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Abstract

The purpose of this paper is to study the problem of the system of N fixed point operator equations with N-variables
pseudo-contractive mapping. Firstly, the concept of N-variables pseudo-contractive mapping and relatively concepts of nonlinear
mappings are presented in Banach spaces. Secondly, the existence theorems of solutions for the system of N fixed point operator
equations with N-variables pseudo-contractive mapping are proved in reflexive Banach spaces by using the method of product
spaces. In order to get the expected results, the normalized duality mapping of product Banach spaces is defined. Meanwhile the
reflexivity of the product of reflexive Banach spaces and Opial’s condition of product spaces of Banach spaces are also discussed.
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1. Introduction and preliminaries

Recently, the multivariate fixed point theorems of N-variables nonlinear mappings have been stud-
ied by some authors, for examples [9] and [17]. Many interesting results and its applications have been
also given. In 2016, Su et al. [17] presented the concept of multivariate fixed point and proved a multi-
variate fixed point theorem for the N-variables contraction mappings which further generalizes Banach
contraction mapping principle. On the other hand, the pseudo-contractive mappings and strictly pseudo-
contractive mappings are important classes of nonlinear operators in the field of nonlinear functional
analysis and applications. The fixed point theorems and the iterative algorithms of such mappings are
also important, so which have been studied by many authors (see [1-8, 10-16, 18-28]).

Let E be a real Banach space and let ] denote the normalized duality mapping from E into E* given by

J(x) = {f € E*: (x,f) = |[f|? = |[x|[*}, x €E.
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Recall that, a mapping T with domain D(T) and range R(T) in a Banach space is said to be pseudo-
contractive, if there exists j(x —y) € J(x —y) such that

(Tx—Ty,j(x—y)) < [x—yl*>, ¥Vx,yeD(T).

Recall that, a mapping with domain D(T) and range R(T) in a Banach space is said to be strongly pseudo-
contractive, if there exists j(x —y) € J(x —y) such that

(Tx —Ty,j(x—y)) < ka—sz, Vx,y e D(T),

where k € (0,1) is a constant.
In 1974, Deimling [4] proved the following fixed point theorem.

Theorem 1.1 ([4]). Let E be a real Banach space, K a nonempty closed convex subset of E, and T : K — K a
continuous strongly pseudo-contractive mapping. Then T has a unique fixed point in K.

Recall that, a Banach space E is said to satisfy the Opial’s condition, if whenever {x, } is a sequence in
E which converges weakly to x, then

limsup ||xn —x|| < limsup ||[xn —y|, VYV ye€E y#x
n—oo n—oo
Recall that, a mapping T in a Banach space is said to be demi-closed at the zero if for any sequence
{xn} which converges weakly to xo and {Txn,} converges strongly to zero, then Txp = 0.
In 2008, Zhou [26] proved two demi-closed principles for continuous pseudo-contractive mappings.
These demi-closed principles are very useful for our main results.

Lemma 1.2 ([26]). Let E be a real reflexive Banach space which satisfies Opial’s condition. Let K be a nonempty
closed convex subset of E, and T : K — K be a continuous pseudo-contractive mapping. Then 1 —T is demi-closed
at zero.

Lemma 1.3 ([26]). Let E be a real uniformly convex Banach space, K a nonempty closed convex subset of E, and
T : K — K be a continuous pseudo-contractive mapping. Then, 1 — T is demi-closed at zero.

Definition 1.4. Let T be a mapping with domain D(T) and range R(T) in a Banach space.
(1) T is said to be invariant, if R(T) C D(T);

(2) Tis said to be strong invariant, if the range R(T) is bounded and there exists some constant to € (0, 1)
such that tR(T) € D(T) for all t € [tg, 1].

It is obvious that, a strong invariant mapping must be invariant. However, the inverse is not true.
In 2010, Su and Li [16] proved the following two fixed point theorems for pseudo-contractive mapping
in Banach spaces.

Theorem 1.5 ([16]). Let E be a real reflexive Banach space which satisfying Opial’s condition, and X be a closed
convex subset of E. Let T be a continuous pseudo-contractive mapping from K into itself. If T is strong invariant on
the K, then T has a fixed point in K.

Theorem 1.6 ([16]). Let E be a real uniformly convex Banach space, and K be a closed convex subset of E. Let T
be a continuous pseudo-contractive mapping from K into itself. If T is strong invariant on the K, then T has a fixed
point in K.

