ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Some explicit identities for the modified higher-order degenerate q-Euler polynomials and their zeroes

Lee-Chae Jang^a, Byung Moon Kim^{b,*}, Sang-Ki Choi^c, C. S. Ryoo^d, D. V. Dolgy^{e,f}

^aGraduate School of Education, Konkuk University, Seoul 143-701, Republic of Korea.

^bDepartment of Mechanical System Engineering, Dongguk University, Gyeongju, 780-714, Korea.

^cDepartment of Mathematics Education, Konkuk University, Seoul 143-701, Republic of Korea.

^dDepartment of Mathematics, Hannam University, Daejeon 306-791, Republic of Korea.

^eHanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea.

^fInstitute of Natural Sciences, Far eastern Federal University, Vladivostok 690950, Russia.

Communicated by Y. H. Yao

Abstract

Recently, Kim et al. [D. S. Kim, T. Kim, Ars Combin., **126** (2016), 435–441], [D. S. Kim, T. Kim, J. Nonlinear Sci. Appl., **9** (2016), 443–451], [T. Kim, D. S. Kim, H.-I. Kwon, Filomat, **30** (2016), 905–912] and [T. Kim, D. S. Kim, H.-I. Kwon, J.-J. Seo, D. V. Dolgy, J. Nonlinear Sci. Appl., **9** (2016), 1077–1082] studied symmetric identities of higher-order degenerate q-Euler polynomials. In this paper, we define the modified higher-order degenerate q-Euler polynomials and give some identities for these polynomials. Also we give numerical investigations of the zeroes of the modified higher-order q-Euler polynomials and the zeroes of the modified higher-order degenerate q-Euler polynomials.

Furthermore, we demonstrate the shapes and zeroes of the modified higher-order q-Euler polynomials and the modified higher-order degenerate q-Euler polynomials by using a computer. ©2017 All rights reserved.

Keywords: Identities of symmetry, modified q-Euler polynomials, modified higher-order degenerate q-Euler polynomials. 2010 MSC: 11B68, 11S80, 05A19, 05A30.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, \mathbb{Z}_p , \mathbb{Q}_p , and \mathbb{C}_p denote the ring of padic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of \mathbb{Q}_p , respectively. We normalized the p-adic norm as $|p|_p = \frac{1}{p}$. Let q be an indeterminate in \mathbb{C}_p such that $|1-q|_p < p^{-\frac{1}{p-1}}$ and the q-analogue of the number x is defined as $[x]_q = \frac{1-q^x}{1-q}$. Note that $\lim_{q\to 1} [x]_q = x$. Let f(x) be a continuous function on \mathbb{Z}_p . Then, the p-adic q-integral on \mathbb{Z}_p is defined by Kim et al.

doi:10.22436/jnsa.010.05.21

^{*}Corresponding author

Email addresses: lcjang@konkuk.ac.kr (Lee-Chae Jang), kbm713@dongguk.ac.kr (Byung Moon Kim), schoi@konkuk.ac.kr (Sang-Ki Choi), ryoocs@hnu.kr (C. S. Ryoo), d_dol@mail.ru (D. V. Dolgy)

(see [11–13, 18, 20]) to be

$$I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} \sum_{x=0}^{p^N-1} f(x) (-q)^x = \frac{[2]_q}{2} \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x) q^x (-1)^x, \quad (1.1)$$

where $[x]_{-q} = \frac{1-(-q)^x}{1+q}$. Note that

$$\lim_{q \to 1} \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N - 1} f(x) (-1)^x = \int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x)$$
(1.2)

is the ordinary fermionic p-adic integral on \mathbb{Z}_p (see [2, 4, 5, 9, 14, 17, 19, 22, 25, 26]). From (1.1), we have

$$qI_{-q}(f_1) + I_{-q}(f) = [2]_q f(0), \text{ where } f_1(x) = f(x+1).$$
 (1.3)

From (1.2), we have

$$I_{-1}(f_1) + I_{-1}(f) = 2f(0), \text{ where } f_1(x) = f(x+1).$$
 (1.4)

Recall that the Carlitz's q-Euler numbers are defined by the p-adic q-integral on \mathbb{Z}_p as follows:

$$\int_{\mathbb{Z}_p} [x]_q^m d\mu_{-q}(x) = \mathcal{E}_{m,q} \quad (\text{see } [10, \ 12]).$$

From (1.3) with $f(x) = [x]_q^m$, we can derive

$$q \int_{\mathbb{Z}_p} [x+1]_q^m d\mu_{-q}(x) + \int_{\mathbb{Z}_p} [x]_q^m d\mu_{-q}(x) = \begin{cases} [2]_q, & \text{if } m = 0, \\ 0, & \text{if } m > 0. \end{cases}$$

We note that

$$[x+1]_{q}^{m} = \left(\frac{1-q^{x+1}}{1-q}\right)^{m} = (1+q[x]_{q})^{m} = \sum_{l=0}^{m} \binom{m}{l} q^{l} [x]_{q}^{l}$$
(1.5)

and hence

$$\int_{\mathbb{Z}_p} [x+1]_q^m d\mu_{-q}(x) = \sum_{l=0}^m \binom{m}{l} q^l \int_{\mathbb{Z}_p} [x]_q^l d\mu_{-q}(x) = \sum_{l=0}^m \binom{m}{l} q^l \mathcal{E}_{l,q} = (q\mathcal{E}_q + 1)^m.$$
(1.6)

Combining (1.6) and (1.3), the Carlitz's q-Euler numbers $\mathcal{E}_{m,q}$ satisfy as follows:

$$q(q\mathcal{E}_{q}+1)^{m} + \mathcal{E}_{m,q} = \begin{cases} [2]_{q}, & \text{if } m = 0, \\ 0, & \text{if } m > 0, \end{cases}$$

with the usual convention about replacing \mathcal{E}_q^m by $\mathcal{E}_{m,q}$, (see [1, 3–5, 8]). Then, the modified q-Euler numbers $E_{m,q}$ are defined by Kim et al. (see [8, 12, 23]) as follows:

$$\int_{\mathbb{Z}_p} [x]_q^m d\mu_{-1}(x) = \mathsf{E}_{m,q}.$$

From (1.5), we have

$$\int_{\mathbb{Z}_p} [x+1]_q^m d\mu_{-1}(x) = \sum_{l=0}^m \binom{m}{l} q^l \int_{\mathbb{Z}_p} [x]_q^l d\mu_{-1}(x) = \sum_{l=0}^m \binom{m}{l} q^l \mathsf{E}_{l,q} = (q\mathsf{E}_q + 1)^m.$$
(1.7)

