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Abstract
In this paper, we prove some theorems about the Hyers-Ulam stability of the functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 2[f(2x) − 2f(x)]

in paranormed spaces. From these theorems, as corollaries, we obtain the stability of the above functional equation with weaker
conditions controlled by product of powers of norms and mixed-type product-sum of powers of norms. c©2017 All rights
reserved.
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1. Introduction

In 1940, Ulam [18] posed the first stability problem concerning group homomorphisms: let (G1, ∗) be
a group and (G2, �,d) be a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ(ε) > 0
such that if a mapping f : G1 → G2 satisfies the inequality

d(f(x ∗ y), f(x) � f(y)) < δ

for all x,y ∈ G1, then there is a homomorphism g : G1 → G2 with d(f(x),g(x)) < ε for all x ∈ G1?
In 1941, Hyers [4] gave the first affirmative partial answer to the question of Ulam for Banach spaces.

Hyers’ result was generalized by Aoki [1] for additive mappings and by Rassias [14] for linear mappings.
In 1982, Rassias [15] considered a further generalization of the results of Hyers and proved a theorem
using weaker conditions controlled by a product of different powers of norms. Forti [2] and Găvruţa [3]
obtained generalized Rassias’ result which allows the Cauchy difference to be controlled by a general
unbounded function in the spirit of Rassias’ approach. Since then, the stability of several functional
equations has been extensively investigated by several mathematicians (see [5–7, 16, 17] and references
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therein). Recently, some stability results concerning with the linear functional equations such as the
additive Cauchy functional equation, quadratic functional equation, the cubic functional equation, the
quartic functional equation, and the mixed type additive-quadratic-cubic-quartic functional equation (cf.
[8, 10–13]) in paranormed spaces have been obtained.

In 2008, Najati and Eskandani [9] considered the functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 2[f(2x) − 2f(x)] (1.1)

with f(0) = 0. It is easy to show that the mapping f(x) = ax3 + cx is a solution of the functional equation
(1.1). They determined the general solution of the functional equation (1.1) and also investigated the
Hyers-Ulam-Rassias stability of functional equation (1.1) in quasi-Banach spaces.

The main purpose of this paper is to investigate the generalized Hyers-Ulam stability of functional
equation (1.1) in paranormed spaces. We also present stability of functional equation (1.1) using weaker
conditions controlled by product of powers of norms and mixed-type product-sum of powers of norm.

2. Definitions

In this section, we present some definitions that will be used throughout this paper. Let us begin with
the definition of paranorm.

Definition 2.1. Let X be a vector space. A paranorm P : X→ [0,∞) is a function on X such that

(1) P(0) = 0;
(2) P(−x) = P(x);
(3) P(x+ y) 6 P(x) + P(y) (triangle inequality);
(4) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P(xn − x) → 0, then P(tnxn − tx) → 0

(continuity of multiplication).

The pair (X,P) is called a paranormed space and P is a paranorm on the vector space X.

The paranorm is called total if, in addition, we have P(x) = 0 implies x = 0. A Fréchet space is a total
and complete paranormed space. Throughout this paper, we assume that (X,P) is a Fréchet space and
(Y, ‖ · ‖) is a Banach space. It is easy to see that if P is a paranorm on X, then P(nx) 6 nP(x) for all x ∈ X
and n ∈N.

Let V and W be vector spaces, and V = V × V × · · · × V be the Cartesian product of n copies of V . A
mapping A : V → W is called an n-additive mapping if and only if A is additive in each variable. The
diagonal of a 3-additive mapping is called a cubic mapping whereas the diagonal of a 2-additive mapping
is called a quadratic mapping.

For a given mapping f : X → Y, where X is either a paranorm or a norm space and Y is a norm or a
paranorm space, we define Df : X×X→ Y by

Df(x,y) = f(2x+ y) + f(2x− y) − 2f(x+ y) − 2f(x− y) − 2[f(2x) − 2f(x)]

for all x,y ∈ X.

3. Main results

In this section, using the direct method, we prove the Hyers-Ulam stability of the functional equation
Df(x,y) = 0 in paranormed spaces. It is easy to check that the mapping x 7→ f(x) − f(0) also satisfies the
equation Df(x,y) = 0. Thus, throughout this section, without loss of generality, we assume that f(0) = 0,
otherwise we work on the function x 7→ f(x) − f(0) instead of f.

