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Abstract
In this paper, we define new notions called (g-F) contractions and generalize Mizoguchi-Takahashi contractions for complete

G-metric spaces and we establish some new coincidence points and common fixed point results. Our results unify and generalize
various known comparable results from the current literature. An example and application are given to illustrate the usability
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1. Introduction

In 1922, Banach established the most famous fundamental fixed point theorem (so-called the Banach
contraction principle [6]) which has played an important role in various fields of applied mathematical
analysis. Due to its importance and simplicity, several authors have obtained many interesting extensions
and generalizations. From one hand, the contraction is extended. For instance, Ćirić [8] introduced quasi
contraction, and obtained fixed point theorems which is a generalization of Banach contraction principle.

On the other hand, the study of metric spaces expressed the most important role to many fields both
in pure and applied science such as biology, medicine, physics and computer science (see [2, 20–33] and
references therein). Some generalizations of the notion of a metric space have been proposed by some
authors, such as, rectangular metric spaces, semi metric spaces, pseudo metric spaces, probabilistic metric
spaces, fuzzy metric spaces, quasi metric spaces, quasi semi metric spaces, D-metric spaces, cone metric
spaces, and partial metric spaces (see [3, 9, 13, 27, 28, 30, 32]). Branciari [7] introduced the notion of a
generalized metric space replacing the triangle inequality by a rectangular type inequality. Thereafter he
extended Banach’s contraction principle in such spaces.
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Mustafa and Sims [25] introduced the G-metric spaces as a generalization of the notion of metric
spaces. They obtained some fixed point theorems for mappings satisfying different contractive conditions
for more fixed point results on G-metric space (see [2, 22–25, 31]). Wardowski [35] introduced a new
contraction called F-contraction and proved a fixed point result as a generalization of Banach contraction
principle. Abbas et al. [1] further generalized the concept of F-contraction and proved certain fixed and
common fixed point results. Over the years, Banach contraction principle has been generalized in different
directions by several mathematicians (see [4–19, 21, 25]).

The aim of this paper is to define two new notions like (g-F) contractions and generalize Mizoguchi-
Takahashi contractions for complete G-metric spaces and to establishes some new coincidence points and
common fixed point theorems. Our results generalize various results of literature.

2. Definitions and relevant results

In this section, we present some definitions and results.

Definition 2.1 ([25]). Let X be a nonempty set and G : X × X × X → R+ be a function satisfying the
following properties

(G1) G (x,y, z) = 0 if x = y = z;
(G2) 0 < G (x, x,y) for all x,y ∈ X with x 6= y;
(G3) G (x, x,y) 6 G (x,y, z) for all x,y, z ∈ X with y 6= z;
(G4) G (x,y, z) = G (x, z,y) = G (y, z, x) = · · · (symmetry in all three variables);
(G5) G (x,y, z) 6 G (x,a,a) +G (a,y, z) for all x,y, z,a ∈ X (rectangle inequality).

Then, the function G is called a generalized metric, or, a G-metric on X, and the pair (X,G) is called a
G-metric space.

Definition 2.2 ([25]). Let (X,G) be a G-metric space, and let {xn} be a sequence of points of X. Then, we
say that (xn) is G-convergent to x ∈ X if limn,m→∞ G (x, xn, xm) = 0, that is, for any ε > 0, there exists
N ∈N such that G (x, xn, xm) < ε for all n,m > N. We call x the limit of the sequence and write xn → x

or limn→∞ xn = x.

Proposition 2.3 ([25]). Let (X,G) be a G-metric space. The following statements are equivalent:

(1) (xn) is G-convergent to x;
(2) G (xn, xn, x)→ 0 as n→ +∞;
(3) G (xn, x, x)→ 0 as n→ +∞;
(4) G (xn, xm, x)→ 0 as n,m→ +∞.

Definition 2.4 ([25]). Let (X,G) be a G-metric space. A sequence {xn} is called a G-Cauchy sequence if for
any ε > 0, there is N ∈ N such that G (xn, xm, xl) < ε for all n, m, l > N, that is G (xn, xm, xl)→ 0 as n,
m, l→ +∞.

Definition 2.5 ([25]). A G-metric space (X,G) is called G-complete if every G-Cauchy sequence is G-
convergent in (X,G) .

It is worth mentioning that every G-metric on X defines a metric dG on X given by

dG (x,y) = G (x,y,y) +G (y, x, x) for all x,y ∈ X.

Example 2.6 ([25]). Let (X,d) be a metric space. The function G : X×X×X→ [0,+∞), defined by

G(x,y, z) = max{d(x,y),d(y, z),d(z, x)}

or
G(x,y, z) = d(x,y) + d(y, z) + d(z, x)

for all x,y, z ∈ X, is a G-metric on X.



Z. Mustafa, et al., J. Nonlinear Sci. Appl., 10 (2017), 2550–2564 2552

Corollary 2.7 ([25]). Let (X,d) be a metric space. Then (X,d) is complete metric space iff (X,G) is complete
G-metric space.

Corollary 2.8 ([25]). A G-metric space (X,G) is continuous on its three variables.