Combining (1.7) and (1.4), the modified q-Euler numbers $E_{m,q}$ satisfy the followings:

$$(qE_q + 1)^m + E_{m,q} = \begin{cases} 2, & \text{if } m = 0, \\ 0, & \text{if } m > 0. \end{cases}$$
(1.8)

It is well-known that the Euler numbers are defined by the generating function

$$\frac{2}{e^{t}+1} = e^{Et} = \sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!},$$
(1.9)

with the usual convention about replacing E^n by E_n . From (1.9), we have

$$2 = e^{\mathsf{Et}}(e^{\mathsf{t}}+1) = e^{(\mathsf{E}+1)\mathsf{t}} + e^{\mathsf{Et}} = \sum_{n=0}^{\infty} \left((\mathsf{E}+1)^n + \mathsf{E}_n \right) \frac{\mathsf{t}^n}{n!}.$$

Thus, we have

$$(E+1)^{n} + E_{n} = \begin{cases} 2, & \text{if } n = 0, \\ 0, & \text{if } n > 0. \end{cases}$$
(1.10)

We note that $\lim_{q\to 1} E_{n,q} = E_n$ and that if q approaches to 1, then the equation (1.8) is equal to the equation (1.10).

The purpose of this paper is to define the modified higher-order degenerate q-Euler polynomials which are defined from fermionic p-adic integral on \mathbb{Z}_p and to give some explicit identities for those polynomials. Furthermore, we demonstrate the shapes of the modified higher-order q-Euler polynomials $E_{n,q}^{(r)}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ (see Figure 1) and investigated the zeroes of $E_{n,q}^{(r)}(x)$ and $E_{n,\lambda,q}^{(r)}(x)$ by using a computer.

2. The modified higher-order degenerate q-Euler polynomials

Let $r \in \mathbb{N}$ and $\lambda, t \in \mathbb{C}$ be such that $|\lambda t|_p < p^{-\frac{1}{p-1}}$. We note that if we take $f(x) = e^{xt}$, then, by (1.4), we have

$$\int_{\mathbb{Z}_p} e^{xt} d\mu_{-1}(x) = \frac{2}{e^t + 1}, \quad (\text{see } [14, 16, 17, 19]).$$
(2.1)

By (2.1), we have

$$\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{(x_{1}+x_{2}+\dots+x_{r})t} d\mu_{-1}(x_{1}) \cdots d\mu_{-1}(x_{r}) = \int_{\mathbb{Z}_{p}} e^{x_{1}t} d\mu_{-1}(x_{1}) \cdots \int_{\mathbb{Z}_{p}} e^{x_{r}t} d\mu_{-1}(x_{r}) = \int_{\mathbb{Z}_{p}} e^{(x_{1}+x_{2}+\dots+x_{r})t} d\mu_{-1}(x_{r}) d\mu_{-1}(x_{r}) = \int_{\mathbb{Z}_{p}} e^{(x_{1}+x_{2}+\dots+x_{r})t} d\mu_{-1}(x_{r}) d$$

where $E_n^{(r)}$ are called the higher-order Euler numbers (see [15, 19, 26]). We also note that

$$\underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p}}_{r\text{-times}} e^{(x_1 + x_2 + \dots + x_r)t} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)$$

$$= \sum_{n=0}^{\infty} \underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p}}_{r\text{-times}} (x_1 + \dots + x_r)^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r) \frac{t^n}{n!}.$$
(2.3)

From (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. Let $n \in \mathbb{N} \cup \{0\}$. Then we have

$$\mathsf{E}_{\mathfrak{n}}^{(r)} = \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{r\text{-times}} (x_{1} + \cdots + x_{r})^{\mathfrak{n}} d\mu_{-1}(x_{1}) \cdots d\mu_{-1}(x_{r}).$$

In [11], the modified higher-order q-Euler numbers are defined by Kim to be

$$\mathsf{E}_{n,q}^{(r)} = \underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p}}_{r\text{-times}} [x_1 + x_2 + \cdots + x_r]_q^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r).$$

The next diagram illustrates the variations of several types of degenerate q-Euler polynomials and numbers. Those polynomials in the first row and the third row of the diagram are introduced by Carliz et al. [1, 3–5, 8] and Kim et al. [12, 18, 20], respectively. A research of these has yielded fruitful results in number theory and combinatorics (see [6, 7, 21, 24]). The motivation of this paper is to investigate some explicit identities for those polynomials in the second row of the diagram.

$$\begin{split} \int_{\mathbb{Z}_{p}} (1+\lambda t)^{\frac{[x+y]q}{\lambda}} d\mu_{-q}(y) & \int_{\mathbb{Z}_{p}} (1+\lambda t)^{\frac{[x_{1}+x_{2}+\dots+x_{r}+x]q}{\lambda}} d\mu_{-q}(x_{1})\cdots d\mu_{-q}(x_{r}) \\ &= \sum_{n=0}^{\infty} \mathcal{E}_{n,\lambda,q}(x) \frac{t^{n}}{n!} & \sum_{n=0}^{\infty} \mathcal{E}_{n,\lambda,q}(x) \frac{t^{n}}{n!} \\ (\text{degenerate q-Euler polynomials}) \\ (\text{see [12, 18, 20]}) & (\text{see [12, 18, 20]}) \\ & \\ \int_{\mathbb{Z}_{p}} (1+\lambda t)^{\frac{[x+y]q}{\lambda}} d\mu_{-1}(y) & (\text{higher-order degenerate q-Euler polynomials}) \\ & \\ \int_{\mathbb{Z}_{p}} (1+\lambda t)^{\frac{[x+y]q}{\lambda}} d\mu_{-1}(y) & (\text{higher-order degenerate q-Euler polynomials}) \\ & \\ \int_{\mathbb{Z}_{p}} e^{[x+y]q} t d\mu_{-1}(y) & (\text{modified degenerate q-Euler polynomials}) \\ & \\ \int_{\mathbb{Z}_{p}} e^{[x+y]q} t d\mu_{-1}(y) & (\text{modified higher-order degenerate q-Euler polynomials}) \\ & \\ \int_{\mathbb{Z}_{p}} e^{[x+y]q} t d\mu_{-1}(y) & (\text{modified higher-order degenerate q-Euler polynomials}) \\ & \\ (\text{modified q-Euler polynomials}) & (\text{see [8, 12, 23]}) & (\text{see [8, 12, 23]}) \end{aligned}$$