Before proceeding to the proof of the main results, we present the following two lemmas.
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Lemma 3.1 ([9]). Let V and W be real vector spaces. If a mapping f : V → W satisfies (1.1), then the mapping
g : V →W defined by g(x) = f(2x) − 2f(x) is cubic.

Lemma 3.2 ([9]). Let V and W be real vector spaces. If a mapping f : V → W satisfies (1.1), then the mapping
h : V →W defined by h(x) = f(2x) − 8f(x) is additive.

Theorem 3.3. Let r be positive real number with r < 3. Suppose that f : X→ Y is a mapping satisfying

‖Df(x,y)‖ 6 P(x)r + P(y)r (3.1)

for all x,y ∈ X. Then there exists a unique cubic mapping C : X→ Y satisfying

‖f(2x) − 2f(x) −C(x)‖ 6 7 + 2r

8 − 2r
P(x)r (3.2)

for all x ∈ X.

Proof. Setting x = 0 in (3.1), we have

‖f(y) + f(−y)‖ 6 P(y)r (3.3)

for all y ∈ X. Replacing y by x first and then y by 2x in (3.1), we obtain the inequalities

‖f(3x) − 4f(2x) + 5f(x)‖ 6 2P(x)r, (3.4)
‖f(4x) − 2f(3x) − 2f(2x) − 2f(−x) + 4f(x)‖ 6 (2r + 1)P(x)r (3.5)

for all x ∈ X. It follows from (3.3), (3.4), and (3.5) that

‖f(4x) − 10f(2x) + 16f(x)‖ 6 ‖2(f(x) + f(−x))‖+ ‖2(f(3x) − 4f(2x) + 5f(x))‖
+ ‖f(4x) − 2f(3x) − 2f(2x) − 2f(−x) + 4f(x)‖

6 2P(x)r + 2 · 2P(x)r + (2r + 1)P(x)r = (7 + 2r)P(x)r
(3.6)

for all x ∈ X. Defining g : X→ Y by g(x) := f(2x) − 2f(x) and using (3.6) we have

‖g(x) − 1
8
g(2x)‖ 6 7 + 2r

8
P(x)r (3.7)

for all x ∈ X. Hence

‖ 1
8m
g(2mx) −

1
8n
g(2nx)‖ 6

n−1∑
j=m

(7 + 2r)2rj

8j+1 P(x)r (3.8)

for all nonnegative integers n and m with n > m and all x ∈ X. Therefore we conclude from (3.8) that
the sequence

{ 1
8ng(2

nx)
}

is a Cauchy sequence in Y for all x ∈ X. Since Y is complete, the sequence{ 1
8ng(2

nx)
}

converges for all x ∈ X. So one can define the mapping C : X→ Y by

C(x) := lim
n→∞ 1

8n
g(2nx) (3.9)

for all x ∈ X. Letting m = 0 and passing the limit n → ∞ in (3.8), we get (3.2). Now, we show that the
mapping C is cubic. By (3.7) and (3.9),

‖C(2x) − 8C(x)‖ = lim
n→∞ ‖ 1

8n
g(2n+1x) −

1
8n−1g(2

nx)‖

= lim
n→∞ 1

8n−1 ‖
1
8
g(2n+1x) − g(2nx)‖

6 lim
n→∞ (7 + 2r)2nr

8n
P(x)r = 0
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for all x ∈ X. Therefore, we obtain

C(2x) = 8C(x) (3.10)

for all x ∈ X. On the other hand it follows from (3.1) and (3.9) that

‖DC(x,y)‖ = lim
n→∞ ‖ 1

8n
Dg(2nx, 2ny)‖

= lim
n→∞ 1

8n
‖Df(2n+1x, 2n+1y) − 2Df(2nx, 2ny)‖

6 lim
n→∞ 1

8n
{2nr+r[P(x)r + P(y)r] + 2nr+1[P(x)r + P(y)r]}

= lim
n→∞ 2nr

8n
(2r + 2)[P(x)r + P(y)r] = 0

for all x,y ∈ X. Hence the mapping C satisfies (1.1). So by Lemma 3.1, the mapping x 7→ C(2x) − 2C(x) is
cubic. Hence (3.10) implies that the mapping C is cubic. To prove the uniqueness of C, let C′ : X → Y be
another cubic mapping satisfying (3.2). Then we have