Definition 1.7 ([17]). Let (X,d) be a metric space, T : XN — X be an N-variables mapping, an element
p € Xis called a multivariate fixed point (or a fixed point of order N, see [9]) of T if

P= T(p,p,- : '/p)-
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The purpose of this paper is to study the problem of the system of N fixed point operator equations
with N-variables pseudo-contractive mapping. Firstly, the concept of N-variables pseudo-contractive
mapping and relatively concepts of nonlinear mappings are presented in Banach spaces. Secondly, the
existence theorems of solutions for the system of N fixed point operator equations with N-variables
pseudo-contractive mapping are proved in reflexive Banach spaces by using the method of product spaces.
In order to get the expected results, the normalized duality mapping of product Banach spaces is defined.
Meanwhile the reflexivity of the product of reflexive Banach spaces and Opial’s condition of product
spaces of Banach spaces are also discussed.

2. The normalized duality mapping of product Banach spaces

Lemma 2.1. Let X be a Banach space with the norm || - ||. We consider on the Cartesian product space
XN =XxXx-xX,

the following functional

X[l =

N
Z Ixil2,  Vx=(x1,x,---xn) € XN,
i—1

Then (XN, || - ||+) is a Banach space.

Proof. We first need to check the following conditions:
(1) |Ix]|« = 0and ||x|« =0« x =0;
@) IAx|l« = IN[[x]]«;
@) [+ ylls < ([l + Tyl

The conditions (1), (2) are obvious. Next, we only need to check the condition (3). From the definition of
|Ix||+, we have, by using Minkowski inequality, that

N
eyl = 4| D Ixi +ill?
i=1

N

2 (bl + llya?

i=1

N

N N
< Z [Ixil|? + Z lyil> (Minkowski inequality)
i=1 i=1

=[xl + [yl

We secondly need to prove that, (X", || - ||+) is complete. Let {x,} be a Cauchy sequence in the linear
normed space (XN, || - ||.), where

Xn = (XTL,l/XTL,ZI C ’/Xn,N)/ n= 1/ 2/ 3/ .

In this case, we have that

N
lim |[xn —Xm|+ = lm \IZ [Xni—xmill> =0,
n, m—o0o n,m—o0 o1
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which implies that
lim ||xni—Xxmill=0 Vi=1,23,---,N.
n, m—oo
Since (X, || - ||) is a Banach space, there exist x1, Xz, - - -, xn such that
lim |xni—xi| =0 Vi=1,23,---,N.
n,m—oo
Let x = (xq1,%x2, - - -, XN ), then, we have
T}i_I};OHXn | = hm \lzxnlxl =0,
which implies that, the sequence {x,} converges, in || - ||, to x. Hence (XN,|| -|.) is complete. This
completes the proof. O

Lemma 2.2. (XM, |- [l.)* = ((X, || - [)*)™
Proof. For any f € (XN, || - [l«)*, define f;, i=1,2,3,---,N as follows:

f1(x) = f(x,0,0,0,0,---,0),
fa(x) = f(0,%,0,0,0,---,0),
f3(x) =1(0,0,%,0,0,---,0),
f4(x) =(0,0,0,%,0,---,0),

fn(x) = f(0,0, 0,0,---,0,x).
Then, f; € (X*,[|-|]), 1=1,2,3,---,N and
(f1, 2, tn) € (XN |- [

Define a mapping F from (XN, || - ||.)* into (X, || - |)*)N as follows:

F:f (f,f2,- -, N
Define a mapping G from ((X, || - [[)*)N into (XN, || - ||«)* as follows:

G: (fy,fy,---, ) — 1,
where

flxa, X, xn) = ) filxi).

In this case, we have
(GFf)(X1/X2/ o '/XN) = G(fler/ Yy fN)(X1/X2/ c '/XN)

N
=) filx)
i=1
= f(x1, %2, -, XN),
so that GFf = f and hence G = F~1. On the other hand, we have

(FG(fq,f2, -+, fN))(x1, %2, -, xn) = (FF)(x1, %2, - -, XN)
= (flleI Tty fN)(Xll X2, ", XN )/
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so that FG(fy,fa, - - -, fn) = (f1, f2,- - -, fn) and hence F = G~1. From above two hands, we know F is one
to one mapping from (XN, || - ||.)* onto ((X, | - [)*)N.