Recently, Kaewcharoen et al. [19] introduced the following concepts. Let X be a G-metric space.
We shall denote CB (X) the family of all non-empty closed bounded subsets of X. Let HG (·, ·, ·, ) be the
Hausdorff G-distance on CB (X) , that is for A,B,C ∈ CB(X) we have

HG (A,B,C) = max

{
sup
x∈A

G (x,B,C) , sup
x∈B

G (x,C,A) , sup
x∈C

G (x,A,B)

}
where

G (x,B,C) = dG (x,B) + dG (B,C) + dG (x,C) ,
dG (x,B) = inf {dG (x,y) , y ∈ B} ,
dG (A,B) = inf {dG (a,b) , a ∈ A, b ∈ B} .

Recall that G (x,y,C) = inf {G (x,y, z) , z ∈ C} . A mapping f : X −→ 2X is called a multi-valued
mapping. A point x ∈ X is called a fixed point of f if x ∈ fx.

Lemma 2.9 ([34]). Let (X,G) be a G-metric space and A,B ∈ CB(X). Then for each a ∈ A, we have

G (a,B,B) 6 HG (A,B,B) .

Lemma 2.10 ([34]). Let (X,G) be a G-metric space. If A,B ∈ CB(X) and a ∈ A, then for each ε > 0, there exists
b ∈ B such that

G (a,b,b) 6 HG (A,B,B) + ε.

Definition 2.11. Let X be a non-empty set. Assume that g : X −→ X and f : X −→ 2X are two mappings.
If w = gx ∈ fx for some x ∈ X, then x is called a coincidence point of g and f and w is a point of
coincidence of g and f. The mappings g and f are called weakly compatible if gx ∈ fx for some x ∈ X
implies gf (x) ⊆ fg (x) .

Proposition 2.12 ([19]). Let X be a given non-empty set. Assume that g : X −→ X and f : X −→ 2X are weakly
compatible mappings. If g and f have a unique point of coincidence w = gx ∈ fx, then w is the unique common
fixed point of g and f.

In 2012, Wardowski [35] defined the F-contraction as follows.

Definition 2.13 ([35]). Let (X,d) be a complete metric space. A mapping T : X → X is said to be an
F-contraction if there exists τ > 0 such that

∀ x,y ∈ X, d(Tx, Ty) > 0⇒ τ+ F (d(Tx, Ty)) 6 F (d(x,y)) , (2.1)

where F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all x,y ∈ R+ such that x < y, F(x) < F(y);
(F2) for each sequence {αn}

∞
n=1 of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F(αn) = −∞;

(F3) there exists k ∈ (0, 1) such that limα→0+ α
kF(α) = 0.

We denote by F the family of all functions F that satisfy the conditions (F1)-(F3).
Remark 2.14. From (F1) and (2.1) it is easy to conclude that every F-contraction mapping T is necessarily
continuous.

Theorem 2.15 ([35]). Let (X,d) be a complete metric space and T : X→ X be a F-contraction, then we have

(1) T has a unique fixed point x∗ ∈ X;
(2) for all x ∈ X, the sequence {Tnx} is convergent to x∗.
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3. Main results

We start this section with the definition of (g-F) contraction and the main result of this section.

Definition 3.1. Let (X,G) be a G-metric space. Let T : X −→ CB (X) and g : X −→ X be two mappings.
Then the mapping T is said to be (g-F) contraction if there exist some F ∈ F and a constant τ > 0 such
that

HG (Tx, Ty, Tz) > 0 =⇒ 2τ+ F (HG (Tx, Ty, Tz)) 6 F (G (gx,gy,gz)) (3.1)

for all x,y, z ∈ X.

Theorem 3.2. Let (X,G) be a G-metric space. Let g : X −→ X and T : X −→ CB (X) be a (g-F) contraction. If
for any x ∈ X, Tx ⊆ g (X) and g (X) is a G-complete subspace of X, then g and T have a point of coincidence in X.
Furthermore, if we assume that gp ∈ Tp and gq ∈ Tq implies G (gq,gp,gp) 6 HG (Tq, Tp, Tp), then

(i) g and T have a unique point of coincidence;
(ii) if in addition g and T are weakly compatible, then g and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point of X. Since the range of g contains the range of T , there exists a point x1
in X such that gx1 ∈ Tx0. If gx1 = gx0, then x0 is a coincidence point of g and T and the proof is complete,
so we assume that gx0 6= gx1. Also if Tx0 = Tx1, then x1 is a coincidence point of g and T . So we assume
that Tx0 6= Tx1, which implies that HG (Tx0, Tx1, Tx1) > 0. Now from (3.1) we have

2τ+ F (HG (Tx0, Tx1, Tx1)) 6 F (G (gx0,gx1,gx1)) .

Since F is continuous from the right, there exists a real number h > 1 such that

F (hHG (Tx0, Tx1, Tx1)) < F (HG (Tx0, Tx1, Tx1)) + τ.

As gx1 ∈ Tx0, so by Lemma 2.9, we have

G (gx1, Tx1, Tx1) 6 HG (Tx0, Tx1, Tx1) < hHG (Tx0, Tx1, Tx1) ,

where h > 1. Now from G (gx1, Tx1, Tx1) < hHG (Tx0, Tx1, Tx1) and Lemma 2.10 we deduce that there
exists x2 ∈ X with gx2 ∈ Tx1 such that

G (gx1,gx2,gx2) 6 hHG (Tx0, Tx1, Tx1) .