‖C(x) −C′(x)‖ = ‖ 1
8n
C(2nx) −

1
8n
C′(2nx)‖

6 ‖ 1
8n

(C(2nx) − g(2nx))‖+ ‖ 1
8n

(C′(2nx) − g(2nx))‖

6
2(7 + 2r)2nr

(8 − 2r)8n
P(x)r,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that C(x) = C′(x) for all x ∈ X. This
completes the proof of the theorem.

Corollary 3.4. Let r, s be positive real numbers such that ρ := r+ s < 3. Suppose that f : X → Y is a mapping
satisfying

‖Df(x,y)‖ 6

{
P(x)rP(y)s,
P(x)rP(y)s + P(x)r+s + P(y)r+s

(3.11)

for all x,y ∈ X. Then there exists a unique cubic mapping C : X→ Y satisfying

‖f(2x) − 2f(x) −C(x)‖ 6

{ 2+2s
8−2ρP(x)

ρ,
(9+2s)+2ρ

8−2ρ P(x)ρ

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 3.3 and thus it is omitted.

Theorem 3.5. Let r, θ be positive real numbers such that r > 3. Suppose that f : Y → X is a mapping satisfying

P(Df(x,y)) 6 θ(‖x‖r + ‖y‖r) (3.12)

for all x,y ∈ Y. Then there exists a unique cubic mapping C : Y → X satisfying

P(f(2x) − 2f(x) −C(x)) 6
2r + 7
2r − 8

θ‖x‖r (3.13)

for all x ∈ Y.
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Proof. Setting x = 0 in (3.12), we obtain

P(f(y) + f(−y)) 6 θ‖y‖r (3.14)

for all y ∈ Y. Replacing first y by x and then y by 2x in (3.12), we get

P(f(3x) − 4f(2x) + 5f(x)) 6 2θ‖x‖r, (3.15)
P(f(4x) − 2f(3x) − 2f(2x) − 2f(−x) + 4f(x)) 6 (2r + 1)θ‖x‖r (3.16)

for all x ∈ Y. It follows from (3.14), (3.15), and (3.16) that

P(f(4x) − 10f(2x) + 16f(x)) 6 P(2(f(x) + f(−x))) + P(2(f(3x) − 4f(2x) + 5f(x)))
+ P(f(4x) − 2f(3x) − 2f(2x) − 2f(−x) + 4f(x))

6 2θ‖x‖r + 2 · 2θ‖x‖r + (2r + 1)θ‖x‖r

= (2r + 7)θ‖x‖r

(3.17)

for all x ∈ Y. Defining g : Y → X by g(x) := f(2x) − 2f(x) and using (3.17) we have

P(g(x) − 8g(
x

2
)) 6

2r + 7
2r

θ‖x‖r (3.18)

for all x ∈ Y. Hence

P(8mg(
x

2m
) − 8ng(

x

2n
)) 6

n−1∑
j=m

(2r + 7)8j

2rj+r
θ‖x‖r (3.19)

for all nonnegative integers n and m with n > m and all x ∈ Y. It follows from (3.19) that the sequence{
8ng( x2n )

}
is a Cauchy sequence in X for all x ∈ Y. Since X is complete, the sequence

{
8ng( x2n )

}
converges

for all x ∈ Y. So one can define the mapping C : Y → X by

C(x) := lim
n→∞ 8ng(

x

2n
) (3.20)

for all x ∈ Y. Moreover, letting m = 0 and passing the limit n→∞ in (3.19), we get (3.13). Now, we show
that the mapping C is cubic. By (3.18) and (3.20),

P(C(x) − 8C(
x

2
)) = lim

n→∞P(8ng( x2n ) − 8n+1g(
x

2n+1 ))

= lim
n→∞ 8nP(g(

x

2n
) − 8g(

x

2n+1 ))

