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Abstract
In this paper, the state estimation problem is dealt with a class of neutral-type Markovian neural networks with mixed time

delays. The network systems have a finite number of modes, and the modes may jump from one state to another according to a
Markov chain. We are devoted to design a state estimator to estimate the neuron states, through available output measurements,
such that the dynamics of the estimation error is globally asymptotically stable in the mean square. From the Lyapunov-
Krasovskii functional and linear matrix inequality (LMI) approach, we establish sufficient conditions to guarantee the existence
of the state estimators. Furthermore, it is shown that the traditional stability analysis issue for delayed neural networks with
Markovian chains can be included as a special case of our main results. A simulation shows the usefulness of the derived
LMI-based stability conditions. c©2017 All rights reserved.
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1. Introduction

In the past two decades, the successful applications of cellular neural networks (CNNs) in a variety
of areas (e.g. pattern recognition, associative memory and combinational optimization) have received a
surge of research interests in the dynamical behaviors of the CNNs, see e.g. [1, 3, 4, 11, 25, 31, 32, 34–36].
We note that large-scale and high-order neural networks have shown their great capacities in learning
and data control. For relatively research, however, it is often the case that only partial information about
the neuron states can be available in the network outputs. Therefore, for using the neural networks
in practice, it becomes necessary to estimate the neuron states by available measurements. The state
estimation problems for neural networks have been received great attention, see e.g. [6, 8, 24, 28]. For
example, in [28], the neuron state estimation problem has been studied for recurrent neural networks with
time-varying delays, and an effective LMI approach has been used to verify the stability of the estimation
error dynamics. Salam and Zhang [24] obtained an adaptive state estimator by using techniques of
optimization theory, the calculus of variations and gradient descent dynamics.
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Generally speaking, time delays are often encountered in various biological, engineering and economic
systems due to the finite signal propagation time in biological networks or the finite switching speed of
amplifiers in electronic networks and so on (see e.g. [18, 20, 21]). For the dynamical behavior analysis
of delayed neural networks, different types of time delays, have been taken into account by using a
variety of techniques that include Lyapunov functional method, linear matrix inequality (LMI) approach,
topological degree theory, M-matrix theory and techniques of inequality analysis, see e.g. [19, 29, 37].

Neutral functional differential equation (NFDE) is a class of equations depending on past as well
as present values, but which involves derivatives with delays as well as the function itself. NFDEs are
not only an extension of functional differential equations, but also provide good models in many fields
including electronics, biology, mechanics and economics. Particularly, for engineering systems, the time
delays occur not only in the system states but also in the derivatives of system states. Accordingly,
CNNs with neutral terms have gained extensive research interests due to the fact that the neutral delays
could exist during the implementation process of CNNs. The stability analysis issue of neutral CNNs
has recently received much more research attention and a rich body of results has been obtained, see e.g.
[22, 30, 33].

Markovian jumping systems firstly introduced in [12], are the hybrid systems with two components
in the state. The first one referred to the mode which was described by a continuous-time finite-state
Markovian process, and the second one referred to the state which was represented by a system of
differential equations. The jumping systems have the advantage of modeling the dynamic systems subject
to abrupt variation in their structures.

So far, to the best of our knowledge, there is few results for the state estimation problem to neutral-type
Markovian neural networks with mixed time delays. The major challenges lie in the follows:

(1) in order to construct a feasible Lyapunov-Krasovskii functional, the neutral-type operator A (defined
by (2.3)) needs to be considered. So, when the operator A exists in the neural system, how can we
construct a feasible Lyapunov-Krasovskii functional;

(2) when the mixed delays and Markovian parameters exist in CNNs, the corresponding state esti-
mation becomes more complicated since a new Lyapunov functional is required to reflect these
influences; and

(3) it is non-trivial to establish a unified framework to handle the above system with the neutral terms,
mixed delays and Markovian parameters. The main purpose of this paper is to make the first
attempt to handle the listed challenges.

In this paper, we consider the state estimation problem for a generalized neutral-type Markovian
neural networks with mixed delays. The purpose of this paper is to estimate the neuron states via available
output measurements such that the estimation error converges to zero exponentially. A numerically
efficient LMI approach is developed to solve the addressed problem, and the explicit expression of the set
of desired estimators is characterized. A simulation example is used to verify the usefulness of the LMI
method.

The main contributions of this paper are outlined as follows:

(1) from neural network (2.7), we find that neutral operator A reflects neutral influence in (2.7), which is
different from the existing papers, see e.g. [30, 33]. Hence, when the neutral delay term is studied as
a neutral operator A, novel analysis technique should be developed since the conventional analysis
tool no longer applies;

(2) until now, neither the state estimation problem nor the stability analysis problem have been studied
in the literature for Markovian jumping CNNs with both mixed time-delays, this paper will shorten
such the above gap;

(3) a unified framework is established to handle the Markovian jumping parameters, neutral terms and
mixed delays.
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Let us recall some related research, Cheng et al. [5] studied a class of neutral-type neural networks with
delays:

x ′i(t) +

n∑
j=1

eijx
′
j(t− τj) = −di(xi(t))

(
ci(xi(t)) −

n∑
j=1

aijfj(xj(t)) −

n∑
j=1

bijfj(xj(t− τj))

)
.