Recently, Kim defined the higher-order degenerate q-Euler polynomials given by the generating function (see [18, 20]) as follows:

$$\underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p}}_{r\text{-times}} (1+\lambda t)^{\frac{[x_1+x_2+\cdots+x_r+x]_q}{\lambda}} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_r) = \sum_{n=0}^{\infty} \mathcal{E}_{n,\lambda,q}^{(r)}(x) \frac{t^n}{n!}.$$

Accordingly, we define the modified higher-order degenerate q-Euler polynomials given by the generating function as follows:

$$\underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p}}_{r\text{-times}} (1+\lambda t)^{\frac{1}{\lambda}[x_1+\dots+x_r+x]_q} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r) = \sum_{n=0}^{\infty} \mathsf{E}_{n,\lambda,q}^{(r)}(x) \frac{t^n}{n!}.$$
(2.4)

Note that $\lim_{\lambda \to 0} E_{n,\lambda,q}^{(r)}(x) = E_{n,q}^{(r)}(x)$, where $E_{n,q}^{(r)}(x)$ are the higher-order q-Euler polynomials.

We observe that

$$(1+\lambda t)^{\frac{1}{\lambda}[x_{1}+\dots+x_{r}+x]_{q}} = \sum_{n=0}^{\infty} \left(\frac{\frac{1}{\lambda}[x_{1}+\dots+x_{r}+x]_{q}}{n}\right)\lambda^{n}t^{n}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{\lambda}[x_{1}+\dots+x_{r}+x]_{q}\right)_{n}\frac{\lambda^{n}}{n!}t^{n}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{\lambda}[x_{1}+\dots+x_{r}+x]_{q}\right)\left(\frac{1}{\lambda}[x_{1}+\dots+x_{r}+x]_{q}-1\right)$$

$$\cdots \left(\frac{1}{\lambda}[x_{1}+\dots+x_{r}+x]_{q}-n+1\right)\lambda^{n}\frac{t^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} \left([x_{1}+x_{2}+\dots+x_{r}+x]_{q}\right)\left([x_{1}+x_{2}+\dots+x_{r}+x]_{q}-\lambda\right)$$

$$\cdots \left([x_{1}+x_{2}+\dots+x_{r}+x]_{q}-(n-1)\lambda\right)\frac{t^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} \left([x_{1}+x_{2}+\dots+x_{r}+x]_{q}\right)_{n,\lambda}\frac{t^{n}}{n!},$$

$$([x]_{q})_{n,\lambda} = [x]_{q}([x]_{q}-\lambda)([x]_{q}-2\lambda)\cdots([x]_{q}-(n-1)\lambda). By (2.4), we have$$

$$\underbrace{\int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} (1+\lambda t)^{\frac{1}{\lambda}[x_{1}+\dots+x_{r}+x]_{q}}d\mu_{-1}(x_{1})\cdots d\mu_{-1}(x_{r})$$

$$(2.6)$$

$$=\sum_{n=0}^{\infty}\underbrace{\int_{\mathbb{Z}_p}\cdots\int_{\mathbb{Z}_p}}_{r\text{-times}}\left([x_1+x_2+\cdots+x_r+x]_q\right)_{n,\lambda}d\mu_{-1}(x_1)\cdots d\mu_{-1}(x_r)\frac{t^n}{n!}.$$
(2.6)

Using (2.4) and (2.6), we obtain the following Witt's formula.

Theorem 2.2 (Witt's formula). For $n \in \mathbb{N} \cup \{0\}$, we have

$$\underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p}}_{r\text{-times}} \left([x_1 + x_2 + \dots + x_r + x]_q \right)_{n,\lambda} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r) = \mathsf{E}_{n,\lambda,q}^{(r)}(x).$$
(2.7)

We observe that

where

$$\left([x_1 + x_2 + \dots + x_r + x]_q \right)_{n,\lambda} = \sum_{l=0}^n S_1(n,l) \lambda^{n-l} [x_1 + x_2 + \dots + x_r + x]_q^l,$$
(2.8)

where $S_1(n, l)$ is the Stirling numbers of the first kind. By (2.7) and (2.8), we have

$$\begin{split} \mathsf{E}_{n,\lambda,q}^{(r)}(\mathbf{x}) &= \underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p}}_{r\text{-times}} \left([x_1 + x_2 + \dots + x_r + x]_q \right)_{n,\lambda} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r) \\ &= \sum_{l=0}^n \mathsf{S}_1(n,l) \lambda^{n-1} \underbrace{\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p}}_{r\text{-times}} [x_1 + x_2 + \dots + x_r + x]_q^l d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r) \\ &= \sum_{l=0}^n \mathsf{S}_1(n,l) \lambda^{n-l} \mathsf{E}_{l,q}(\mathbf{x}). \end{split}$$

Thus, we obtain the following theorem.

Theorem 2.3. For $n \in \mathbb{N} \cup \{0\}$, we have

$$\mathsf{E}_{\mathfrak{n},\lambda,\mathfrak{q}}^{(r)}(x) = \sum_{\mathfrak{l}=0}^{\mathfrak{n}} \mathsf{S}_{1}(\mathfrak{n},\mathfrak{l})\lambda^{\mathfrak{n}-\mathfrak{l}}\mathsf{E}_{\mathfrak{l},\mathfrak{q}}^{(r)}(x).$$

Remark that $\lim_{\lambda\to 0} E_{n,\lambda,q}^{(r)}(x) = E_{n,q}^{(r)}(x)$ are the modified higher-order q-Euler polynomials and that $\lim_{q\to 1} E_{n,q}^{(r)}(x) = E_n^{(r)}(x)$ are the higher-order Euler polynomials. We note that

$$\begin{split} \mathsf{E}_{n,q} &= \int_{\mathbb{Z}_p} [x]_q^n d\mu_{-1}(x) \\ &= \frac{1}{(1-q)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \int_{\mathbb{Z}_p} q^{lx} d\mu_{-1}(x) \\ &= \frac{1}{(1-q)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \lim_{N \to \infty} \sum_{x=0}^{p^N - 1} (-1)^x q^{lx} \\ &= \frac{1}{(1-q)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \lim_{N \to \infty} \frac{1+q^{lp^N}}{1+q^l} \\ &= \frac{2}{(1-q)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \sum_{m=0}^\infty (-1)^m q^{ml} \\ &= 2 \sum_{m=0}^\infty \frac{(-1)^m}{(1-q)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l q^{ml} \\ &= 2 \sum_{m=0}^\infty (-1)^m ([m]_q)^n. \end{split}$$

Summarizing this, we have the following equation.

