, fz fg x(s)dsd0 and f(bl fg fﬁ x(s)dsdud®. In fact, the inequality (25) in Lemma 5.1
in [7] is a special case of Lemma 2.3 by setting N; = —ﬁﬂIR, Ny = —b%aﬂzT R, and N3 = 0. Moreover,
the inequality (4) of Lemma 2.3 in [23] is also a special case of Lemma 2.3 by setting N = —ﬁﬂlTR,
Ny = —2-TIJR, and N3 = —2_TIIR. Different from the inequality of Lemma 1 in [22], this inequality is
a double integral inequality, which could be used to reduce the conservativeness of the delay-dependent

stability conditions.

3. Main results

Consider the following neutral delay system

(3.1)

x(t)—Cx(t—1) = Ax(t)+Bx(t—h),
x(to+0) = (0),Y0 € [—p,0],
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where x(t) € R™ is the state vector, T and h are time-delays, p = max{t, h}, ¢ (0) is the initial condition
function, and A, B, C are known matrices. In this paper, we always assume that the spectral radius of C
less than 1.

System (3.1) has been well studied in the literature and many results are available. However, by using
the novel inequalities developed earlier, we can obtain much less conservative conditions than the existing
results.

Theorem 3.1. System (3.1) is asymptotically stable if there exist positive definite matrices W1, W, Q1, Qz, Ry, Ry,
symmetric matrices X € R¥81 ® € R>™*2 and any matrices My, Ni € R™ ™ (i € 1,2,3) with appropriate
dimensions satisfying the following inequalities
Y= (ElTXél + Tengeg + 3t(es — 265)TQ1(63 —2e5) + 51(e3 — b6es + 1267)TQ1(63 — 6es + 12e7)
+he] Qaeq +3h(es —2e6)" Qa(eq —2e5) + 5h(ey — 6es + 12e5) " Q1 (es — b€ + 12¢s)
1 3
+ ;[Teg el —ellM[tel ef —el]T + ;[’re3T —2ted —e] —e] +2e]IM

5
x [ted —2ted —ef —e) +2ed]T + ;[’teg —6Ted +121e] e —e) —6el +12ted IR

X [Te3T — 6Te5T + 12’(6;— elT — 62T — 663T + 121e5T]T + 21365TW1 es + 167 (es — 3e7) "W (es5 — 3ey)

3.2)
1 1 (
+ 6T(§€1 — 65)TR1(§€1 — 65) + 2h3e6TW2e6 + 16]’13(66 — 368)TW2(€6 — 368)
1 T 1 5t T
+ 6}1(561 —eg) Rz(iel —eg) + ?(61 + 6e5 — 16e7) ' Ry(e1 + 6e5 — 16e7)
h
+ i(el + 6eg — 1663)TR2(61 + 6e5 — 16eg) > 0,

2
e =0 \I/ O]GH{S“X“(izll...,g)/

i

"L'2 2

I h
¢ =G XGy + GIXG1 + TzeirW1€1 + hzeil—erl + ?egRleo + 763]2260 + elTQlel - e;—Q1€2

T T
—I—( “ > R< €1 >—< 2 ) R< ©2 )—TZeSTW165—3T2(e5—2e7)TW1(e5—267)
€ €0 €4 €4
— 57%(es5 — 6e7 + 12e9) T Wi (e5 — 6e7 + 12e9) — h?ef Wheg — 3h2(eg — 2eg) "W (e — 2e3)

—5h%(eq — 6eg + 12e10) T Wi (e — 6eg + 12e19) + QI K1Qq + Q1 K0, < 0,
ei=1[0--- \I/ co 0l e RO (1 =1,...,10),
i

where

eo = Aei+Bes+ Ces, Q) = (e1,e5€7,e9), Qy = (e, €6, €35 €10), Tl = e1 —es, T = e1 + 2es — 6ey,
I3 = e; —3es +24ey — 60e9, TIy = e1 —eg, T1l5 = e1 +2e¢ — b6eg, TTg = e; — 3eq + 24eg — 60eqg,
Gl =(ef ef ] n2) tel hel el niel)),

Gi=[ele] tles—es) hieg—es) (e1—ex)T (e1—e3)T (5 —e)T W3 (S —es)" ],

2
2

L2
4

=
6

h2 h? h?
Ko = 5-MuRy "M + “-MaR;y TMy + == MR, "My + R sym (MaTTy + MaTTs + MsTlg}.