Lou and Cui [17] investigated stochastic stability for a class of delayed neural networks of neutral type
with Markovian jumping parameters

u ′(t) = −C(ηt)u(t) +A(ηt)g(u(t)) +B(ηt)g(u(t− τ(t))) +D(ηt)u
′(t− τ(t)) + J.

Liu et al. [15] considered the following neutral-type neural networks with Markovvian jumping parame-
ters and mixed delays:

x ′(t) = E(r(t))x ′(t− τ1,r(t)) −A(r(t))x(t) −B(r(t))f(x(t))

+C(r(t))g(x(t− τ2,r(t))) +D(r(t))

∫t−τ4,r(t)

t−τ3,r(t)

h(x(s))ds.

Liu et al. [16] considered an uncertain neutral-type neural networks with time-varying delays:

y ′(t) = −(A+∆A(t))y(t) + (W1 +∆W1(t))g(y(t))

+ (W2 +∆W2(t))g(y(t− τ(t))) + (W3 +∆W3(t))y
′(t− h(t))

+ (W4 +∆W4(t))

∫t
t−r(t)

g(y(s))ds+ I.

Rakkiyappan et al. [23] studied the following impulsive neutral-type neural system:

y ′(t) = −Ay(t) +Bg(y(t)) +Cg(y(t− τ(t))) +Dy ′(t− h(t)), t 6= tk,
∆y(t) = Ik(y(t)), t = tk,
y(t+0 + s) = φ(s), s ∈ [t0 − ρ, t0], k ∈N.

Their neutral terms in the above systems are y ′(t− h(t)), u ′(t− τ(t)), x ′j(t− τj) and x ′(t− τ1,r(t)). As
was point by Hale [9] that the properties of operator A (defined by (2.3)) are important for studying
NFDEs. Hence system (2.7) has significant theoretical value for research of FDEs and neural networks.
Furthermore, in order to obtain stochastic stability results for the above systems, Lyapunov functional
method is necessary. But, in the present paper, based on new stochastic analysis and mathematical
analysis technique, we can derive the conditions for the existence of the desired estimators for the system
(2.7). We also parameterize the explicit expression of the set of desired estimators.

Throughout the manuscript, Rn and Rn×m denote, respectively, the n-dimensional Euclidean space
and the set of all n×m real matrices. The superscript “T” denotes the matrix transposition. Let h > 0 and
C([−h, 0]; Rn) with the norm ||φ|| = sup−h6θ60 |φ(θ)| denote the family of continuous functions φ from
[−h, 0]. We will use the notation A > 0 (or A < 0) to denote that A is a symmetric and positive definite
(or negative definite) matrix. If A,B are symmetric matrices, A > B (A > B), then A− B is a positive
definite (positive semi-definite). |z| denotes the Euclidean norm of a vector z and ||A|| denotes the induced
norm of the matrix A, that is ||A|| =

√
λmax(A>A) where λmax(·) means the largest eigenvalue of A. Let

(Ω,F, {Ft}t>0,P) be a complete probability space with a filtration {Ft}t>0. Denote by LpFt([−h, 0], Rn) the
family of all F0-measurable C([−h, 0]; Rn)-value random variables ξ = {ξ(θ) : −h 6 θ 6 0} such that
sup−h6θ60 E|ξ(θ)|p < ∞ stands for the mathematical expectation operator with respect to the given
probability measure P. Matrices, if their dimensions are not explicitly stated, assumed to be compatible
for algebraic operations.
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The following sections are organized as follows. The state estimation problem is formulated in Section
2 for Markovian jumping mixed delayed neural networks. In Section 3, we design a state estimator for the
neural network described by (2.7) such that for every mode, the dynamics of the system (2.9) is globally
asymptotically stable in the mean square. In Section 4 a numerical example is given to show the feasibility
of our results. Finally, some conclusions are given about this paper.