Theorem 2.4. For $n \in \mathbb{N} \cup \{0\}$, we have

$$E_{n,q} = \int_{\mathbb{Z}_p} [x]_q^n d\mu_{-1}(x) = 2 \sum_{m=0}^{\infty} (-1)^m [m]_q^n.$$

For $r \in \mathbb{N}$, we derive

$$E_{n,q}^{(r)}(\mathbf{x}) = \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} [x_{1} + x_{2} + \dots + x_{r} + \mathbf{x}]_{q}^{n} d\mu_{-1}(x_{1}) \cdots d\mu_{-1}(x_{r})}_{r-\text{times}}$$

$$= \left(\frac{1}{1-q}\right)^{n} \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} (1 - q^{x_{1} + \dots + x_{r} + \mathbf{x}})^{n} d\mu_{-1}(x_{1}) \cdots d\mu_{-1}(x_{r})}_{r-\text{times}}$$

$$= \left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{(x_{1} + \dots + x_{r} + \mathbf{x})l} d\mu_{-1}(x_{1}) \cdots d\mu_{-1}(x_{r})}_{r-\text{times}}$$

$$= \frac{1}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \left(\lim_{N \to \infty} \sum_{x_{1}, \cdots, x_{r}=0}^{p^{N}-1} (-1)^{x_{1} + \dots + x_{r}} q^{lx_{1} + \dots + lx_{r}}\right) q^{lx}$$
(2.9)

$$\begin{split} &= \frac{1}{(1-q)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \left(\frac{2}{1+q^l}\right) \left(\frac{2}{1+q^l}\right) \cdots \left(\frac{2}{1+q^l}\right) q^{lx} \\ &= \frac{2^r}{(1-q)^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \sum_{m_1, \cdots, m_r=0}^{\infty} (-1)^{m_1+\dots+m_r} q^{lm_1+\dots+lm_r} q^{lx} \\ &= \frac{2^r}{(1-q)^n} \sum_{m_1, \cdots, m_r=0}^{\infty} (-1)^{m_1+\dots+m_r} \sum_{l=0}^n \binom{n}{l} (-1)^l q^{l(m_1+m_2+\dots+m_r+x)} \\ &= 2^r \sum_{m_1, \cdots, m_r=0}^{\infty} (-1)^{m_1+\dots+m_r} [m_1+\dots+m_r+x]_q^n. \end{split}$$

By (2.9), we obtain the following theorem.

Theorem 2.5. For $n \in \mathbb{N} \cup \{0\}$, we have

$$\mathsf{E}_{n,q}^{(r)}(x) = 2^{r} \sum_{\mathfrak{m}_{1},\cdots,\mathfrak{m}_{r}=0}^{\infty} (-1)^{\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{r}} [\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{r}+x]_{\mathfrak{q}}^{\mathfrak{n}}, \quad (\text{see}\,[8,\,12,\,23]).$$

Theorem 2.6. For $w_1, w_2, \dots, w_n \in \mathbb{N}$ with $w_i \equiv 1 \pmod{2}$, $(i = 1, 2, \dots, n)$, and $m \ge 0$, the following expressions

$$\sum_{p=0}^{m} \sum_{i=0}^{p} {p \choose i} \lambda^{m-p} S_{1}(m,p) \left(\frac{[w_{\sigma(n)}]_{q}}{\left[\prod_{j=1}^{n-1} w_{\sigma(j)} \right]_{q}} \right)^{p-i} \times \mathcal{E}_{i,q^{w_{\sigma(1)}w_{\sigma(2)}\cdots w_{\sigma(n-1)}}(w_{\sigma(n)}x) T_{n,q^{w_{\sigma(n)}}}^{(p)}(w_{\sigma(1)},\cdots,w_{\sigma(n-1)}|i+1)$$

are the same for any permutation σ in the symmetry group of degree n.

3. The modified higher-order degenerate q-Euler polynomials and the higher-order q-zeta functions

In [11, 12], Kim introduced the generating function of the higher-order q-Euler polynomials. From the generating function of the higher-order q-Euler polynomials, we have

$$F_{q}^{(r)}(x,t) = \sum_{n=0}^{\infty} E_{n,q}^{(r)}(x) \frac{t^{n}}{n!}$$

$$= 2^{r} \sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}} \sum_{n=0}^{\infty} [m_{1}+\cdots+m_{r}+x]_{q}^{n} \frac{t^{n}}{n!}$$

$$= 2^{r} \sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}} e^{[m_{1}+\cdots+m_{r}+x]_{q}t}, \quad (\text{see } [12, 18, 20]).$$
(3.1)

From (3.1), Kim [11] defined the higher-order q-zeta functions as follows:

$$\zeta_{E,q}^{(r)}(s,x) = \frac{1}{\Gamma(s)} \int_0^\infty F_q^{(r)}(x,-t) t^{s-1} dt,$$
(3.2)

where $\Gamma(s) = \int_0^\infty y^{s-1} e^{-y} dy$. By (3.1) and (3.2) we derive

$$\begin{split} \zeta_{\mathsf{E},\mathsf{q}}^{(r)}(s,x) &= \frac{1}{\Gamma(s)} 2^{r} \sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}} \int_{0}^{\infty} e^{-[m_{1}+\cdots+m_{r}+x]_{\mathsf{q}}t} t^{s-1} dt \\ &= \frac{2^{r}}{\Gamma(s)} \sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}} \frac{1}{[m_{1}+\cdots+m_{r}+x]_{\mathsf{q}}^{s}} \int_{0}^{\infty} y^{s-1} e^{-y} dy \\ &= 2^{r} \sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}} \frac{1}{[m_{1}+\cdots+m_{r}+x]_{\mathsf{q}}^{s}}. \end{split}$$
(3.3)

By (3.3), we obtain the following theorem.