6 lim
n→∞ (2r + 7)8n

2nr+r
θ‖x‖r = 0

for all x ∈ Y. Therefore, we obtain

C(x) = 8C(
x

2
) (3.21)

for all x ∈ Y. On the other hand it follows from (3.12) and (3.20) that

P(DC(x,y)) = lim
n→∞P(8nDg( x2n ,

y

2n
))

= lim
n→∞ 8nP(Df(

x

2n−1 ,
y

2n−1 ) − 2Df(
x

2n
,
y

2n
))

6 lim
n→∞ 8n

2nr
(2r + 2)θ(‖x‖r + ‖y‖r) = 0
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for all x,y ∈ Y. Hence the mapping C satisfies (1.1). So by Lemma 3.1, the mapping x 7→ C(2x) − 2C(x) is
cubic. Hence (3.21) implies that the mapping C is cubic. To prove the uniqueness of C, let C′′ : Y → X be
another cubic mapping satisfying (3.13). Then we have

P(C(x) −C′′(x)) = P(8nC(
x

2n
) − 8nC′′(

x

2n
))

6 8n(P(C(
x

2n
) − g(

x

2n
)) + P(C′′(

x

2n
) − g(

x

2n
)))

6
2(2r + 7)8n

(2r − 8)2nr
θ‖x‖r,

which tends to zero as n → ∞ for all x ∈ Y. So we can conclude that C(x) = C′′(x) for all x ∈ Y. This
completes the proof of the theorem.

Corollary 3.6. Let r, s, θ be positive real numbers such that ρ := r+ s > 3. Suppose that f : Y → X is a mapping
satisfying

P(Df(x,y)) 6

{
θ‖x‖r‖y‖s,

θ(‖x‖r‖y‖s + (‖x‖r+s + ‖y‖r+s))
(3.22)

for all x,y ∈ Y. Then there exists a unique cubic mapping C : Y → X satisfying

P(f(2x) − 2f(x) −C(x)) 6

{ 2s+2
2ρ−8θ‖x‖

ρ,
2ρ+(2s+9)

2ρ−8 θ‖x‖ρ

for all x ∈ Y.

Proof. The proof is similar to the proof of Theorem 3.5 and thus it is omitted.

Theorem 3.7. Let r be positive real number with r < 1. Suppose that f : X→ Y is a mapping satisfying

‖Df(x,y)‖ 6 P(x)r + P(y)r

for all x,y ∈ X. Then there exists a unique additive mapping A : X→ Y satisfying

‖f(2x) − 8f(x) −A(x)‖ 6 7 + 2r

2 − 2r
P(x)r

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 3.3 and thus it is omitted.

Corollary 3.8. Let r, s be positive real numbers such that ρ := r+ s < 1. Suppose that f : X → Y is a mapping
satisfying (3.11) for all x,y ∈ X. Then there exists a unique additive mapping A : X→ Y satisfying

‖f(2x) − 8f(x) −A(x)‖ 6

{ 2+2s
2−2ρP(x)

ρ,
(2s+9)+2ρ

2−2ρ P(x)ρ

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 3.7 and thus it is omitted.

Theorem 3.9. Let r, θ be positive real numbers such that r > 1. Suppose that f : Y → X is a mapping satisfying

P(Df(x,y)) 6 θ(‖x‖r + ‖y‖r)

for all x,y ∈ Y. Then there exists a unique additive mapping A : Y → X satisfying

P(f(2x) − 8f(x) −A(x)) 6
2r + 7
2r − 2

θ‖x‖r

for all x ∈ Y.
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Proof. The proof is similar to the proof of Theorem 3.5 and thus it is omitted.

Corollary 3.10. Let r, s, θ be positive real numbers such that ρ := r+ s > 1. Suppose that f : Y → X is a mapping
satisfying (3.22) for all x,y ∈ Y. Then there exists a unique additive mapping A : Y → X satisfying

P(f(2x) − 8f(x) −A(x)) 6

{ 2s+2
2ρ−2θ‖x‖

ρ,
2ρ+(2s+9)

2ρ−2 θ‖x‖ρ

for all x ∈ Y.

Proof. The proof is similar to the proof of Theorem 3.9 and thus it is omitted.

Applying Theorems 3.3 and 3.7, we obtain the following result.