Next, we prove F is also a linear isomorphism. For any f,g € (XN, || ]l+)* and o, B € R = (—o00, +00),
we have,

Flaf +Bg)(x1,x2, -, xn) = ((«f + Bg)y, (xf + B2, - -+ («xf + Bg)In) (X1, %2, - -+, XN)
= (“(flleI' : 'rfN) + 6(91/ g2, QN))(XLXZ;‘ © XN )/
= (“Ff—i_ BFQ)(XLXZ/ © XN )/

so that
F(af+ pBg) = oFf + Fg.
In what follows, we prove ||Ff|| = ||f|| for all f € (XN, || - ||+)*. From the definition of F, we know,
N
Ff(xllx2l o '/XN) = Z fi(xi) = f(X1/X21 Yy XN)/
i=1

for all (xq,%2,--,xn) € XN = TﬂllX. We also know,

N
10¢ %2, el = | 3 Il = (%1, %2, - <), (in product of norm).
i=1

From above two hands, we know ||Ff|| = ||f|| for all f € (XV, || - ||«)*. This completes the proof. O
Question 2.3 (Open question). For any f € (XN, | - |l«)*, the (f1,f2, - -, fN) is defined by above. Is ||f|| =

v iy 2 right?

Lemma 2.4. Let X be a Banach space with the norm || - ||. Let ] : X — 2% be the duality mapping defined by
Jx ={fe X*:f(x) = |]x|* = f|*}, VxeX.

Foranyy = (y1,Y2,- -, Yn) € XN we consider the following functional

N
(6 Jey)e = ) O Jyi), Vx=(xa,x,- - xn) € XN,

i=1
Then the following conclusions hold:

(1) for any given y € XN, J.y is a linear continuous functional defined on XN and its functional value at x is
<X/ I*U > %7

@) forall x € XN, {x, Jux) = [x]2 = [[].x]%

Proof.
(1) For any x = (x1,%2,- -+, XN), 2= (21,22, - -, ZN) € XN and «, f € R = (—00,4+00), we have that
N
(o0 + Bz, Jy)u = Y _(oxi + Bzi, Jyi),
i=1

N
— Z(cx(xi, Jui) + B(zi, Jyi))
i=1
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N N
=a) (xi,Jy)+B Y (xi,Jyi)
i=1 i=1

= o{x, J.y) + B(z J+y).
That is, the functional J.y is linear. Next, we prove ],y is continuous. It is obvious that
N

li r)xY)x — li is i) =0.
lim (x, J.y). = lim ;m Jyi)
Hence ],y is continuous.
(2) From the definition of J.y, we have for all y = (yl,yz,- —,yn) € XN that
N
(U, Jey)e = ) (xi, x3) Z lysl® = Ilyll%,
i=1
and hence

Tylllylle = (v, Jey)e = lyll3-
That is, ||J«y|| = |[y|l+. On the other hand, we have by using Cauchy-Schwartz inequality that

I(x, J+y)l _ SN (i, Jyi)
I« SN Il
SN Ixallllyill
< i=1 1 1
N
> i lIxil?

N
D luil?
i=1

= [yl
for all x = (x1,%x2,---,xn) # 0. Hence ||J.y|| < ||y/«. From above results, we know that,

(Y, Jeyde = [Tl = [yl
for all y € XN. This completes the proof. O

Remark 2.5. From above Lemma 2.4, we know that,
Jo : XN — (XN)*,
is namely a branch of the normalized duality mapping Jn : XN — 2(X™)" defined by
In(x) ={f € (XT)" < (F,x) = [[£]* = [[x]I*},
for all x € XN. That is, J.(x) € Jn(x), for all x € XN.

Question 2.6 (Open question). Let X be a Banach space with the single-valued normalized duality mapping J. Is
JN single-valued?