Ki = = NiR7INS + —NoRyINT + —N3RINS + 1 sym {N;TTy + NoTTp + N3TTs},
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Proof. Construct a Lyapunov functional candidate as

t t T
T Quelsids + | 1T (5] Qax(s)ds+ | (2%3) %@Eg)ds

t— h t—7

t
V(x¢, t) = G{ XG; +J

t—7

t t t t
+J J X (o) (TW4) x () docd(5+J J X (o) (AWa) x () dexd (3.3)
t—tJpB t—hJp

t t t t pt
+J J J xT (s)Rp‘c(s)dsd)\dS—i—J J J %7 (s) Rox (s) dsdAdo,
t—tJOJA t—hJO JA

where X, Q1, Q2, W1, W5, Ry, Ry, R are defined in Theorem 3.1, and

GT=(><T(U ) JtJExT(s)dsde [f ., [ixT(s)dsd® [i _xT(s)ds [, xT(s)ds
[ Tfej xT(s)dsdudo jt hjej X7 dsdudG)z&TGlT

with
£T_ xT (t),x" (t— T) (t—h)t, (t tT A xT(s)ds, & [T htx (s)ds, 5 [t JoxT (s)dsdo, _
L [ JoxT (s)dsd0, L[ [g [1x"(s)dsdudo, 5 [ty [ [1 x"(s)dsdud®
First, with Lemma 2.1, Lemma 2.3, and some inequalities in [7], the Lyapunov functionals V can be scaled
as
V> GlTXGl + E,T{TeSTQleg, +3t(es — 2e7)TQ1(e5 —2ey) +51(e5 — 6ey + 1269)TQ1(65 —6e7 + 12e9)
+ heg—Q2€6 + 3h(e6 — 268)TQ2(66 — 268) + 5]’1(66 — 668 + 12610)TQ1(€6 — 668 + 12610)

1 3
+ ;[TeST el —ej R [ted ef —eg]" + T[”re5 2te] —ef —e; +2edIR

5
X [ted —2te] —el —ed +2ed]T + T[Te5 —6Te) +121ed el —ed —6ed +121el IR
X [T€5 — 6T€7 + 12Te;r elT — T — 6e5 + 12T€7] + 27 e;W167 +1673(ey — 3e9) "W (e7 — 3eg) (3-4)
1
+2h%ef Waeg + 16h%(es — 3e1g) " Wa(es — 3eig)} x &+ ET{6T( er—er)’ Rl(iel —ey)

1 1
+6h(§el_68) R2(§€1—68)}5+£T{7(61—6e7+1669) Ri(e; — 6ey + 16e9)

5h
+ 7(61 — beg + 16610)TR2(61 —6eg + 16eqp) }é.

According to the inequality (3.2), the constructed functional (3.3) is positive definite. Then, with Lemma
2.1, Lemma 2.1 and some inequalities in [7] the time derivative of V(t) along the trajectories of equation

(3.1) can be computed as follows:
Rz

Ry
5 )+h2(Wz+7 Jeo

€2 ! €2
(5)=(5)-(5)=(2)):
£" [TPe3 Wies + 377 (es —2e7) T Wi (es —2e7)] &
[5 (es — 6ey + 12e9) W1(€5—6€7+1269)]£
[h7e

—ET o Waeg + 3h?(es — 2eg) ' Wa (e — 2es)] &
— &7 [5h?(es — 6eg + 12e19) ' Wy (es — 6es + 12e19) — Qf K1Qq — Q) Ko Q] £ = £ @&,