Theorem 3.1. *For* $r \in \mathbb{N}$ *,* $s \in \mathbb{C}$ *with* Re(s) > 0*, we have*

$$\zeta_{E,q}^{(r)}(s,x) = 2^{r} \sum_{m_{1},\cdots,m_{r}=0}^{\infty} \frac{(-1)^{m_{1}+\cdots+m_{r}}}{[m_{1}+\cdots+m_{r}+x]_{q}^{s}}, \quad (\text{see [11, 12]}).$$

For $s, x \in \mathbb{C}$ with Re (x) > 0, $a_1, \dots, a_r \in \mathbb{C}$, the Barnes-type multiple q-zeta functions are defined by Kim [12] as follows:

$$\zeta_{E,q}^{(r)}(s,x|w_1,\cdots,w_r;a_1,\cdots,a_r) = 2^r \sum_{m_1,\cdots,m_r=0}^{\infty} \frac{(-1)^{m_1+\cdots+m_r}q^{m_1a_1+\cdots+m_ra_r}}{[x+w_1m_1+\cdots+w_rm_r]_q^s},$$

where the parameters w_1, \dots, w_r are positive. Note that $\zeta_{\mathsf{E},\mathsf{q}}^{(\mathsf{r})}(\mathsf{s},\mathsf{x}|1,\dots,1;0,\dots,0) = \zeta_{\mathsf{E},\mathsf{q}}^{(\mathsf{r})}(\mathsf{s},\mathsf{x})$. By (3.1), we have

$$\zeta_{\mathsf{E},\mathsf{q}}^{(r)}(s,x) = \frac{1}{\Gamma(s)} \int_0^\infty \mathsf{F}_\mathsf{q}^{(r)}(x,-t) t^{s-1} dt = \frac{1}{\Gamma(s)} \sum_{\mathsf{m}=0}^\infty \mathsf{E}_{\mathsf{m},\mathsf{q}}^{(r)}(x) \frac{(-1)^\mathsf{m}}{\mathsf{m}!} \int_0^\infty t^{s-1+\mathsf{m}} dt. \tag{3.4}$$

Let s = -n ($n \in \mathbb{N}$). Then, by (3.4), we have

$$\begin{aligned} \zeta_{\mathsf{E},\mathsf{q}}^{(r)}(-\mathsf{n},\mathsf{t}) &= \lim_{s \to -\mathsf{n}} \frac{1}{\Gamma(s)} \sum_{\mathsf{m}=0}^{\infty} \mathsf{E}_{\mathsf{m},\mathsf{q}}^{(r)}(\mathsf{x}) \frac{(-1)^{\mathsf{m}}}{\mathsf{m}!} \int_{0}^{\infty} \mathsf{t}^{-\mathsf{n}-1+\mathsf{m}} d\mathsf{t} \\ &= \left(\lim_{s \to -\mathsf{n}} \frac{1}{\Gamma(s)}\right) \left(\mathsf{E}_{\mathsf{n},\mathsf{q}}^{(r)}(\mathsf{x}) \frac{(-1)^{\mathsf{n}}}{\mathsf{n}!}\right) 2\pi \mathsf{i} \\ &= \frac{\mathsf{n}!}{2\pi \mathsf{i}} (-1)^{\mathsf{n}} \mathsf{E}_{\mathsf{n},\mathsf{q}}^{(r)}(\mathsf{x}) \frac{(-1)^{\mathsf{n}}}{\mathsf{n}!} 2\pi \mathsf{i} = \mathsf{E}_{\mathsf{n},\mathsf{q}}^{(r)}(\mathsf{x}). \end{aligned}$$
(3.5)

where

$$\Gamma(-n) = \int_0^\infty e^{-t} t^{-n-1} dt = \lim_{t \to 0} 2\pi i \frac{1}{n!} \left(\frac{d}{dt} \right)^n \left(t^{n+1} e^{-t} t^{-n-1} \right) = 2\pi i \frac{1}{n!} (-1)^n \lim_{t \to 0} e^{-t} = 2\pi i \frac{1}{n!} (-1)^n.$$

By (3.5), we obtain the following theorem.

Theorem 3.2. *For* $n \in \mathbb{N}$ *, we have*

$$\zeta_{E,q}^{(r)}(-n,x) = E_{n,q}^{(r)}(x), \text{ (see [12])}.$$

From Theorem 2.3 and Theorem 2.5, and (2.8), we have

$$E_{n,\lambda,q}^{(r)}(x) = \sum_{l=0}^{n} S_{1}(n,l)\lambda^{n-l}E_{l,q}^{(r)}(x)$$

$$= 2^{r}\sum_{l=0}^{n}\sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}}[m_{1}+\cdots+m_{r}+x]_{q}^{l}S_{1}(n,l)\lambda^{n-l}$$

$$= 2^{r}\sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}}\sum_{l=0}^{n}[m_{1}+\cdots+m_{r}+x]_{q}^{l}S_{1}(n,l)\lambda^{n-l}$$

$$= 2^{r}\sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}}\left([m_{1}+\cdots+m_{r}+x]_{q}\right)_{n,\lambda}.$$
(3.6)

By (3.6), we obtain the following theorem.

Theorem 3.3. For $n \in \mathbb{N} \cup \{0\}$, we have

$$\mathsf{E}_{n,\lambda,q}^{(r)}(x) = 2^{r} \sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}} \Big([m_{1}+\cdots+m_{r}+x]_{\mathfrak{q}} \Big)_{n,\lambda}.$$
(3.7)

Applying (3.7) and using (2.5), we have

$$\sum_{n=0}^{\infty} E_{n,\lambda,q}^{(r)}(x) \frac{t^{n}}{n!} = 2^{r} \sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}} \sum_{n=0}^{\infty} \frac{\left([m_{1}+\cdots+m_{r}+x]_{q}\right)_{n,\lambda}t^{n}}{n!}$$

$$= 2^{r} \sum_{m_{1},\cdots,m_{r}=0}^{\infty} (-1)^{m_{1}+\cdots+m_{r}} (1+\lambda t)^{\frac{[m_{1}+\cdots+m_{r}+x]_{q}}{\lambda}}.$$
(3.8)

By (3.8), we obtain the following theorem.