2. Problem formulation and main lemmas

Consider the following neutral-type delayed neural network with Markovian jumping:

(Aixi)
′(t) = −aixi(t) +

n∑
j=1

bijfj(xj(t)) +

n∑
j=1

dijgj(xj(t− τ(t)))

+

∫t
t−δ(t)

n∑
j=1

ωij(t)hj(xj(s))ds+ Ii(t),

(2.1)

where Ai is a difference operator defined by

(Aixi)(t) = xi(t) − cixi(t− γ), |ci| 6= 1, i = 1, 2, · · · ,n,

γ > 0 is a constant, xi(t) and Ii represent the activation and external input of the ith neuron in the I-layer,
respectively, fj,gj and hj are the activation functions of the j-th neuron with fj(0) = gj(0) = hj(0) = 0, ai
represents the rate with which the i-th unit will reset its potential to the resting state when disconnected
from the network and external inputs at time t, τ(t) > 0 corresponds to the finite speed of the axonal
transmission of signal, δ(t) > 0 describes the distributed time delay, bij denotes the strength of the j-th
unit on the i-th unit at time t, dij denotes the strength of the j-th unit on the i-th unit at time t− τ(t), wij
denotes the distributively delayed connection weights of the j-th neuron on the i neuron.

The neural network (2.1) can be rewritten as the following matrix-vector form:

(Ax) ′(t) = −Ax(t) +BF(x(t)) +DG(x(t− τ(t))) +W

∫t
t−δ(t)

H(x(s))ds+ I, (2.2)

where

Ax(t) = x(t) −Cx(t− γ), C = diag(c1, c2, · · · , cn), (2.3)

Ax(t) = (A1x1(t),A2x2(t), · · · ,Anxn(t))>, A = diag(a1,a2, · · · ,an),

B = (bij)n×n, D = (dij)n×n, W = (wij)n×n, I(t) = (I1(t), I2(t), · · · , In(t))>,

F(x(t)) = (f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))>,

G(x(t− τ(t))) = (g1(x1(t− τ(t))),g2(x2(t− τ(t))), · · · ,gn(xn(t− τ(t))))>,

H(x(t)) = (h1(x1(t)),h2(x2(t)), · · · ,hn(xn(t)))>.

Remark 2.1. We find that neutral-type model (2.2) shows the neutral character by the A operator, which is
different from the corresponding ones in other papers, see e.g. [17, 22, 30, 33].

We give two assumptions for the proof.

Assumption 2.2. There exist constants τ0 and δ0 such that

τ̇(t) 6 τ0 < 1, δ̇(t) 6 δ0 < 1.
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Assumption 2.3. The neuron activation functions in (2.2), F(·), G(·) and H(·) satisfy the following Lips-
chitz condition:

|F(x) − F(y)| 6 |G1(x− y)|,
|G(x) −G(y)| 6 |G2(x− y)|,
|H(x) −H(y)| 6 |G3(x− y)|,

(2.4)

where Gi ∈ Rn×n (i = 1, 2, 3) are known constant matrices. The type of activation functions in (2.4) is
not necessarily monotonic and smooth, and have been used in numerous papers, see e.g. [13, 14] and
references therein.

Remark 2.4. In general, the error state for estimation is similar to synchronization problems, see e.g.
[27, 38]. However, the purpose of state estimators is that choosing a proper estimator K so that x̂(t)
approaches x(t) asymptotically or exponentially. Furthermore, the estimator K can be obtained, which is
different from synchronization problems.

Suppose that the output from the neural network (2.2) is of the form:

y(t) = Rx(t) +Q(t, x(t)), (2.5)

where y(t) = (y1(t),y2(t), · · · ,ym(t))> ∈ Rm is the measurement output of the neural network, R ∈
Rm×n is a known constant matrix with appropriate dimension.

Q(t, x(t)) = (q1(t, x(t)), · · · ,qm(t, x(t)))> ∈ Rm,

is the nonlinear disturbance dependent on the neuron state that satisfies the following Lipschitz condition:

|Q(t, x) −Q(t,y)| 6 |L(x− y)|, (2.6)

where L ∈ Rn×n is a known constant matrix.
Let {r(t), t > 0} be a right-continuous Markov process on the probability space which takes values in

the finite space ρ = {1, 2, · · · ,N} with generator Γ = (γij) (i, j ∈ ρ) given by

P{r(t+∆) = j|r(t) = i} =

{
γij∆+ o(∆) if i 6= j,
1 + γij∆+ o(∆) if i = j,

where ∆ > 0 and lim∆→0 o(∆)/∆ = 0, γij > 0 is the transition rate from i to j and γii = −
∑
j6=i γij.

In this paper, we will focus on the following neural network with Markovian jumping parameters,
which can be seen as a variation of the model (2.2), (2.3), (2.4), (2.5):

(Ax) ′(t) = −A(r(t))x(t) +B(r(t))F(x(t)) +D(r(t))G(x(t− τ(t)))

+W(r(t))

∫t
t−δ(t)

H(x(s))ds+ I(r(t)),

y(t) = R(r(t))x(t) +Q(t, x(t)),

(2.7)

where x(t) and y(t) have the same meanings as those in (2.2) and (2.5), F(·), G(·),H(·) and Q(t, x(t))
satisfy (2.4) and (2.6), respectively. For fixed system mode, A(r(t)), B(r(t)), D(r(t)) and I(r(t)) are known
constant matrices with appropriate dimensions.