3. Cartesian product of reflexive Banach space with Opial’s condition

Theorem 3.1. Let X be a reflexive Banach space with the norm || - ||, XN = X x X x - - x X be Cartesian product

space of X. Let
‘XH*_\ ZHXI VXZ(XLXZ/"'/XN)EXN-

Then (XN, || - ||+) is a reflexive Banach space.
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Proof. We only need to prove the reflexivity of (XN, || - ||+). Let ] be the natural embedded mapping from
X into its secondary conjugate space X**. For any x = (xq,%2,- - -, XN) € XN, we define a functional J% on
Banach space (X™, || [[.)*(= ((X, || - [N*)N) as follows

J()

J;kc(flleI T /fN)
N

> filxi),

i=1

for all f = (fy,fa,---,fn) € (XN, || - |[«)*, where f; € (X, || -])*, i=1,2,---,N. Observe that

Jx(f+9g) =Jx(f1+9g1,f2+ 92, -, fn+9nN)

and
Jx(of) = Jx (afp + ofp + - - - 4+ ofN)
N

D (orfi) (i)

i=1

for all
f= (f1/f2/' T /fN)/ g= (91/92/'” /gN) S (XN/ H . H*)* - ((X/H : H)*)N/

and « € R, where fi,gi € (X,|-|)*, i=1,2,---,N. Then J is a linear functional for all x € (X™, || - |.).
On the other hand, by Hélder inequality, we have

N () =1%(f1 + f2 4+ )

i=1 (3.1)

N N
<A DR D P
im1 im1

so that, the functional J} is continuous for all x € (XM, || - ||+).
From the above conclusion, we can define a mapping J* from Banach space (XN, || - ||.) into its sec-
ondary conjugate space (XV, || - ||«)** by the relation J* : x ~ J% for all x € (X", || - ||+). Next, we are going
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to prove that, the mapping J* is the natural embedded mapping from Banach space (XV, | - ||.) into its
secondary conjugate space (XM, || - ||.)**.

Firstly, by using Hahn-Banach theorem, we know, x,y € (XV,| - |ls), x # y implies that J; # Jy-
Secondly, for any x,y € (XN, |- [l+), & B € R, we have that

Joocrpy (f) = flox + By)
= af(x) 4 Bf(y)
= o L () + BJG (),
for all f € (XN, |- ||.)*. Hence
fox+By = O‘];Z + BI;

Thirdly, from the above inequality (3.1), we have that, [J3| < [x| for all x € (XN, |l - l+). On the other
hand, by using Hahn-Banach theorem, for any x € (X", || - ||.), there exists a fo € (X", || - ||«)* such that
Ifol =1, fo(x) = Ix|, hence |JX| > |J%(fo)| = |fo(x)| = |x|. Therefore, |J| = |x| for all x € (X", | -||+). That
is, the mapping J* is the natural embedded mapping from Banach space (XN, | - ||.) into its secondary
conjugate space (XM, || - [|.)**.

Finally, it is easy to see that the mapping J* can be also represented as

I* = (I/]I /])/

and
];kc = lel]Xz/' o /JXN)r

for all x = (x1,%2,- - -, xn) € XN. From the reflexivity of Banach space X, we know J(X) = X**, so that
T (XN, ]|+ [1+)) = (XN, || - |l.)**. This completes the proof of the reflexivity of Banach space (XN, || - ||.). O

Theorem 3.2. Let (X, || - ||) be a Banach space which satisfies Opial’s condition. Let XN = X x X x --- x X be
Cartesian product space of X. Let

N
Ixlle = | DIl ¥x = (xa,x2, - xn) € XN,
i=1

Then (XN, || - ||+) satisfies Opial’s condition.

Proof. Let
Xn = (Xl,n/XZ,n/ Yy XN,TI)/ n= ]-/ 2/ 3/ T

be a sequence which converges weakly to a point

X = (XllXZI t '/XN)/

in Banach space (XV,| - |«). From the process of proof of Theorem 3.1, we know that {x; »} converges
weakly to x; foralli=1,2,---,N. Since (X, | - ||) satisfies Opial’s condition, we have that

limsup ||xin —xi|| < limsup ||xin —yill,
n—o0 n—oo

for any
Yy = (91/92/' . '/UN) S (XN/ H : H*)’
and x # y which implies that

N
limsup ||xn, —x||x = limsup J D i —xill
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N
< limsup J Z [xi,n —Yill