Consequently, we get

F(G (gx1,gx2,gx2)) 6 F(hHG (Tx0, Tx1, Tx1)) < F(HG (Tx0, Tx1, Tx1)) + τ,

which implies that

2τ+ F(G (gx1,gx2,gx2)) 6 2τ+ F(HG (Tx0, Tx1, Tx1)) + τ 6 F(G (gx0,gx1,gx1)) + τ.

Thus
τ+ F(G (gx1,gx2,gx2)) 6 F(G (gx0,gx1,gx1)).

Continuing in this process, we can define a sequence {gxn} ⊂ X such that gxn+1 ∈ Txn with gxn 6=
gxn+1, Txn 6= Txn+1, and

τ+ F(G (gxn,gxn+1,gxn+1)) 6 F(G (gxn−1,gxn,gxn))

for all n ∈N∪ {0}. Therefore

F(G (gxn,gxn+1,gxn+1)) 6 F(G (gxn−1,gxn,gxn)) − τ
6 F(G (gxn−2,gxn−1,gxn−1)) − 2τ
...
6 F(G (gx0,gx1,gx1)) −nτ

(3.2)

for all n ∈N. Since F ∈ F, by taking the limit as n −→∞ in (3.2) we have
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lim
n−→∞ F(G (gxn,gxn+1,gxn+1)) = −∞. Therefore by (F2) lim

n−→∞G (gxn,gxn+1,gxn+1) = 0. (3.3)

Now from (F3), there exists 0 < k < 1 such that

lim
n−→∞[G (gxn,gxn+1,gxn+1)]

kF(G (gxn,gxn+1,gxn+1)) = 0. (3.4)

By (3.2), we have

[G (gxn,gxn+1,gxn+1)]
kF(G (gxn,gxn+1,gxn+1)) − [G (gxn,gxn+1,gxn+1)]

kF(G (gx0,gx1,gx1))

6 [G (gxn,gxn+1,gxn+1)]
k[F(G (gx0,gx1,gx1)) −nτ− F(G (gx0,gx1,gx1))]

= −nτ [G(gxn,gxn+1,gxn+1)]
k 6 0.

Therefore,

[G (gxn,gxn+1,gxn+1)]
kF(G (gxn,gxn+1,gxn+1)) +nτ [G(gxn,gxn+1,gxn+1)]

k

6 [G (gxn,gxn+1,gxn+1)]
kF(G (gx0,gx1,gx1)).

(3.5)

By taking the limit as n −→∞ in (3.5) and applying (3.3) and (3.4), we have

lim
n−→∞n[G (gxn,gxn+1,gxn+1)]

k = 0. (3.6)

It follows from (3.6) that there exists n1 ∈ N such that

n[G (gxn,gxn+1,gxn+1)]
k 6 1 for all n > n1,

which implies

G (gxn,gxn+1,gxn+1)] 6
1

n
1
k

for all n > n1.

Now we prove that {gxn} is a G-Cauchy sequence. For m > n > n1 we have

G (gxn,gxm,gxm) 6
m−1∑
i=n

G (gxi,gxi+1,gxi+1) 6
m−1∑
i=n

1

i
1
k

6
∞∑
i=1

1

i
1
k

.

Since 0 < k < 1, so
∞∑
i=1

1

i
1
k

converges. Therefore, G (gxn,gxm,gxm) −→ 0 as m,n −→ ∞. Thus {gxn} is a

G-Cauchy sequence in complete subspace g (X) , so there exists q ∈ g (X) such that

lim
n−→∞G (gxn,gxn,q) = lim

n−→∞G (gxn,q,q) = 0. (3.7)

Since q ∈ g (X), there exists p ∈ X such that q = gp. Hence from (3.7), we have

lim
n−→∞G (gxn,gxn,gp) = lim

n−→∞G (gxn,gp,gp) = 0.

Now we will prove that gp ∈ Tp. If there exists an increasing sequence {nk} such that gxnk ∈ Tp for all
k ∈ N, since Tp is closed and gxnk → gp, we get gp ∈ Tp and the proof is complete. So we assume that
there exists n0 ∈ N such that gxn+1 /∈ Tp for all n > n0. Since gxn+1 ∈ Txn, as a result, Txn 6= Tp for all
n > n0 and so we have

HG(Txn, Tp, Tp) > 0 for all n > n0. (3.8)
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Now as gxn+1 ∈ Txn, so by Lemma 2.9, we have

G (gxn+1, Tp, Tp) 6 HG(Txn, Tp, Tp).

As F is strictly increasing, so by (3.8), above inequality, and (3.1), we get

F(G (gxn+1, Tp, Tp)) 6 2τ+ F(G (gxn+1, Tp, Tp)) 6 2τ+ F(HG(Txn, Tp, Tp)) 6 F(G(gxn,gp,gp)).

Since F is increasing, we have
G (gxn+1, Tp, Tp) 6 G(gxn,gp,gp).