The main objective of this paper is to develop an efficient algorithm to estimate the neuron states x(t)
in (2.2) from the available network outputs in (2.5). From now on we shall work on the network mode
r(t) = i, for all i ∈ ρ. The full-order state estimator of (2.7) is of the form

(Ax̂) ′(t) = −A(i)x̂(t) +B(i)F(x̂(t)) +D(i)G(x̂(t− τ(t))) +W(i)

∫t
t−δ(t)

H(x̂(s))ds

+ I(r(t)) +K(i)[y(t) − R(i)x̂(t) −Q(t, x̂(t))],
(2.8)
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where x̂(t) is the estimation of the neuron state, and K(i) ∈ Rn×m is the estimator gain matrix to be
designed.

Let
E(t) = (ε1(t), · · · , εn(t))> = x̂(t) − x(t),

be the state estimation error. In view of (2.2) and (2.8), the state error E(t) satisfies the following equation

(AE) ′(t) = (−A(i) −K(i)R(i))E(t) +B(i)F̂(E(t)) +D(i)Ĝ(E(t− τ(t)))

+W(i)

∫t
t−δ(t)

Ĥ(E(s))ds−K(i)Q̂(t,E(t)),
(2.9)

where
AE(t) = [A1ε1(t),A2ε2(t), · · · ,Anεn(t)]> = Ax̂(t) −Ax(t),

F̂(E(t)) = [f̂1(ε1(t)), f̂2(ε2(t)), · · · , f̂n(εn(t))]> = F(x̂(t)) − F(x(t)),

Ĝ(E(t)) = [ĝ1(ε1(t)), ĝ2(ε2(t)), · · · , ĝn(εn(t))]> = G(x̂(t)) −G(x(t)),

Ĥ(E(t)) = [ĥ1(ε1(t)), ĥ2(ε2(t)), · · · , ĥn(εn(t))]> = H(x̂(t)) −H(x(t)),

Q̂(t,E(t)) = Q(t, x̂(t)) −Q(t, x(t)).

Let E(t; ξ) denote the state trajectory of the error-state system (2.9) with the initial data condition
E(θ) = ξ(θ) on −h 6 θ 6 0 in L2

F0
([−h, 0]; Rn). It can be easily seen that the system (2.9) admits a trivial

solution (equilibrium point) e(t; 0) ≡ 0 corresponding to the initial data ξ = 0.
We need the following definition to go ahead to design the desired estimators.

Definition 2.5. For the system (2.9) and each ξ ∈ L2
F0
([−h, 0]; Rn), the equilibrium point is asymptotically

stable in the mean square, if for every network mode,

lim
t→∞E|E(t; ξ)|2 = 0.

We shall design a state estimator for the neural network described by (2.2) such that for every mode,
the dynamics of the system (2.2) is globally asymptotically stable in the mean square for the nonlinear
activation function and the nonlinear disturbance in (2.2).

Lemma 2.6 ([13]). Let X, Y be any n-dimensional real vectors, and ε > 0. Then the following matrix inequality
holds:

2X>Y 6 εX>X+ ε−1Y>Y.

Lemma 2.7 ([7]). For any positive definite matrix M > 0, scalar γ > 0, vector function ω : [0,γ]→ Rn such that
the integrations concerned are well-defined, the following inequality holds:( ∫γ

0
ω(s)ds

)>
M

( ∫γ
0
ω(s)ds

)
6 γ

( ∫γ
0
ω>(s)Mω(s)ds

)
.

Lemma 2.8 ([2]). Given constant matrices Ω1,Ω2,Ω3 where Ω1 = Ω>1 and Ω2 > 0, then

Ω1 +Ω
>
3 Ω

−1
2 Ω3 < 0,

if and only if (
Ω1 Ω>3
Ω3 −Ω2

)
< 0 or

(
−Ω2 Ω3
Ω>3 −Ω1

)
< 0.

Lemma 2.9. If
√
nc+i < 1, i = 1, 2, · · · ,n, then the inverse of difference operator A denoted by A−1, exists and

|A−1| 6
1

1 −
√
nc+i

,

where c+i = max{|c1|, |c2|, · · · , |cn|}.
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Proof. Let Bx(t) = Cx(t− γ), then |B| =
√
nc+i < 1. Thus, A−1 = (I−B)−1 exists and |A−1| = |(I−B)−1| 6

1
1−
√
nc+i

.

We are now ready to deal with the stability analysis problem, that is, deriving the conditions under
which the error dynamics of the estimation process (2.9) is globally asymptotically stable in the mean
square. The following theorem shows that such conditions can be obtained if a quadratic matrix inequality
involving several scalar parameters is feasible.