= limsup || xn — Y|«
n—oo

Then (XN, || - ||«) satisfies Opial’s condition. This completes the proof. O

4. N-variables nonlinear mappings in normed spaces
Definition 4.1. Let X be a smooth Banach space with the norm | - ||. Let T : X™ — X be an N-variables
mapping.
(1) T is said to be nonexpansive, if
ITOa, %2, xn) =Ty, Y2, yN)I < i —vil, 1=1,23,--+N,
for any (x1,%2,- -+ xn), (Y1,Y2,- - yn) € XN;
(2) T is said to be pseudo-contractive, if
(TOa,x2, - xn) = Ty Y2, yn), Jxi —ya)) < I —vil®, 1=1,2,3,--N,
for any (x1,%2,- -, xn), (Y1, Y2, yn) € XN;
(3) T is said to be strongly pseudo-contractive, if there exists a constant k € (0,1) such that
(TOa,x2,- - xn) = Ty, Y2, - yn), Jxa —ya)) <kl —yil>, i=1,2,3,--N,
for any (x1,x2,- - xn), (Y1, Y2, yn) € XN;
(4) T is said to be monotone, if
(T, x2, - xn) =Ty, Y2, yn), Jxi—vi)) 20, 1=1,23,--+N,
for any (x1,x2,- - xn), (Y1, Y2, yn) € XN;
(5) T is said to be (3-strongly monotone, if
(T(x1,x2, 5 xn) =Ty, y2, - yn), Jxi—ui)) = Bllxi—wil’, 1=1,2,3,--+N,
for any (x1,%x2,---,xN), (Y1,Y2,- -, Yn) € XN,
(6) T is said to be a-inverse-strongly strong monotone, if
(Tha,xa, -+ xn) = Ty Y2, - yn), Jxi —yi)) = o T = Ty, 1=1,2,3,---N,
for any (x1,%x2,---,xN), (Y1,Y2,- -, Yn) € XN,
(7) T is said to be y-strongly positive, if
(T(x1,x2, - xN), Tk, X2, xn)) 2 Ikl 1=1,2,3,-+N,
for any (x1,%x2,---,xN) € XN,
(8) T is said to be k-strictly pseudo-contractive, if foralli=1,2,3,-- -, N,
Tt x2, - 3n) = Ty, y2, - yN)I < s = ya 2+ K (T=T) () — (T=T) () I,

for any x = (x1,%2, -, Xn), U = (Y1,Y2,- -, YN) € XN, where k € [0,1) is a constant.
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Remark 4.2. T is pseudo-contractive, if and only if foralli=1,2,3,---, N,
T, X2, -+ xn) = Ty, 92, yn)IP < i —yal P+ [[(T=T)(x) = (T=T)(y)|%,
fOI' any (XllXZI t 'IXN)I (yllyZI t '/yN) S XN'

Conclusion 4.3. Let T be an N-variables pseudo-contractive mapping from a smooth Banach space X into itself.
Let T* : XN — XN be a mapping defined by

T* (XlIXZI T '/XN) = (T(X1/X2/ c XN ),T(Xl, X2, /XN )/ o ‘/T(XllXZI © XN ))/
for any (x1,x2,+ -, xn) € XN. Then T* is a pseudo-contractive mapping from Banach space XN into itself.

Proof. From Lemma 2.4, we have for all (x1,x2,---,xn), (Y1,Y2,- -, Yn) € XN that

<T*(X1/X2/ c '/XN) _T*(y1/y2/ t ‘;UN); ]*((X1/X2/ © '/XN) - (91;142; o /UN))>*
=(T"(x1, %2, - xN) =T (Y1, Y2, - Yn), J«(x1 =y, x2 — Y2, XN —YnN))«

=) (Tx1,x2,--xNn) = T(Y1, Y2, - yn), J(xi —yi)))

i=1
N
<Y Ixi—wil?

:| (XllXZI t 'IXN) - (ULUZ/ t ;UN)Hi

From above inequality, we know that T* is a pseudo-contractive mapping from Banach space (XN, || - |.)
into itself. This completes the proof. O

Conclusion 4.4. Let T be an N-variables monotone mapping from a smooth Banach space X into itself. Let
T*: XN — XN be a mapping defined by
T (X11X2/ te 'IXN) = (T(X1/X2/ t ’,XN),T(Xl,XZ, XN )/ o '/T(X1/X2/ XN ))/
forany (x1,%2,- - -, XN) € XN, Then T* is a monotone mapping from Banach space XN into itself.
Proof. From Lemma 2.4, we have for all (xq,%x2,---,xn), (U1,Y2,- -, YN) € XN that
(T*(X1/X2/ t '/XN) _T*(UlrUZ/ o '/UN)I ]*((X1/X2/ t '/XN) - (91192/ te /UN))>*
=(T*(x1,x2, - xn) = T (Y1, Y2, - YN, J«(X1 —Y1, X2 = Y2, - -, XN —YN))«