Letting n → ∞ in previous inequality and using the fact that the function G is continuous on its three
variables, we get G(gp, Tp, Tp) = 0. Since Tp is closed we obtain that gp ∈ Tp. That is p is a coincidence
point of T and g. Hence g and T have a point of coincidence w. We will prove the uniqueness of a point
of coincidence of g and T . For this we suppose on the contrary that w∗ is another point of coincidence of
g and T that is there exists another coincidence point q of g and T such that w∗ = gq ∈ Tq with gp 6= gq
and Tp 6= Tq. Otherwise, p and q will not be coincidence points. Then, HG (Tq, Tp, Tp) > 0. Thus, we
have the following assumption that

G (gq,gp,gp) 6 HG (Tq, Tp, Tp) .

Since F is increasing, so by above inequality and (3.1), we get

2τ+ F(G (gq,gp,gp)) 62τ+ F(HG (Tq, Tp, Tp)) 6 F(G (gq,gp,gp)),

which further implies that

F(G (gq,gp,gp)) 6 F(G (gq,gp,gp)) − 2τ < F(G (gq,gp,gp)).

Since F is strictly increasing, so we get

G (gq,gp,gp) < G (gq,gp,gp) ,

which is a contradiction. Hence, gp = gq and Tp = Tq. Hence, g and T have a unique point of coincidence.
Suppose that g and T are weakly compatible. By applying Proposition 2.12, we get that g and T have a
unique common fixed point.

Corollary 3.3. Let (X,G) be a complete G-metric space on X, and let T : X −→ CB (X). If there exist a function
F ∈ F and a constant τ > 0 such that for all x,y, z ∈ X

HG (Tx, Ty, Tz) > 0 =⇒ 2τ+ F (HG (Tx, Ty, Tz)) 6 F (G (x,y, z)) ,

then T has a fixed point in X.

Proof. It follows by taking g the identity on X in Theorem 3.2.

Example 3.4. Let X = [0, 1]. Define a mapping T : X −→ CB (X) by Tx =
[
0, x

25

]
and define g : X −→ X by

g (x) = 3x
4 . Define a G-metric on X by G (x,y, z) = |x− y|+ |y− z|+ |x− z| . Then

(1) g (X) is a G-complete subspace of X;
(2) g and T are weakly compatible;
(3) Tx ⊆ g (X) ;

(4) T is a (g-F) contraction where F(α) = ln (α) and τ ∈
(

0, ln
(√

75
32

))
.
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Proof. The proof of (1), (2), and (3) are clear. We will prove (4). We have

dG (x,y) = G (x,y,y) +G (y, x, x) = 4 |x− y| for all x,y ∈ X.

To prove (4), let x, y, z ∈ X. If x = y = z = 0, then Tx = Ty = Tz = 0 and HG (Tx, Ty, Tz) = 0. Thus we
may assume that x, y and z are not all zero. Without loss of generality we assume that x 6 y 6 z. Then

HG (Tx, Ty, Tz) = HG
([

0,
x

25

]
,
[
0,
y

25

]
,
[
0,
z

25

])
= max


sup06a6 x

25
G
(
a,
[
0, y25

]
,
[
0, z25

])
,

sup06b6 y
25
G
(
b,
[
0, x25

]
,
[
0, z25

])
,

sup06c6 z
25
G
(
c,
[
0, x25

]
,
[
0, y25

])
.

 .

Since x 6 y 6 z, then
[
0, x25

]
⊆
[
0, y25

]
⊆
[
0, z25

]
which implies that

dG

([
0,
x

25

]
,
[
0,
y

25

])
= dG

([
0,
y

25

]
,
[
0,
z

25

])
= dG

([
0,
x

25

]
,
[
0,
z

25

])
= 0.

Now for each 0 6 a 6 x
25 we have

G
(
a,
[
0,
y

25

]
,
[
0,
z

25

])
= dG

(
a,
[
0,
y

25

])
+ dG

([
0,
y

25

]
,
[
0,
z

25

])
+ dG

(
a,
[
0,
z

25

])
= 0.

Also, for each 0 6 b 6 y
25 we have

G
(
b,
[
0,
x

25

]
,
[
0,
z

25

])
= dG

(
b,
[
0,
x

25

])
+ dG

([
0,
x

25

]
,
[
0,
z

25

])
+ dG

(
b,
[
0,
z

25

])
=

{
0, if 0 6 b 6 x

25 ,
4b− 4x

25 , if b > x
25 ,

which implies that

sup
06b6 y

25

G
(
b,
[
0,
x

25

]
,
[
0,
z

25

])
=

4y− 4x
25

.

Moreover, for each 0 6 c 6 z
25 we have

G
(
c,
[
0,
x

25

]
,
[
0,
y

25

])
= dG

(
c,
[
0,
x

25

])
+ dG

([
0,
x

25

]
,
[
0,
y

25

])
+ dG

(
c,
[
0,
y

25

])
=


0, if 0 6 c 6 x

25 ,
4c− 4x

25 , if x25 6 c 6 y
25 ,

8c− 4y
25 − 4x

25 , if y25 6 c 6 z
25 ,

which implies that

sup
06c6 z

25

G
(
c,
[
0,
x

25

]
,
[
0,
y

25

])
=

8z− 4y− 4x
25

.