3. Main results

Theorem 3.1. Suppose that Assumption 2.2 and Assumption 2.3 hold,
√
nc+i < 1, i = 1, 2, · · · ,n. Let the

estimator gain K(i) be given. If there exist four sequences of positive scalars ε1i, ε2i, · · · , ε4i, i ∈ ρ and a symmetric
positive sequence define matrices P(i) (i ∈ ρ) such that the following inequalities

Π1 = 2P(i)
[
(−A(i) −K(i)R(i)) +

N∑
j=1

γijPj

]
= A>kiP(i) + P(i)Aki +

N∑
j=1

γijPj < 0,

where Aki = −A(i) −K(i)R(i),

Π2 = ε1iG
>
1 G1 + ε2iG

>
2 G2 + ε3iδ

2
0G
>
3 G3 + ε4iL

>L+ (2 + τ0)Q1 + 3δ0Q2 < 0,

Π3 = ε−1
1i P(i)B(i)B

>(i)P(i) + ε−1
2i P(i)D(i)D>(i)P(i) + ε−1

3i P(i)W(i)W>(i)P(i)

+ ε−1
4i P(i)K(i)K

>(i)P(i) < 0,

hold, where Q1 and Q2 are defined by (3.4), then the error-state system (2.9) of the neural network (2.7) is globally
asymptotically stable in the mean square.

Proof. It follows immediately from (2.4) that

F̂>(·)F̂(·) = |F(x̂(·)) − F(x(·))| 6 |G1E(·)|2 = E>(·)G>1 G1E(·),
Ĝ>(·)Ĝ(·) = |G(x̂(·)) −G(x(·))| 6 |G2E(·)|2 = E>(·)G>2 G2E(·),
Ĥ>(·)Ĥ(·) = |H(x̂(·)) −H(x(·))| 6 |G3E(·)|2 = E>(·)G>3 G3E(·),

(3.1)

Q̂>(t, ·)Q̂(t, ·) = |Q(t, x̂(·)) −Q(t, x(·))| 6 |LE(·)|2 = E>(·)L>LE(·). (3.2)

Let C2,1(Rn ×R+ × ρ, R+) denote the family of all nonnegative functions Φ(E, t, i) on Rn ×R+ × ρ
which are continuously twice differentiable in E and differentiable in t. Fix ξ ∈ L2

F0
([−h, 0]; Rn). Define a

Lyapunov functional candidate Φ(E, t, i) ∈ C2,1(Rn ×R+ × ρ, R+) by

Φ(E, t, i) = [AE(t)]>P(i)[AE(t)]

+

∫t
t−τ(t)

E>(s)Q1E(s)ds+

∫δ(t)
0

∫t
t−s

E>(η)Q2E(η)dηds,
(3.3)

where P(i) > 0 is the positive definite solution to Πi < 0 (i = 1, 2, 3), Q1 > 0 and Q2 > 0 are defined by

Q1 = ε1iG
>
1 G1, Q2 = ε3iδ0G

>
3 G3. (3.4)

By [26] we know that {E(t), r(t)}(t > 0) is a C([−h, 0]; Rn)×ρ-valued Markov process. Along the trajectory
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of (3.3), the weak infinitesimal operator L (see Ji and Chizeck [10]) of the stochastic process

{r(t), x(t)} (t > 0),

is given by

LΦ(E(t), r(t)) = lim
∆→0+

1
∆
[E{Φ(E(t+∆), r(t+∆))|r(t) = i}−Φ(E(t), r(t) = i)]

= 2[AE(t)]>P(i)

[
(−A(i) −K(i)R(i))E(t)

+

N∑
j=1

γijPjE(t) +B(i)F̂(E(t)) +D(i)Ĝ(E(t− τ(t)))

+W(i)

∫t
t−δ(t)

Ĥ(E(s))ds−K(i)Q̂(t,E(t))
]

+ [E(t)]>(Q1 + δ(t)Q2)E(t) − (1 − τ ′(t))[E(t− τ(t))]>Q1E(t− τ(t))

−

∫t
t−δ(t)

[E(s)]>Q2E(s)ds

+

N∑
j=1

γij

∫t
t−τ(t)

E>(s)Q1E(s)ds+

N∑
j=1

γij

∫δ(t)
0

∫t
t−s

E>(η)Q2E(η)dηds.