Theorem 3.4. For $r \in \mathbb{N}$, we have

$$\sum_{n=0}^{\infty} \mathsf{E}_{n,\lambda,q}^{(r)}(x) \frac{t^n}{n!} = 2^r \sum_{m_1,\cdots,m_r=0}^{\infty} (-1)^{m_1+\cdots+m_r} (1+\lambda t)^{\frac{[m_1+\cdots+m_r+x]_q}{\lambda}}.$$
(3.9)

Replacing t by $\frac{1}{\lambda}(e^{\lambda t}-1)$ in (3.9), and by using (3.1), we have

$$\sum_{m=0}^{\infty} \mathsf{E}_{m,\lambda,q}^{(r)}(x) \frac{\lambda^{-m} (e^{\lambda t} - 1)^m}{m!} = 2^r \sum_{m_1, \cdots, m_r=0}^{\infty} (-1)^{m_1 + \cdots + m_r} e^{[m_1 + \cdots + m_r + x]_q t} = \sum_{n=0}^{\infty} \mathsf{E}_{n,q}^{(r)}(x) \frac{t^n}{n!},$$

and

$$\sum_{m=0}^{\infty} E_{m,\lambda,q}^{(r)}(x)\lambda^{-m} \frac{1}{m!} (e^{\lambda t} - 1)^m = \sum_{m=0}^{\infty} E_{m,\lambda,q}^{(r)}(x)\lambda^{-m} \frac{1}{m!} m! \sum_{n=m}^{\infty} S_2(n,m)\lambda^n \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^n \lambda^{n-m} E_{m,\lambda,q}^{(r)}(x) S_2(n,m) \frac{t^n}{n!}.$$
(3.10)

By (3.10), we obtain the following theorem.

Theorem 3.5. For $n \in \mathbb{N} \cup \{0\}$, we have

$$E_{n,q}^{(r)}(x) = \sum_{m=0}^{n} \lambda^{n-m} E_{m,\lambda,q}^{(r)}(x) S_2(n,m).$$

By replacing t by $\frac{1}{\lambda} \log(1 + \lambda t)$ by in (3.9), and using (3.8), we have

$$\begin{split} \sum_{m=0}^{\infty} \mathsf{E}_{m,q}^{(r)}(\mathbf{x}) \lambda^{-m} \frac{(\log(1+\lambda t))^m}{m!} &= \sum_{m=0}^{\infty} 2^r \sum_{m_1, \cdots, m_r=0}^{\infty} (-1)^{m_1 + \cdots + m_r} e^{[m_1 + \cdots + m_r + \mathbf{x}] \frac{1}{\lambda} \log(1+\lambda t)} \\ &= \sum_{m=0}^{\infty} 2^r \sum_{m_1, \cdots, m_r=0}^{\infty} (-1)^{m_1 + \cdots + m_r} e^{\log(1+\lambda t) \frac{1}{\lambda} [m_1 + \cdots + m_r + \mathbf{x}] q} \\ &= \sum_{m=0}^{\infty} 2^r \sum_{m_1, \cdots, m_r=0}^{\infty} (-1)^{m_1 + \cdots + m_r} (1+\lambda t)^{\frac{1}{\lambda} [m_1 + \cdots + m_r + \mathbf{x}] q} \\ &= \sum_{n=0}^{\infty} \mathsf{E}_{n,\lambda,q}^{(r)}(\mathbf{x}) \frac{t^n}{n!}, \end{split}$$
(3.11)

and

$$\sum_{m=0}^{\infty} E_{m,q}^{(r)}(x) \lambda^{-m} \frac{(\log(1+\lambda t))^m}{m!} = \sum_{m=0}^{\infty} E_{m,q}^{(r)}(x) \lambda^{-m} \sum_{n=m}^{\infty} S_1(n,m) \frac{\lambda^n t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{m=0}^n \lambda^{n-m} E_{m,q}^{(r)}(x) S_1(n,m) \right) \frac{t^n}{n!}.$$
(3.12)

By comparing the coefficients of (3.11) and (3.12), we obtain the following theorem.

Theorem 3.6. For $n \in \mathbb{N} \cup \{0\}$, we have

$$\mathsf{E}_{n,\lambda,q}^{(r)}(x) = \sum_{m=0}^{n} \lambda^{n-m} \mathsf{E}_{m,q}^{(r)}(x) \mathsf{S}_{1}(n,m)$$

4. Zeroes of the modified higher-order q-Euler polynomials and the modified higher-order degenerate q-Euler polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical prediction and to discover new interesting pattern of the zeroes of the modified higher-order q-Euler polynomials $E_{n,q}^{(r)}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$. We display the shapes of the modified higher-order q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ and the modified higher-order q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ and the modified higher-order q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$. Next we investigate the zeroes of the modified higher-order q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$. Let $q \in \mathbb{C}$, |q| < 1. For $n = 1, \dots, 10$, we can draw a plot of the modified higher-order q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$. This shows the ten plots combined into one. We display the shape of $E_{n,\lambda,q}^{(r)}(x)$ and $E_{n,q}^{(r)}(x)$, $-5 \leq x \leq 5$ (Figure 1).

Figure 1: Curve of the $E_{n,\lambda,q}^{(r)}(x)$ and $E_{n,q}^{(r)}(x)$.

In Figure 1 (left), we choose r = 5, $\lambda = 1/2$ and q = 1/2. In Figure 1 (middle), we choose r = 5, $\lambda = 1/10000$ and q = 1/2. In Figure 1 (right), we choose r = 5 and q = 1/2. It is obvious that, by letting λ tend to 1 from the curve of $E_{n,\lambda,q}^{(r)}(x)$ of left side, we lead to the curve of the $E_{n,q}^{(r)}(x)$. By using computer, the modified higher-order q-Euler numbers $E_{n,q}^{(r)}$ and the modified higher-order degenerate q-Euler numbers $E_{n,\lambda,q}^{(r)}$ are listed in Table 1.

We investigate the beautiful zeroes of the modified higher-order q-Euler polynomials $E_{n,q}^{(r)}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ by using a computer. We plot the zeroes

of the modified higher-order q-Euler polynomials $E_{n,q}^{(r)}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ for n = 50, q = 1/2 and $x \in \mathbb{C}$ (Figure 2).