Thus we deduce that

HG (Tx, Ty, Tz) = max
{

0,
4y− 4x

25
,

8z− 4y− 4x
25

}
=

8z− 4y− 4x
25

6
8z− 8x

25

=
8
25

|z− x|
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=
32
75

∣∣∣∣3z4 −
3x
4

∣∣∣∣
=

32
75

|gz− gx|

6
32
75

(|gx− gy|+ |gy− gz|+ |gx− gz|)

=
32
75
G (gx,gy,gz) .

Therefore,
75
32
HG (Tx, Ty, Tz) 6 G (gx,gy,gz) .

By using F(α) = ln (α) we get

ln
(

75
32

)
+ ln (HG (Tx, Ty, Tz)) 6 ln (G (gx,gy,gz)) .

Thus, for all x, y, z ∈ X with HG (Tx, Ty, Tz) > 0 we have

2τ+ F (HG (Tx, Ty, Tz)) 6 F (G (gx,gy,gz)) , where 0 < τ < ln

(√
75
32

)
.

Hence, T is a (g-F) contraction. On the other hand it is clear that x = 0 is the only coincidence point and
all other hypotheses of Theorem 3.2 are satisfied. So the mappings T and g have a unique common fixed
point which is u = 0.

4. Generalized Mizoguchi-Takahashi’s contractions

In 2012, Tahat et al. [34] utilized the concept of G-metric spaces and obtained point of coincidence
and common fixed points of a hybrid pair of single-valued and multi-valued mappings. They proved the
following fixed point theorem as a main result.

Theorem 4.1 ([34]). Let (X,G) be a G-metric space and let T : X −→ CB (X) be a multi-valued mapping and
g : X→ X a self-mapping. Assume that there exists a function α : [0,+∞)→ [0, 1) satisfying

lim
r→t+

supα(r) < 1

for every t > 0 such that
HG (Tx, Ty, Tz) 6 α(G (gx,gy,gz))G (gx,gy,gz)

for all x,y, z ∈ X. If for any x ∈ X, Tx ⊆ g (X) and g (X) is a G-complete subspace of X, then g and T have a point of
coincidence in X. Furthermore, if we assume that gp ∈ Tp and gq ∈ Tq implies G (gq,gp,gp) 6 HG (Tq, Tp, Tp),
then

(i) g and T have a unique point of coincidence;
(ii) in addition, if g and T are weakly compatible, then g and T have a unique common fixed point.

Recently, Javahernia et al. [18] generalized the above function by introducing the notion of generalized
Mizoguchi-Takahashi function in such a way.

Definition 4.2 ([18]). A function α : R× R → R is called a generalized Mizoguchi-Takahashi function
(shortly, generalized MT -function) if the following conditions hold:

(a1) 0 < α(u, v) < 1 for all u, v > 0;
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(a2) for any bounded sequence (un) ⊂ (0,+∞) and any non-increasing sequence (vn) ⊂ (0,+∞), we
have

lim
n→∞ supα(un, vn) < 1.

Consistent with Javahernia et al. [18], we denote by Λ the set of all functions α : R× R→ R satisfying
the conditions (a1)-(a2).

The basic aim of this section is to generalize the results of Tahat et al. [34] by utilizing the notion of
generalized Mizoguchi-Takahashi function. Now we give the main result of this section.

Theorem 4.3. Let (X,G) be a G-metric space. Let T : X −→ CB (X) be a multi-valued mapping and g : X→ X a
self-mapping. If for any x ∈ X, Tx ⊆ g (X), g (X) is a G-complete subspace of X, and there exists α ∈ Λ such that

HG (Tx, Ty, Tz) 6 α(HG (Tx, Ty, Tz) ,G (gx,gy,gz))G (gx,gy,gz) (4.1)

for all x,y, z ∈ X, then g and T have a point of coincidence in X. Furthermore, if we assume that

gx∗ ∈ Tx∗ and gx̂ ∈ Tx̂ implies G (gx̂,gx∗,gx∗) 6 HG (Tx̂, Tx∗, Tx∗) ,

then

(i) g and T have a unique point of coincidence;
(ii) in addition, if g and T are weakly compatible, then g and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point of X. Then by the given assumptions, there exists a point x1 in X such
that gx1 ∈ Tx0. If gx1 = gx0, then we have nothing to prove and x0 is the required point. Thus we assume
that gx0 6= gx1, and so G (gx0,gx1,gx1) > 0. Now if Tx0 = Tx1, then gx1 ∈ Tx1 and so x1 is the required
point and nothing to do. Thus we assume that gx0 6= gx1 and Tx0 6= Tx1 and so G (gx0,gx1,gx1) > 0 and
HG (Tx0, Tx1, Tx1) > 0. From the inequality (4.1), we have

HG (Tx0, Tx1, Tx1) 6 α (HG (Tx0, Tx1, Tx1) ,G (gx0,gx1,gx1)) G (gx0,gx1,gx1) .

Taking

∈1=

(
1√

α (HG (Tx0, Tx1, Tx1) ,G (gx0,gx1,gx1))
− 1

)
HG (Tx0, Tx1, Tx1) , (4.2)

then by Lemma 2.10 and (4.2), we have

G (gx1,gx2,gx2) 6 HG (Tx0, Tx1, Tx1)+ ∈1 =
HG (Tx0, Tx1, Tx1)√

α (HG (Tx0, Tx1, Tx1) ,G (gx0,gx1,gx1))
.