(3.5)

It follows from Lemma 2.6, (3.1) and (3.2) that

2[AE(t)]>P(i)B(i)F̂(E(t)) = 2F̂>(E(t))B>(i)P(i)AE(t)

6 ε1iF̂
>(E(t))F̂(E(t)) + ε−1

1i [AE(t)]>P(i)B(i)B>(i)P(i)[AE(t)]

6 E>(t)(ε1iG
>
1 G1)E(t) + [AE(t)]>ε−1

1i P(i)B(i)B
>(i)P(i)[AE(t)],

(3.6)

2[AE(t)]>P(i)D(i)Ĝ(E(t− τ(t))) = 2Ĝ>(E(t− τ(t)))D>(i)P(i)AE(t)

6 ε2iĜ
>(E(t− τ(t)))Ĝ(E(t− τ(t)))

+ ε−1
2i [AE(t)]>P(i)D(i)D>(i)P(i)[AE(t)]

6 E>(t− τ(t))(ε2iG
>
2 G2)E(t− τ(t))

+ [AE(t)]>ε−1
2i P(i)D(i)D>(i)P(i)[AE(t)],

(3.7)

2[AE(t)]>P(i)W(i)

∫t
t−δ(t)

Ĥ(E(s))ds = 2
[ ∫t
t−δ(t)

Ĥ(E(s))ds

]>
W>(i)P(i)AE(t)

6 ε3i

[ ∫t
t−δ(t)

Ĥ(E(s))ds

]>[ ∫t
t−δ(t)

Ĥ(E(s))ds

]
+ ε−1

3i [AE(t)]>P(i)W(i)W>(i)P(i)[AE(t)],

(3.8)

−2[AE(t)]>P(i)K(i)Q̂(t,E(t)) = −2
[
Q̂(t,E(t))

]>
K>(i)P(i)AE(t)

6 ε4i

[
Q̂(t,E(t))

]>[
Q̂(t,E(t))

]
+ ε−1

4i [AE(t)]>P(i)K(i)K>(i)P(i)[AE(t)],

6 [E(t)]>ε4iL
>L[E(t)] + ε−1

4i [AE(t)]>P(i)K(i)K>(i)P(i)[AE(t)].

(3.9)
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By resorting to Lemma 2.7 and the definition of Q2 in (3.4), we have

ε3i

[ ∫t
t−δ(t)

Ĥ(E(s))ds

]>[ ∫t
t−δ(t)

Ĥ(E(s))ds

]
6 ε3iδ0

∫t
t−δ(t)

Ĥ>(E(s))Ĥ(E(s))dsds

6 ε3iδ0

∫t
t−δ(t)

E>(s)G>3 G3E(s)ds = δ0

∫t
t−δ(t)

E>(s)Q2E(s)ds,

and hence

2
[ ∫t
t−δ(t)

Ĥ(E(s))ds

]>
W>(i)P(i)AE(t)

6
∫t
t−δ(t)

E>(s)Q2E(s)ds+ ε
−1
3i [AE(t)]>P(i)W(i)W>(i)P(i)[AE(t)].

(3.10)

Furthermore, it follows from
∑N
j=1 γij = 0 that

N∑
j=1

γij

∫t
t−τ(t)

E>(s)Q1E(s)ds =

N∑
j=1

γij

∫δ(t)
0

∫t
t−s

E>(η)Q2E(η)dηds = 0. (3.11)

In the view of (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), and (3.11), we obtain from Lemma 2.9 that

LΦ(E(t), r(t)) 6 2[AE(t)]>P(i)

[
(−A(i) −K(i)R(i)) +

N∑
j=1

γijPj

]
E(t)

+ [E(t)]>
(
ε1iG

>
1 G1 + ε2iG

>
2 G2 + ε3iδ

2
0G
>
3 G3 + ε4iL

>L

+ (2 + τ0)Q1 + 3δ0Q2

)
E(t)

+ [AE(t)]>
(
ε−1

1i P(i)B(i)B
>(i)P(i) + ε−1

2i P(i)D(i)D>(i)P(i)

+ ε−1
3i P(i)W(i)W>(i)P(i) + ε−1

4i P(i)K(i)K
>(i)P(i)

)
[AE(t)]

= [AE(t)]>Π1E(t) + [E(t)]>Π2E(t) + [AE(t)]>Π3[AE(t)]

6 [AE(t)]>
(

1
1 −
√
nc+i

Π1 +
1

(1 −
√
nc+i )

2Π2 +Π3

)
[AE(t)].

(3.12)

Taking the mathematical expectation of both sides of (3.12), we have

LEΦ(E(t), r(t)) 6 E

{
[AE(t)]>

(
1

1 −
√
nc+i

Π1 +
1

(1 −
√
nc+i )

2Π2 +Π3

)
[AE(t)]

}
6 −λ̃E|AE(t)|2,

where λ̃ = min{ 1
1−
√
nc+i

λmin(−Π1), 1
(1−
√
nc+i )

2λmin(−Π2), λmin(−Π3)}. Then we have

lim
t→∞E|AE(t)|2 = 0,
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together with |E(t)| 6 1
1−
√
nc+i

|AE(t)| yields

lim
t→∞E|E(t)|2 = 0.

Therefore, from Definition 2.5, we arrive at the conclusion that the error-state system (2.9) is globally
asymptotically stable in the mean square. This completes the proof of Theorem 3.1.