Vix, t) < ET[G, XGl+GTXGl+eO( (W 4+ —

+e] (Q1+Q2)e; —elQrer —ed Qaeslé + &7

Based on the conditions of Theorem 3.1, we can obtain that V < 0. Accordingly, system (3.1) is asymptot-
ically stable, which concludes the proof. O
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Remark 3.2. In the process of the above proof, x(t —h) and x(t — t) do not appear as the V is considered.
Therefore, the number of vector components in (3.2) of Theorem 3.1 is less than that of (3.4). When T = h,
following the same line of the proof for Theorem 3.1, one can easily obtain another delay-dependent
condition. In this case, it is better to use another new condition to compute the bounds of delay for the

neutral systems, because many unnecessary matrix variables would be involved if we use the result in
Theorem 3.1.

Theorem 3.3. System (3.1) with T = h is asymptotically stable if there exist positive definite matrices Wy, Q1,
R1, symmetric matrices X € R™*™, R € R2¥2" and any matrices M; € R*™ " (i € 1,2,3) with appropriate
dimensions satisfying the following inequalities

Y= ézTXéz + TegQ1€3 + 31(e3 —264)TQ1(63 —2ey4) +5T1(e3 —b6ey + 1265)TQ1(63 — 6ey + 12e5)

1 3
+ ;[’reg el —ej]R[te] ef —eg]" + T[’te3 2tej —ef —e; +2ei]R

5
X [ted —2te] —el —e) +2ed]" + ;[Te; —61e] +121ed el —e) —6el +121e] IR

X [T€3 — 6T€4 + 12T65T elT — ezT — 6e3T + 12T€I]T + 2T3eIW164 +1673(es — 3e5) "Wy (es — 3es)

1 1
+ 6T( e — 64) Rl(iel —ey) + 52;((61 + 6e4 — 1665)TR1(€1 + 6e4 — 16es) > 0,

ei =10 \I/ 0] e RS"™™(i=1,---,5),

i

2
—T. ~ ~ _ T
¢ = G3 XG3 + GgXGg + elTQlel — eZTQlez + TzelTwlel — TZeIW164 + EeJRleo

T T
—|—< “ ) R< €1 >—< ©2 > R( ©2 >—T eTW1€4—3T (es —2e5) "W (eq — 2e5)
€o €o €3 (%}

— 51%(e4 — 6es5 + 12e6) ' Wi (e4 — 6es + 12e6) + Q4 K103 < 0,
e;=1[0 --- \I/ 0 eR™YMi=1,---,6),
i

where

T T ol 20T T CT (T o wol 20T 3T
(e el Te; TPl Tel ), G3=(e¢ e Tef Tl Tl ),

T
[ e

eg (e1—e)T T(e1—es)' T34 —e)T ], eo=Ae; +Ber+Ces,

(e ,€3,€4, 65) , ﬁ1 = €1 —e€3, ﬁz =€ +2€3 —664, ﬁ3 =€ —363 +24€4 —6065,
2
CMRIMT + 5 MZR M+ T

> T 107
Ki = > 1 G M3R M3 + T-sym {Mlﬂl + Mzﬂg + Mgﬂ(;}

Proof. Construct a Lyapunov functional candidate as

t

¢ T
V(x, t) = G1TXGl+L xT (s) Q1X(S)dS+L ( 18 ) 9{< zg ) as

+ Jt_T J; xT (&) (TW4) x (&) doedp + Jt_ L J: % (s) Rix (s) dsdAd®,

where X, Qq, W1, Ry, R are defined in Theorem 3.3. Following the similar line of the proof for Theorem
3.1, Theorem 3.3 is proved. It is omitted here. O
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Table 1: The maximal allowable bounds of h as T is known.