Since Tx1 ⊆ g (X), so there exists a point x2 in X such that gx2 ∈ Tx1. If gx1 = gx2, then x1 is the required
point. So we assume that gx1 6= gx2, and Tx1 6= Tx2, so G (gx1,gx2,gx2) > 0 and HG (Tx1, Tx2, Tx2) = 0.

From the inequality (4.1), we have

HG (Tx1, Tx2, Tx2) 6 α (HG (Tx1, Tx2, Tx2) ,G (gx1,gx2,gx2)) G (gx1,gx2,gx2) .

Taking

∈2=

(
1√

α(HG (Tx1, Tx2, Tx2) ,G (gx1,gx2,gx2))
− 1

)
HG (Tx1, Tx2, Tx2) , (4.3)

then by Lemma 2.10 and (4.3), we get

G (gx2,gx3,gx3) 6 HG (Tx1, Tx2, Tx2)+ ∈2=
HG (Tx1, Tx2, Tx2)√

α (HG (Tx1, Tx2, Tx2) ,G (gx1,gx2,gx2))
.
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By repeating the above process, we can construct a sequence {gxk} such that gxk+1 ∈ Txk, where

G (gxk−1,gxk,gxk) > 0 and HG (Txk−1, Txk, Txk) > 0.

Also

HG (Txk−1, Txk, Txk) 6 α(HG (Txk−1, Txk, Txk) ,G (gxk−1,gxk,gxk))G (gxk−1,gxk,gxk) . (4.4)

Thus,

G (gxk,gxk+1,gxk+1) 6 HG (Txk−1, Txk, Txk)+ ∈k

=
HG (Txk−1, Txk, Txk)√

α(HG (Txk−1, Txk, Txk) ,G (gxk−1,gxk,gxk))
.

(4.5)

From the inequalities (4.4) and (4.5), we have

G (gxk,gxk+1,gxk+1) 6
√
α(HG (Txk−1, Txk, Txk) ,G (gxk−1,gxk,gxk)) G (gxk−1,gxk,gxk) , (4.6)

which shows that the sequence of nonnegative numbers {dk} given by

dk = G (gxk−1,gxk,gxk)

for k = 1, 2, · · · , is non-increasing, where dk > 0. Hence, there exists a nonnegative number d such that

d = lim
k→∞dk = inf

k∈N
dk > 0. (4.7)

As, HG (Txk−1, Txk, Txk) > 0 and G (gxk−1,gxk,gxk) > 0, so from (4.4) we have

HG (Txk−1, Txk, Txk) 6 G (gxk−1,gxk,gxk) ,

which shows that {HG (Txk−1, Txk, Txk)} is a bounded sequence. By (a2) we have

lim
n→∞ supα(HG (Txk−1, Txk, Txk) ,G (gxk−1,gxk,gxk)) < 1. (4.8)

Now we claim that d = 0. Suppose d > 0, then by (4.7), (4.8), and taking the limsup on both sides of (4.6)
we get

d 6
√

lim
k→∞ supα(HG (Txk−1, Txk, Txk) ,G (gxk−1,gxk,gxk)) d < d.

So, this contradiction implies that
lim
k→∞dk = inf

k∈N
dk = 0.

Therefore,
lim
k→∞G (gxk,gxk+1,gxk+1) = inf

k∈N
G (gxk,gxk+1,gxk+1) = 0. (4.9)

Now we prove that {gxk} is a Cauchy sequence in X. For each k ∈N, let

qk =
√
α(HG (Txk−1, Txk, Txk) ,G (gxk−1,gxk,gxk)).

Then, qk ∈ (0, 1) for all k ∈N. By (4.6), we have

G (gxk,gxk+1,gxk+1) 6 qkG (gxk−1,gxk,gxk)

for all k ∈N. From (4.8), we have limk→∞ supqk < 1, so there exist c ∈ [0, 1) and k0 ∈N such that qk < c
for all k ∈ N with k > k0. Since qk ∈ (0, 1) for all k ∈ N and c ∈ [0, 1). Thus from (4.9) for k > k0, we
conclude that

G (gxk,gxk+1,gxk+1) 6 qkG (gxk−1,gxk,gxk)
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6 qkqk−1G (gxk−2,gxk−1,gxk−1)

...
6 qkqk−1 · · · qk0G (gx0,gx1,gx1)

6 ck−k0+1G (gx0,gx1,gx1) .

Let λk = ck−k0+1

1−c G (gx0,gx1,gx1), k ∈ N. For k ∈ N with k > k0 and m is a positive arbitrary number,
then from the last inequality and (G5), we have

G (gxk,gxk+m,gxk+m) 6
k+m−1∑
i=k

G (gxi,gxi+1,gxi+1) 6 λk.