Remark 3.2. In general, when |ci| > 1 (i = 1, 2, · · · ,n) in (2.3), the operator A has no inverse operator and
Lemma 2.9 can not hold. Hence, it is very difficult for obtaining stability results to the error system (2.9).
The above case will be studied by us in the future.

Now, let us consider the conditions for the estimation error-state system (2.9) of the neural network
(2.7) is globally asymptotically stable in the mean square. Furthermore, we will give a practical design
procedure for the estimator gain by LMIs.

Theorem 3.3. If there exist sequences ε1i, ε2i, · · · , ε4i, i ∈ ρ and a symmetric positive sequence define matrices
P(i) ∈ Rn×n (i ∈ ρ) such that following LMI holds:

Ψ =



Γ1i P(i)B(i) ε1i
(1−
√
nc+i )

2G
>
1 P(i)D(i) ε2i

(1−
√
nc+i )

2G
>
2 P(i)W(i)

B>(i)P>(i) −ε1iI 0 0 0 0
ε1i

(1−
√
nc+i )

2G1 0 −ε1iI 0 0

D>(i)P>(i) 0 0 −ε2iI 0 0
ε2i

(1−
√
nc+i )

2G2 0 0 0 −ε2iI 0

W>(i)P>(i) 0 0 0 0 −ε3iI
ε3i

(1−
√
nc+i )

2 δ
2
0G3 0 0 0 0 0

R>i 0 0 0 0 0
ε4i

(1−
√
nc+i )

2L 0 0 0 0 0

P(i)D(i) ε2i
(1−
√
nc+i )

2G
>
2 P(i)W(i)

0 0 0
−ε1iI 0 0
−ε2iI 0 0

0 −ε2iI 0
0 0 −ε3iI

0 0 0
0 0 0
0 0 0


< 0,

where

Γ1i :=
1

1 −
√
nc+i

A>ki + P(i) +
1

1 −
√
nc+i

P(i)Aki +
1

1 −
√
nc+i

N∑
j=1

γijPj.

In this case, the estimator gain matrix K(i) can be taken as

K(i) = P(i)−1R(i).

Then the error-state system (2.9) of the neural network (2.7) is globally asymptotically stable in the mean square.

Proof. Pre- and post-multiplying the inequality Ψ < 0 by the block diagonal matrix

diag{I, ε−1/2
1i I, ε−1/2

1i I, ε−1/2
2i I, ε−1/2

2i I, ε−1/2
3i I, ε−1/2

3i I, ε−1/2
4i I, ε−1/2

4i I},



B. Du, W. B. Zhang, Q. Yang, J. Nonlinear Sci. Appl., 10 (2017), 2565–2578 2575

yields the following inequality:

Φ =



Γ1i ε
−1/2
1i P(i)B(i)

ε
1/2
1i

1−c+i
G>1 ε

−1/2
2i P(i)D(i)

ε
1/2
2i

1−c+i
G>2

ε
−1/2
1i B>(i)P>(i) −I 0 0 0

ε
1/2
1i

1−c+i
G1 0 −I 0 0

ε
−1/2
2i D>(i)P>(i) 0 0 −I 0

ε2i
1−c+i

G21/2 0 0 0 −I

ε
−1/2
3i W>(i)P>(i) 0 0 0 0

ε
1/2
3i δ

2
0

1−c+i
G3 0 0 0 0

ε
−1/2
4i R>i 0 0 0 0
ε
−1/2
4i

1−c+i
ε4iL 0 0 0 0

ε
−1/2
3i P(i)W(i)

ε
1/2
3i

1−c+i
δ2

0G
>
3 ε

−1/2
4i Ri

ε
1/2
4i

1−c+i
L>

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
−I 0 0 0
0 −I 0 0
0 0 −I 0
0 0 0 −I


< 0,

or (
Γ1i Γ>3i
Γ3i −Γ2i

)
< 0, (3.13)

where Γ2i = I,

Γ3i = [ε
−1/2
1i P(i)B(i)

ε
1/2
1i

1 − c+i
G>1 ε

−1/2
2i P(i)D(i)

ε
1/2
2i

1 − c+i
G>2 ε

−1/2
3i P(i)W(i)

ε
1/2
3i

1 − c+i
δ2

0G
>
3 ε

−1/2
4i Ri

ε
1/2
4i

1 − c+i
L>]>.

From Lemma 2.8, we can find that (3.13) holds if and only if

Γ1i + Γ
>
3iΓ

−1
2i Γ3i < 0,

or

1
1 −
√
nc+i

A>kiP(i) +
1

1 −
√
nc+i

P(i)Aki +
1

1 −
√
nc+i

N∑
j=1

γijPj

+
1

(1 −
√
nc+i )

2

(
ε1iG

>
1 G1 + ε2iG

>
2 G2 + ε3iδ

2
0G
>
3 G3 + ε4iL

>L+ (2 + τ0)Q1 + 3δ0Q2

)
+ ε−1

1i P(i)B(i)B
>(i)P(i) + ε−1

2i P(i)D(i)D>(i)P(i)

+ ε−1
3i P(i)W(i)W>(i)P(i) + ε−1

4i R(i)R
>(i) < 0.