References =01 =05 T=1.0
[9] 1.7100 1.6718 1.6543
[12] 1.7844 1.7495 1.7201
[15] 1.8307 1.7755 1.7213
[7] 2.1229 21229 2.1229
[11] 22951 23471 2.3752
[1](N=1) 1.8413 2.0954 2.2611
[1] (N=3) 2.1845 22973 2.3331
[1] (N=5) 22137 23210 2.3588
Th 1 in[2] 22021 22469 2.2670

Th 2 in [2](N=1) 1.8432 2.1078  2.2587
Th 2 in [2](N=3) 21886 23100 2.3452
Th 2 in [2](N=5) 22181 23331 2.3636

[19] 22959 23488 2.3769
Analytical bounds 2.2963 2.3491 2.3775
Theorem 3.1 22961 2.3491 2.3773

Table 2: The maximal allowable bounds of the delay when T = h.

c 0 0.1 0.3 05
[4] 447 349 206 1.14
5] 435 433 410  3.62
[18] 447 435 413 367
8] 447 442 417  3.69
[14] 463 457 429 375
[17] 530 521 485 420
[3](N=6) 5.8613 5.7781 5.3946 4.6687
[3](N=7) 58779 5.7910 5.4007 4.6703
[3](N=8) 59287 5.8427 5.4417 4.6917
[3](N=9) 6.1028 59816 55173 4.7247
[10] 6117 —- — —
[19] 6.1689 6.0339 55470 4.7374

Theorem 3.3 6.1707 6.0356 5.5479 4.7381

4. Numerical example

In this section, we will demonstrate the superiority of our approach in the above section using the
conventional neutral system by the following examples.

Example 4.1. Consider system (2.1) with the following parameters:

—-09 02 -11 -02 -02 0
A‘( 0.1 —09 ) b= < 01 —1.1 > C‘( 02 —0.1 )
With different cases, we can obtain different maximum time delay h by using Matlab toolbox as listed
in Table 1, compared with some existing references. From Table 1, we can see that the results in [2] and

[1] are close to our results. However, the maximum of h using Theorem 3.1 is nearly close to analytical
bounds, which shows our approach is less conservative than the existing results.
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Example 4.2 ([4]). Consider system (3.1) with the state matrices listed as follows:

2 0 1 0 c 0
A:(o —0.9)' B:<—1 —1>' CZ(O c)

with the positive scalar ¢ and T = h. With different ¢, we can obtain different maximum time delay h
by using Matlab toolbox as listed in Table 2, compared with the existing references. Clearly, the results
of hin [4, 7, 8, 18] and [14] are much more conservative than those in [3, 17] and Theorem 3.1. It is
observed from Table 2 that our time-delay h is much bigger than existing results with the less variables.
This example shows again that our approach is effective and less conservative than the existing results.

Example 4.3. Consider the PEEC model introduced in [20] with T = h and the parameter matrices listed
as follows:

e 1 2 1 0 -3 -1 5 2
A=100x| 3 -9 0 , B=100x| -05 05 -1 |, C=1/72x 4 0 3
1 2 —6 —05 —-15 0 -2 41

With our approach and using Matlab toolbox, the maximum time-delay h compared to the existing
results are listed in Table 3. It is quite evident that our result is the best.

Table 3: The maximal allowable delays h for different values of 6.

0 -2.105 -2.103 2.1
[6] 1.0874 03709  0.2433
[20] 11413 03892  0.2533

Th1 and Th2 in [16] 1.3200 0.4917 0.3214
Th3 and Th4 in [16] 1.6978 0.5747 0.3749
[19] 1.7824 0.6030 0.3930

Theorem 3.3 1.7837 0.6034 0.3933

5. Conclusion

In this paper, we have established two new inequalities which reduce the conservativeness of analysis
for delay-dependent conditions. Based on the Lyapunov functional method and the two new inequalities,
two sufficient conditions have been derived in terms of inequalities. Three numerical examples have been
given to show the effectiveness and superiority of the proposed result.
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