Since c ∈ [0, 1), as a result, limk→∞ λk = 0. Hence limk→∞G (gxk,gxk+m,gxk+m) = 0. Thus the sequence
{gxk} is G-Cauchy in the complete subspace g(X). Thus there exists x

′ ∈ g(X) such that from Proposition
2.3, we have

lim
k→∞G

(
gxk,gxk, x

′
)
= lim
k→∞G

(
gxk, x

′
, x
′
)
= 0. (4.10)

Since x
′ ∈ g(X), so there exists x∗ ∈ X such that x

′
= gx∗. Thus from (4.10), we have

lim
k→∞G (gxk,gxk,gx∗) = lim

k→∞G (gxk,gx∗,gx∗) = 0. (4.11)

We claim that gx∗ ∈ Tx∗. From (4.1) and (4.11), we have

lim
k→∞G (gxk+1, Tx∗, Tx∗) 6 lim

k→∞HG (Txk, Tx∗, Tx∗)

6 lim
k→∞α(HG (Txk−1, Tx∗, Tx∗) ,G (gxk,gx∗,gx∗))G (gxk,gx∗,gx∗)

= 0.

Hence, G (gx∗, Tx∗, Tx∗) = 0, that is gx∗ ∈ Tx∗. Thus T and g have a point of coincidence, i.e., x∗. Now
we prove that this point of coincidence is unique. We suppose on the contrary that there exists another x̂
such that gx̂ ∈ Tx̂ but gx̂ 6= gx∗. By (4.1) and this assumption, we have

G (gx̂,gx∗,gx∗) 6 HG (Tx̂, Tx∗, Tx∗) 6 α(HG (Tx̂, Tx∗, Tx∗) ,G (gx̂,gx∗,gx∗))G (gx̂,gx∗,gx∗)

as HG (Tx̂, Tx∗, Tx∗) > 0 and G (gx̂,gx∗,gx∗) > 0, so

α(HG (Tx̂, Tx∗, Tx∗) ,G (gx̂,gx∗,gx∗)) < 1.

Thus we get
G (gx̂,gx∗,gx∗) < G (gx̂,gx∗,gx∗) ,

which contradicts to the fact that gx̂ 6= gx∗. Thus gx̂ = gx∗. In view of

HG (Tx̂, Tx∗, Tx∗) 6 α(HG (Tx̂, Tx∗, Tx∗) ,G (gx̂,gx∗,gx∗))G (gx̂,gx∗,gx∗) = 0,

which implies that Tx̂ = Tx∗. Thus, T and g have a unique point of coincidence. Suppose that g and T are
weakly compatible. By applying Proposition 2.12, we obtain that g and T have a unique common fixed
point.

Corollary 4.4. Theorem 4.1 follows from Theorem 4.3 by taking α(u, v) = ϕ(v).

Corollary 4.5. Corollary 2.2 of [34] can be obtained by taking α(u, v) = µ in above corollary.
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Theorem 4.6. Let (X,G) be a G-metric space. Let T : X −→ CB (X) be a multi-valued mapping and g : X→ X be
a self-mapping. If for any x ∈ X, Tx ⊆ g (X) and g (X) is a G-complete subspace of X such that

HG (Tx, Ty, Tz) 6 ϕ(G (gx,gy,gz))

for all x,y, z ∈ X, where ϕ : [0,∞) → [0, 1) is a function such that ϕ(v) < v and lim supv→u+
ϕ(v)
v < 1,

then g and T have a point of coincidence in X. Furthermore, if we assume that gx∗ ∈ Tx∗ and gx̂ ∈ Tx̂ implies
G (gx̂,gx∗,gx∗) 6 HG (Tx̂, Tx∗, Tx∗) , then

(i) g and T have a unique point of coincidence;
(ii) in addition, if g and T are weakly compatible, then g and T have a unique common fixed point.

Proof. Take α(u, v) = ϕ(v)
v in Theorem 4.3.

Javahernia et al. [18] also introduced the concept of weak l.s.c. in the following way.

Definition 4.7. A function φ : [0,∞) → [0,∞) is said to be weak l.s.c. function if for each bounded
sequence {un} ⊂ (0,+∞), we have

lim
n→∞ infφ(un) > 0.

Consistent with Javahernia et al. [18], we denote by z, the set of all functions φ : [0,∞) → [0,∞)
satisfying the above condition.

Theorem 4.8. Let (X,G) be a G-metric space. Let T : X −→ CB (X) be a multi-valued mapping and g : X→ X be
a self-mapping. If for any x ∈ X, Tx ⊆ g (X) and g (X) is a G-complete subspace of X such that

HG (Tx, Ty, Tz) 6 G (gx,gy,gz) −φ(G (gx,gy,gz))

for all x,y, z ∈ X, where φ : [0,∞) → [0,∞) is such that φ(0) = 0, φ(v) < v and φ ∈ z, then g and T have
a point of coincidence in X. Furthermore, if we assume that gx∗ ∈ Tx∗ and gx̂ ∈ Tx̂ implies G (gx̂,gx∗,gx∗) 6
HG (Tx̂, Tx∗, Tx∗) , then

(i) g and T have a unique point of coincidence;
(ii) in addition, if g and T are weakly compatible, then g and T have a unique common fixed point.

Proof. Define α(u, v) = 1 −
φ(u)
u for all u, v > 0. Since for each bounded sequence {un} ⊂ (0,+∞), we

have limn→∞ infφ(un) > 0, so limn→∞ inf φ(un)
un

> 0. Thus

lim
n→∞ sup(1 −

φ(un)

un
) = 1 − lim

n→∞ inf
φ(un)

un
< 0.

This shows that α ∈ Λ. Also

HG (Tx, Ty, Tz) 6 α(HG (Tx, Ty, Tz) ,G (gx,gy,gz))G (gx,gy,gz) .