Table 1: The first few $E_{n,q}^{(r)}$ and $E_{n,\lambda,q}^{(r)}$.					
	E ^(r) _{n,q}	$E_{n,\lambda,q}^{(r)}$			
degree n	q = 1/2, r = 5	$q = 1/2, r = 5, \lambda = 1/10$			
0	1	1			
1	-1562/243	-1562/243			
2	9287996/759375	10264246/759375			
3	3037448168/184528125	4674974089/922640625			
4	-1425517528162096/262003549978125	-240516181113919276/6550088749453125			

Figure 2: Zeroes of $E_{n,\lambda,q}^{(r)}(x)$ and $E_{n,q}^{(r)}(x)$.

In Figure 2 (top-left), we choose n = 50, q = 1/2, and $\lambda = 1/100$. In Figure 2 (top-right), we choose n = 50, q = 1/2 and $\lambda = 1/1000$. In Figure 2 (bottom-left), we choose n = 50, q = 1/2 and $\lambda = 1/10000$. In Figure 2 (bottom-right), we choose n = 50, q = 1/2 and $\lambda \to 0$.

Stacks of zeroes of the modified higher-order q-Euler polynomials $E_{n,q}^{(r)}(x)$ and the modified higherorder degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ for $1 \le n \le 40$ from a 3-D structure are presented in Figure 3.

Figure 3: Stacks of zeroes of $E_{n,\lambda,q}^{(r)}(x)$ and $E_{n,q}^{(r)}(x)$ for $1 \le n \le 40$.

In Figure 3 (left), we choose $1 \le n \le 40$, q = 1/2 and $\lambda = 1/10$. In Figure 3 (right), we choose $1 \le n \le 40$, q = 1/2, and $\lambda \to 0$.

It was known that $E_{n,q}^{(r)}(x), x \in \mathbb{C}$, has Im(x) = 0 reflection symmetry analytic complex functions, (see [12]). However, we observe that $E_{n,\lambda,q}^{(r)}(x), x \in \mathbb{C}$, has not Im(x) = 0 reflection symmetry analytic complex functions (Figures 2 and 3).

Our numerical results for approximate solutions of real zeroes of the modified higher-order q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ are displayed in Tables 2, 3, and 4. We observe a remarkably regular structure of the complex roots of the modified higher-order q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ are displayed in Table 2. We hope to verify a remarkably regular structure of the complex roots of the modified higher-order q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ are displayed in Table 2. We hope to verify a remarkably regular structure of the complex roots of the modified higher-order q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ and the modified higher-order degenerate q-Euler degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ (Table 2).

				· ·
	$E_{n,1/10,1/2}^{(5)}(x)$		$E_{n,1/2}^{(5)}(x)$	
degree n	real zeroes	complex zeroes	real zeroes	complex zeroes
1	1	0	1	0
2	2	0	2	0
3	3	0	3	0
4	3	1	4	0
5	4	1	3	2
6	3	3	4	2
7	4	3	5	2
8	4	4	4	4
9	5	4	5	4
10	3	7	4	6

Table 2: Numbers of real and complex zeroes of $E_{n,\lambda,q}^{(r)}(x)$ and $E_{n,q}^{(r)}(x)$.

Plot of real zeroes of $E_{n,\lambda,q}^{(r)}(x)$ and $E_{n,q}^{(r)}(x)$ for $1 \le n \le 40$ structure are presented in Figure 4. In Figure 4 (left), we choose r = 5, $\lambda = 1/10$ and q = 1/2. In Figure 4 (middle), we choose r = 5, $\lambda = 1/1000$ and q = 1/2. In Figure 4 (right), we choose r = 5 and q = 1/2. It is obvious that, by letting λ tend to 1 from the real zeroes of $E_{n,\lambda,q}^{(r)}(x)$ of left side, we lead to the real zeroes of the $E_{n,q}^{(r)}(x)$.

Figure 4: Real zeroes of the $E_{n,\lambda,q}^{(r)}(x)$ and $E_{n,q}^{(r)}(x)$.

Next, we calculated an approximate solution satisfying $E_{n,\lambda,q}^{(r)}(x) = 0$, $E_{n,q}^{(r)}(x) = 0$, and $x \in \mathbb{R}$. The results are given in Tables 3 and 4.

degree n	Х
1	2.07519
2	0.674416, 2.86795
3	-0.0853565, 1.46616, 3.59324
4	-0.507236, 0.0495496, 1.56211, 3.60538
5	0.064954, 1.2468, 2.5000, 3.7532, 4.9350
6	0.642491, 2.23658, 4.2821
7	-0.00924544, 1.3286, 3.12019, 8.46041
8	-0.422343, 0.65015, 2.17641, 4.17786

Table 3: Approximate solutions of $E_{n,\lambda,q}^{(5)}(x) = 0$, q = 1/2, $\lambda = 1/10$, $x \in \mathbb{R}$.

degreen	X
1	2.07519
2	0.601538, 2.78882
3	-0.29846, 1.19492, 3.25392
4	-0.707974, 0.0540258, 1.61452, 3.60212
5	0.380137, 1.93959, 3.88122
6	-0.577628, 0.651902, 2.20503, 4.1144
7	-0.820786, -0.396232, 0.88272, 2.42936, 4.31478
8	-0.201325, 1.08272, 2.6236, 4.49051

Table 4: Approximate solutions of $E_{n,\lambda,q}^{(5)}(x) = 0$, q = 1/2, $x \in \mathbb{R}$.

Finally, we shall consider the more general problems. How many zeroes does $E_{n,q}^{(r)}(x)$ have? Prove or disprove: $E_{n,q}^{(r)}(x) = 0$ has n distinct solutions. Find the numbers of complex zeroes $C_{E_{n,q}^{(r)}(x)}$ of $E_{n,q}^{(r)}(x)$, $Im(x) \neq 0$. Since n is the degree of the polynomial $E_{n,q}^{(r)}(x)$, the number of real zeroes $R_{E_{n,q}^{(r)}(x)}$ lying on the real plane Im(x) = 0 is then $R_{E_{n,q}^{(r)}(x)} = n - C_{E_{n,q}^{(r)}(x)}$, where $C_{E_{n,q}^{(r)}(x)}$ denotes complex zeroes. See Table 2 for tabulated values of $R_{E_{n,q}^{(r)}(x)}$ and $C_{E_{n,q}^{(r)}(x)}$.