N
:Z<T(X1/XZ/' o, XN) =Ty, Y2, - yn), J(xi —yi))) = 0.
im1

From above inequality, we know that T* is a monotone mapping from Banach space (XN, || - ||.) into itself.
This completes the proof. O

5. N fixed point operator equations with N-pseudo-contractive mapping

Theorem 5.1. Let T be an N-variables continuous strongly pseudo-contractive mapping from a smooth Banach
space X into itself. Then the system of N fixed point operator equation:
T(x1,1,%12,+X1,N) = X1,
T(x2,1, %22, X2,N) = X2,
T(x3,1,X32, X3N] = X3,
(5.1)

T(xi1, %12, Xi,N) = X4,

TXN1 XN2, - 5 XNND) = XN,
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has a unique solution x* = (xj,x5,- - -, XX ), where
Xi,1,X1,2, 7 X4{,Ny i= 112/3/' . '/N/

and
Xl,j/XZ,j/"'/XN,jl ] :1/2/3/"'/N/
are the permutations of elements x1,%2,X3, - -, Xn.

Proof. Let T* : XN — XN be a mapping defined by
T (x1,%x2, -, xN) = (T(x,1, %12, - x1,N), T(x2,1, %202, - - XaN), -+ T(XN1,XN 2, - 5 XNN D),
for any (x1,%x2,- -+, xN) € XN. From Lemma 2.4, we have that

<T*(X1/X2/ ©e '/XN) _T*(Ul/y2/ o 'IUN)/ ]*((XllXZI ©e '1XN) - (91,92/ t /UN))>*
=(T"(x1,x2, - xN) = T (Y1, Y2, Yn), Jolx1 =Yy, x2 — Y2, -, XN —YN))«

(T(xi,1, %12, - xi,N) — T(Yi1, Yi2 - - UiN), J(xi —yi)))

N
i=1
N
<D Kl =yl
i=1
= H X1,X2," '/XN) - (91;92, te '/UN)”i/
for all (x1,x2,--xn), (Y, Y2,--yn) € XN. From above inequality we know that T* is a k-strongly
pseudo-contractive mapping from Banach space (X™,| - [|.) into itself, where k € (0,1) is a constant.
By using Deimling’s theorem, the k-strongly pseudo-contractive mapping T* has a unique fixed point

X* = (x],x3,- -, X)) € XN such that

T*((XT,X;,' : 'IX*N)) - (XTIX;/. . '/X*N)‘

That is,
T(XT,l'XT,zf' . XT,N) =X,
T(x31, %50, X3 N) = %3,
T(X31, %30, X3 N) = X3,
' (5.2)
T(X?,lrxf,zz' . "Xf,N) =7,
T(X*er,x*lel. . X*N,N) = X%,
where
Xi1, X Xin, 1=1,2,3,--N,
and

* * * .
Xl,j’XZ,jI"'/XN,)'I ) :1,2’3,...,]\],
are the permutations of elements x},%3,x3, - - -, x};, which is consistent to the permutations:
Xi,1, X412, Xi,Ny i=1,2,3,---, N,
and
X15,X2,j,°* 7 XN,js ) :1’2,3,...,]\],

in the system of operator equations (5.1). From (5.2), we know that x* = (x],x3,%3,---,X}) is a unique
solution of (5.1). This completes the proof.
O
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Theorem 5.2. Let (X, || - ||) be a reflexive Banach space which satisfying Opial’s condition. Let T be an N-variables
continuous pseudo-contractive mapping from X into itself. Assume the range R(T) is bounded. Then the system of
N fixed point operator equation:

T(x1,1, %12, X1,N) = X1,
T(x21,%22, -, X2,N) = X2,
T(x3,1,%32,- - X3,N) = X3,
(5.3)

T(xi1, %12, Xi,N) = X{,

TN XN2/ XN ND = XN,
has at least one solution x* = (xj, x5, -, x\), where

Xil1,Xi’2,- . 'rXi,N/ 1= 1,2,3,- . -,N,
and

Xl,j/XZ,j/' . ',XN,)', ) = 1,2,3,' . ',N,
are the permutations of elements x1,X2,X3,* * *, Xn.