Theorem 3.11. Let r be positive real number with r < 1. Suppose that f : X → Y is a mapping satisfying (3.1).
Then there exist a unique additive mapping A : X→ Y and a unique cubic mapping C : X→ Y such that

‖6f(x) −A(x) −C(x)‖ 6 (
7 + 2r

2 − 2r
+

7 + 2r

8 − 2r
)P(x)r (3.23)

for all x ∈ X.

Proof. Let g(x) = f(2x) − 2f(x) and h(x) = f(2x) − 8f(x). Then 6f(x) = g(x) − h(x). By Theorems 3.3 and
3.7, there exists an additive mapping A0 : X→ Y and a cubic mapping C0 : X→ Y such that

‖f(2x) − 8f(x) −A0(x)‖ 6
7 + 2r

2 − 2r
P(x)r, ‖f(2x) − 2f(x) −C0(x)‖ 6

7 + 2r

8 − 2r
P(x)r

for all x ∈ X. Therefore it follows from the last inequalities that

‖6f(x) +A0(x) −C0(x)‖ = ‖g(x) − h(x) +A0(x) −C0(x)‖
6 ‖h(x) −A0(x)‖+ ‖g(x) −C0(x)‖

6 (
7 + 2r

2 − 2r
+

7 + 2r

8 − 2r
)P(x)r

for all x ∈ X. So we obtain (3.23) by letting A(x) = −A0(x) and C(x) = C0(x) for all x ∈ X.
To prove the uniqueness of A and C, let A1, C1 : X → Y be another additive and cubic mappings

satisfying (3.23), and let A′ = A−A1 and C′ = C−C1. So

‖A′(x) +C′(x)‖ 6 ‖6f(x) −A(x) −C(x)‖+ ‖6f(x) −A1(x) −C1(x)‖ 6 2(
7 + 2r

2 − 2r
+

7 + 2r

8 − 2r
)P(x)r (3.24)

for all x ∈ X. Since

lim
n→∞ 1

8n
P(2nx)r = lim

n→∞ 1
2n
P(2nx)r = 0

for all x ∈ X, (3.24) implies

lim
n→∞ 1

8n
‖A′(2nx) +C′(2nx)‖ = 0

for all x ∈ X. Therefore C′(x) = 0 for all x ∈ X. By (3.24), we have A′(x) = 0 for all x ∈ X. This completes
the proof of the theorem.
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Corollary 3.12. Let r, s be positive real numbers such that ρ := r+ s < 1. Suppose that f : X → Y is a mapping
satisfying (3.11) for all x,y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique cubic
mapping C : X→ Y such that

‖6f(x) −A(x) −C(x)‖ 6

{
( 2+2s

8−2ρ +
2+2s
2−2ρ )P(x)

ρ,

(
(9+2s)+2ρ

8−2ρ +
(9+2s)+2ρ

2−2ρ )P(x)ρ

for all x ∈ X.

Proof. The result follows from Theorem 3.11.

Similar to Theorems 3.5 and 3.9, we also obtain the following results.

Theorem 3.13. Let r, θ be positive real numbers such that r > 3. Suppose that f : Y → X is a mapping satisfying
(3.12). Then there exist a unique additive mapping A : Y → X and a unique cubic mapping C : X→ Y such that

P(6f(x) −A(x) −C(x)) 6 (
2r + 7
2r − 2

+
2r + 7
2r − 8

)θ‖x‖r

for all x ∈ Y.

Proof. The proof is similar to the proof of Theorem 3.11 and the result follows from Theorems 3.5 and
3.9.

Corollary 3.14. Let r, s, θ be positive real numbers such that ρ := r+ s > 3. Suppose that f : Y → X is a mapping
satisfying (3.22) for all x,y ∈ Y. Then there exist a unique additive mapping A : X → Y and a unique cubic
mapping C : X→ Y such that

P(6f(x) −A(x) −C(x)) 6

{
( 2s+2

2ρ−8 +
2s+2
2ρ−2)θ‖x‖

ρ,

(
2ρ+(2s+9)

2ρ−8 +
2ρ+(2s+9)

2ρ−2 )θ‖x‖ρ

for all x ∈ Y.

Proof. The result follows from Theorem 3.13.
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