(3.14)

Noticing R(i) = P(i)K(i). Obviously, (3.14) is the same as

1
1 −
√
nc+i

Π1 +
1

(1 −
√
nc+i )

2Π2 +Π3 < 0.

Hence, from Theorem 3.1 and the estimator gain K(i) = P−1(i)R(i) in Theorem 3.3, the system (2.9) is
globally asymptotically stable in the mean square of the neural network (2.7).
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Remark 3.4. A meaningful approach to tackle state estimation problems is to convert the nonlinearly
coupled matrix inequalities into linear matrix inequalities (LMIs), while the estimator gain is designed
simultaneously. It should be mentioned that, in the past decade, LMIs have gained much attention for
their computational tractability and usefulness in many areas, including the stability testing for neural
networks. Hence, LMIs method is very crucial for obtaining the main results in the present paper.

4. Numerical example

In this section, we present a simulation example so as to illustrate the usefulness of our main results.

Example 4.1. Consider a 3-neuron neural network (2.7) with the following parameters:

δ(t) = τ(t) =
1
2

sin t, γ = 2, C = diag{
1
3

,
1
3

,
1
3
}, Ak1 = diag{1.5, 1.7, 1.8}, Ak2 = diag{1.4, 1.5, 1.8},

G1 = diag{0.01, 0.02, 0.03}, G2 = diag{0.03, 0.04, 0.06}, G3 = diag{0.05, 0.07, 0.09},

L = diag{0.08, 0.08, 0.08}, B1 = [0.06 − 0.085 0.09], B2 =

 0.02 0.004 0.001
0.04 0.001 0.002

0.001 0.04 0.03

 ,

D1 =

 0.02 0.004 0.001
0.04 0.001 0.002

0.001 0.04 0.03

 , D2 =

 0.02 0.004 0.001
0.04 0.001 0.002
0.001 0.04 0.03

 ,

W1 =

 0.03 0.005 0.002
0.04 0.002 0.002

0.002 0.02 0.03

 , W2 =

 0.03 0.005 0.004
0.04 0.004 0.002
0.004 0.02 0.03

 ,

Γ =

 −3 5 4
5 −4 2
4 2 −3

 , I1 = I2 = [0.3 0.3 0.3]>.

Then we have τ0 = 0.5, δ0 = 0.5, c+i = 1
3 ,
√
nc+i =

√
3

3 < 1. Using the Matlab LMI toolbox to solve the
LMI Ψ, we obtain

P1 =

 62.5121 0.3235 0.2986
0.3235 61.4512 0.1527
0.2986 0.1527 56.4822

 , P2 =

 46.2110 0.2218 0.3416
0.2218 48.2945 0.2011
0.3416 0.2011 52.2713

 ,

R1 =

 −190.1256 46.0211 42.0219
205.0301 1.1419 0.8904
165.3009 0.7804 0.9980

 , R2 =

 190.1256 −46.0211 −40.0021
−205.0301 −1.1419 −0.7598
−162.2514 −0.6855 −0.8925

 ,

and we have

K1 = P−1
1 R1 =

 −3.0727 0.7361 0.6721
3.3454 0.0147 0.0109
2.9338 0.0099 0.0141

 , K2 = P−1
2 R2 =

 4.1577 −0.9958 −0.8655
−4.2515 −0.0190 −0.0117
−3.1148 −0.0065 −0.0114

 .

From Theorem 3.1 and estimator gain Ki (i = 1, 2), the error dynamics for the neutral-type neural network
converges to zero asymptotically in the mean square.

Remark 4.2. In [13], Liu et al. studied the state estimation problem of a class of non-neutral type neural
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networks with mixed delays

x ′(t) = −Dx(t) +AF(x(t)) +BG(x(t− τ1)) +W

∫t
t−τ2

H(x(s))ds+ I(t). (4.1)

We can find that both the existence conditions and the explicit expression of the desired estimator can be
characterized in terms of the solution to LMI method in [13]. It is clear that system (4.1) is a special case
when C = 0 and τ(t) = τ1, δ(t) = τ2 in system (2.2). Hence, the numerical results of (4.1) can be easily
deduced by the corresponding results of (2.2).

5. Conclusions

In this paper, some sufficient conditions for stochastic stability of a class of neutral-type neural net-
works with Markovian jumping parameters have been obtained by using LMI. In addition, the existence
of the expected estimators have been derived in terms of the positive definite solution to an LMI involving
several scalar parameters, and the analytical expression characterizing the desired estimators has been ob-
tained. Finally, a simulation example has been provided to show the usefulness of the derived LMI-based
stability conditions.
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