Proof. Let T* : XN — XN be a mapping defined by

T (x1, %2, -, xnN) = (Tx1,1, %12, X1,N ), T(x2,1, %22, - XaN ), TOXN L, XN2, - XNOND ),

for any (x1,%x2,---,XxN) € XN. From Lemma 2.4, we have that

(T*(x1,%x2, - xN) = T (Y, Y2, - - uUN), Jel(x1, %2, xN) — (U1, Y2, - 5 UN) ) )«
=(T"(x1,%x2,- -, xN) = T (U, Y2, - - UN), Je(X1 — Y1, X2 — Y2, -, XN —UN) )«

N
=Y (T2 xun) = T, Yiz - 5 Yin), T —ui)))
im1

N

< xi—wil?
i=1

:H(X]/XZ/ t '/XN) - (911‘92/ o IUN)H%{I

for all (x1,%2,---xn), (Y,Y2,---yn) € XN. From above inequality, we know that T* is a pseudo-
contractive mapping from Banach space (X™, ||-|.) into itself. Since T is continuous, so that T* is also
continuous. Since the range R(T) is bounded in X, so that the range R(T*) is also bounded in XN,
Therefore T* is strong invariant. From Theorem 3.1 and Theorem 3.2, we know that (X", || -|.) is a
reflexive Banach space which satisfying Opial’s condition. By using Theorem 1.5, the continuous pseudo-
contractive mapping T* has at least one fixed point x* = (x},x3, - - -, x}) € X" such that
T*((XT/XEI te '/XT\I)) = (X:TIX;I te '/XT\j)-

That is,
TOG 1, X0 X N) = X1,
TG %90, X N) = %3,
TO31,%3,, 3 N8) =3,

: (5.4)

T(x{l,xfrz,- : "Xi,N) =X
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where
* * * .
Xill,Xilz,"‘,Xi’N, 121,2,3,"‘,]\],

and
* k * .
X1,j1X2,j/"'/XN,j/ ) :1/2/3/"'/N1

are the permutations of elements x},x3, x5, - - -,x%, which is consistent to the permutations:
Xi1, %2, - X,N, 1=1,2,3,---N,

and
Xl,j/XZ,j/"'IXN,j/ ) :112/3/"'/N1

in the system of operator equations (5.3). From (5.4), we know that, x* = (x],x5,%3,- - -, x},) is a solution
of (5.3). This completes the proof. O

Theorem 5.3. Let (X, || - ||) be a reflexive Banach space which satisfying Opial’s condition. Let T be an N-variables
nonexpansive mapping from X into itself. Assume the range R(T) is bounded. Then the system of N fixed point
operator equation:

T(x1,1, %12, X1,N) = X1,
T(x21,%22, -+, X2,N) = X2,
T(x3,1,%32, -, X3,N) = X3,

T(xi,1, %12, Xi,N) = X4,

TOXN XN2, - XNND) = XN,
has at least one solution x* = (xj, x5, -, x\), where
Xi,1,X,2, 7 X4{,Ny i= l/2131' . '/N/

and
Xl,j/XZ,j/"'/XN,j/ J :1/2/31"'/N/

are the permutations of elements x1,X2,X3, - - -, Xn.

Proof. We only need to check that, every N-variables nonexpansive mapping must be N-variables contin-
uous pseudo-contractive mapping. In fact that if T is an N-variables nonexpansive mapping, then

IT(x1,x2, - xn) =Ty, vz, - ynN)l < [Ixi —vill, 1=1,2,3,---N,
for any (x1,%x2,- -+, XN), (U1,Y2,- -, YN) € XN In this case, we have that

’T(XLXZ/ t '/XN) _T(y1192/ s ‘/UN)H”Xi _UIH
’Xi_yi”zl 12112/3/"'/N/

(T(x1,x2,+ - xn) — T(Y1, Y2, - yn) J(xi —yi))

for any (x1,x2, -+, xn), (Y1,Y2,-- -, yn) € XN. So that, T is an N-variables pseudo-contractive mapping. It
is obvious that T is also continuous. This completes the proof. O
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