Thus by Theorem 4.1, we get g and T have a unique common fixed point.

5. Application

In this section, we will use Corollary 3.3 to show that there is a solution to the following integral
equation:

u(t) =

∫b
a

H(t, s)K(s,u(s))ds, t ∈ [a,b]. (5.1)

Let X = (C[a,b], R) denote the set of all continuous functions from [a,b] to R. Define a mapping T : X→ X

by

Tu(t) =

∫b
a

H(t, s)K(s,u(s))ds, t ∈ [a,b]. (5.2)
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Theorem 5.1. Consider equation (5.1) and suppose:

1. H : [a,b]× [a,b]→ [0,∞) is a continuous function;
2. K : [a,b]×R→ R, where K is continuous mapping;
3. maxt∈[a,b]

∫b
aH(t, s)ds < e

−2τ for some τ ∈ (0,∞);
4. For all u(s), v(s) ∈ X, s ∈ [a,b], we have

|K(s,u(s)) −K(s, v(s))| 6 |u(s) − v(s)|.

Then, equation (5.1) has a solution.

Proof. Let X and T be as defined above. For all u, v,w ∈ X define the G-metric on X by

G(u, v,w) = d(u, v) + d(v,w) + d(u,w),

where
d(u, v) = sup

t∈[a,b]
|u(t) − v(t)|.

Clearly, (X,G) is a complete G-metric space, since (X,d) is complete metric space. Now, Let u(t), v(t) ∈ X,
then from definition 5.2, (3) and (4) we have

|Tu(t) − Tv(t)| =
∣∣∣ ∫b
a

H(t, s)
[
K(s,u(s)) −K(s, v(s))

]
ds
∣∣∣

6
∫b
a

H(t, s)|K(s,u(s)) −K(s, v(s)|ds

6
∫b
a

H(t, s)|u(s) − v(s)|ds

6
∫b
a

H(t, s) sup
s∈[a,b]

|u(s) − v(s)|ds

= sup
t∈[a,b]

|u(t) − v(t)|

∫b
a

H(t, s)ds

6 e−2τ sup
t∈[a,b]

|u(t) − v(t)|.

Hence,
sup
t∈[a,b]

|Tu(t) − Tv(t)| 6 e−2τ sup
t∈[a,b]

|u(t) − v(t)|. (5.3)

Similarly, we have
sup
t∈[a,b]

|Tv(t) − Tw(t)| 6 e−2τ sup
t∈[a,b]

|v(t) −w(t)| (5.4)

and
sup
t∈[a,b]

|Tu(t) − Tw(t)| 6 e−2τ sup
t∈[a,b]

|u(t) −w(t)|. (5.5)

Therefore, from (5.3), (5.4), and (5.5) we have

sup
t∈[a,b]

|Tu(t) − Tv(t)|+ sup
t∈[a,b]

|Tv(t) − Tw(t)|+ sup
t∈[a,b]

|Tu(t) − Tw(t)|

6 e−2τ [ sup
t∈[a,b]

|u(t) − v(t)|+ sup
t∈[a,b]

|v(t) −w(t)|+ sup
t∈[a,b]

|u(t) −w(t)|
]
,
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which implies
G(Tu, Tv, Tw) 6 e−2τG(u, v,w).

Thus,
ln(G(Tu, Tv, Tw)) 6 −2τ+ ln(G(u, v,w))

and so
2τ+ ln(G(Tu, Tv, Tw)) 6 ln(G(u, v,w)).

Now, we observe that 2τ+ F(G(Tu, Tv, Tw)) 6 F(G(u, v,w)) is satisfied for F(α) = ln(α) for all α ∈ X.
Therefore, all conditions of Corollary 3.3 are satisfied. As a result of Corollary 3.3, the mapping T has
fixed point in X which is a solution of (5.1).

The following example illustrates the validity of Theorem 5.1.

Example 5.2. The following integral equation has a solution in X = (C[ln(2), ln(3)], R).

u(t) =

∫ ln(3)

ln(2)
cosh(st) u(s)ds, t ∈ [ln(2), ln(3)]. (5.6)

Proof. Let T : X→ X be defined as Tu(t) =
∫ln(3)

ln(2) cosh(st) u(s)ds, t ∈ [ln(2), ln(3)]. By specifying H(t, s) =

cosh(st), K(s, t) = t, and τ > 18
100 in Theorem 5.1, we get that:

1. the function H(t, s) is continuous on [ln(2), ln(3)]× [ln(2), ln(3)];
2. K(s, t) is continuous on [ln(2), ln(3)]×R for all s ∈ [ln(2), ln(3)];
3.

max
t∈[ln(2),ln(3)]

∫ ln(3)

ln(2)
cosh(st)ds = max

t∈[ln(2),ln(3)]

sinh(ln(3t)) − sinh(ln(2t))
t

= max
t∈[ln(2),ln(3)]

3t − 3−t − 2t + 2−t

2t

< 0.7 6 e−2τ;

4. for all u(s), v(s) ∈ X it is clear that condition 4 in Theorem 5.1 is satisfied.

Therefore, all conditions of Theorem 5.1 are satisfied, hence the mapping T has a fixed point in X, which
is a solution to equation (5.6).
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