5. Conclusions

Kim et al., [17–20] studied some identities of symmetry on the higher-order degenerate q-Euler polynomials. The motivation of this paper is to investigate some explicit identities for the modified higher-order degenerate q-Euler polynomials in the second row of the diagram at page 4. So we defined the modified higher degenerate q-Euler polynomials in the equation (2.4) and obtained the formulas (see Theorems 2.2-2.5). We also obtained the explicit identities related with the modified higher-order degenerate q-Euler polynomials and the higher-order q-zeta functions (see Theorems 3.1-3.6).

Finally, we demonstrated the comparing three facts between modified higher-order q-Euler polynomials $E_{n,q}^{(r)}(x)$ and modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ as follows:

- (1) We displayed the shape of $E_{n,q}^{(r)}(x)$ and $E_{n,\lambda,q}^{(r)}(x)$ (see Figure 1) and investigated the zeroes of $E_{n,q}^{(r)}(x)$ and $E_{n,\lambda,q}^{(r)}(x)$ by using a computer (see Figure 2 and Table 1).
- (2) We presented stacks of zeroes of E^(r)_{n,q}(x) and E^(r)_{n,λ,q}(x) for 1 ≤ n ≤ 40 from a 3-D structure (see Figure 3) and verified a regular structure of the complex roots of E^(r)_{n,q}(x) and E^(r)_{n,λ,q}(x) (see Figure 4 and Table 2).
- (3) We calculated an approximate solution satisfying $E_{n,q}^{(r)}(x) = 0$, $E_{n,\lambda,q}^{(r)}(x) = 0$, and $x \in \mathbb{R}$ (see Tables 3-4).

Acknowledgment

This paper was supported by Konkuk University in 2016. This paper is dedicated to Professor Yeol Je Cho on the occasion of his 65th birthday.

References

- [1] W. A. Al-Salam, q-Bernoulli numbers and polynomials, Math. Nachr., 17 (1959), 239-260. 1, 2
- [2] A. Bayad, J. Chikhi, Apostol-Euler polynomials and asymptotics for negative binomial reciprocals, Adv. Stud. Contemp. Math. (Kyungshang), 24 (2014), 33–37. 1
- [3] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948), 987–1000. 1, 2
- [4] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76 (1954), 332-350. 1
- [5] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88. 1, 1, 2
- [6] W. S. Chung, M. Jung, Some properties concerning q-derivatives and q-Hermite polynomial, Adv. Stud. Contemp. Math. (Kyungshang), 24 (2014), 149–153. 2
- [7] D. Ding, J.-Z. Yang, Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 20 (2010), 7–21. 2
- [8] L.-C. Jang, A family of Barnes-type multiple twisted q-Euler numbers and polynomials related to Fermionic p-adic invariant integrals on Z_p, J. Comput. Anal. Appl., 13 (2011), 376–387. 1, 2, 2.5
- [9] J. H. Jin, T. Mansour, E.-J. Moon, J.-W. Park, On the (r, q)-Bernoulli and (r, q)-Euler numbers and polynomials, J. Comput. Anal. Appl., 19 (2015), 250–259. 1
- [10] T. Kim, Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on Z_p, Russ. J. Math. Phys., 16 (2009), 93–96 1.5
- [11] T. Kim, Barnes-type multiple q-zeta functions and q-Euler polynomials, J. Phys. A, 43 (2010), 11 pages. 1, 2, 3, 3, 3.1
- [12] T. Kim, New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), 218–225. 1.5, 1, 2, 2.5, 3, 3.1, 3.1, 3.1, 3.3, 3.2, 4
- [13] T. Kim, A study on the q-Euler numbers and the fermionic q-integral of the product of several type q-Bernstein polynomials on Z_p, Adv. Stud. Contemp. Math. (Kyungshang), 23 (2013), 5–11. 1
- [14] T. Kim, On degenerate q-Bernoulli polynomials, Bull. Korean Math. Soc., 53 (2016), 1149–1156. 1, 2.1
- [15] D. S. Kim, T. Kim, Barnes-type Boole polynomials, Contrib. Discrete Math., 11 (2016), 7–15. 2
- [16] D. S. Kim, T. Kim, Generalized Boole numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 110 (2016), 823–839. 2.1
- [17] D. S. Kim, T. Kim, Some identities of symmetry for q-Bernoulli polynomials under symmetric group of degree n, Ars Combin., 126 (2016), 435–441. 1, 2.1, 5
- [18] D. S. Kim, T. Kim, Symmetric identities of higher-order degenerate q-Euler polynomials, J. Nonlinear Sci. Appl., 9 (2016), 443–451. 1, 2, 3.1

- [19] T. Kim, D. S. Kim, H.-I. Kwon, Some identities relating to degenerate Bernoulli polynomials, Filomat, 30 (2016), 905–912.
 1, 2.1, 2
- [20] T. Kim, D. S. Kim, H.-I. Kwon, J.-J. Seo, D. V. Dolgy, Some identities of q-Euler polynomials under the symmetric group of degree n, J. Nonlinear Sci. Appl., 9 (2016), 1077–1082. 1, 2, 3.1, 5
- [21] J. G. Lee, L.-C. Jang, On modified degenerate Carlitz q-Bernoulli numbers and polynomials, Adv. Difference Equ., 2017 (2017), 9 pages. 2
- [22] Q.-M. Luo, q-analogues of some results for the Apostol-Euler polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 20 (2010), 103–113.
- [23] A. Sharma, q-Bernoulli and Euler numbers of higher order, Duke Math. J., 25 (1958), 343–353. 1, 2, 2.5
- [24] K. Sharma, q-fractional integrals and special functions, Adv. Stud. Contemp. Math. (Kyungshang), 24 (2014), 87–95.
- [25] N.-L. Wang, C. Li, H.-L. Li, Some identities on the generalized higher-order Euler and Bernoulli numbers, Ars Combin., 102 (2011), 517–528.
- [26] M. Wu, S. S. Du, A symmetric identity for degenerate higher-order Bernoulli polynomials and generalized power sum polynomials, (Chinese) Math. Pract. Theory, 44 (2014), 256–261. 1, 2