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Abstract
In this paper, we first introduce a new set-valued mapping by the scalar approximate solution mapping of a parametric

generalized weak vector equilibrium problem and obtain some of its properties. By one of obtained properties, we establish the
lower semicontinuity the approximate solution mapping to a parametric generalized weak vector equilibrium problem without
the assumptions about monotonicity and approximate solution mappings. Simultaneously, under some suitable conditions, we
obtain the upper semicontinuity of the approximate solution mapping to a generalized parametric weak vector equilibrium
problem. Our main results improve and extend the corresponding ones in the literature. c©2017 All rights reserved.

Keywords: Parametric generalized weak vector equilibrium problems, lower semicontinuity, upper semicontinuity,
approximate solution mappings.
2010 MSC: 49K40, 90C31, 91B50.

1. Introduction

It is well-known that the vector equilibrium problem provides a unified model of several problems,
for example the vector optimization problem, the vector variational inequality problem, the vector com-
plementarity problem and the vector saddle point problem. In the literature, existence results for various
types of vector equilibrium problems have been investigated intensively, e.g., see [5, 9, 11, 10, 12, 13, 24]
and the references therein.

When dealing with the (semi) continuity of the solution maps to parametric vector equilibrium prob-
lems, the scalarization approach has been shown to be a very effective and powerful method. By using a
scalarization method, Cheng and Zhu [8] obtained the upper semicontinuity and lower semicontinuity of
the solution mapping to a parametric weak vector variational inequality in finite-dimensional Euclidean
spaces. By using the ideas of Cheng and Zhu [8], Gong [14] established the continuity of the solution
mapping to a parametric weak vector equilibrium problem with vector-valued mappings. By using a
new proof method different from the ones in [8, 14], Chen et al. [7] established the lower semicontinuity
and continuity of the solution mapping to a parametric generalized vector equilibrium problem involving
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set-valued mappings . By virtue of a density result and a scalarization approach, Gong and Yao [15] first
discussed the lower semicontinuity of the set of efficient solutions to parametric vector equilibrium prob-
lems. Chen and Li [6] discussed the lower semicontinuity and continuity results of the solution sets to a
parametric strong vector equilibrium problem and a parametric weak vector equilibrium problem with-
out the uniform compactness assumption. By virtue of a key assumption that includes the information
about the solution set, Li and Fang [21] established the lower semicontinuity of the solution mappings to
a parametric weak vector equilibrium problem with vector-valued mappings. Under the assumption of
the f-property, Xu and Li [28] obtained the lower semicontinuity of the solution mapping to a parametric
generalized strong vector equilibrium problem by using a scalarization method. The obtained results
extend and generalize the corresponding ones in [14] and [6]. Under the assumptions which do not con-
tain any information about solution mappings, Wang and Li [26] established the lower semicontinuity
of the solution mapping to a parametric generalized vector equilibrium problem by using a scalarization
method. The obtained results improve the corresponding ones in [14, 15, 7, 21, 28]. Wang et al. [27] es-
tablish the lower semicontinuity and upper semicontinuity of the solution set to a parametric generalized
strong vector equilibrium problem by using a scalarization method and a density result.

On the other hand, exact solutions of the problems may not exist in many practical problems because
the data of the problems are not sufficiently regular. Moreover, these mathematical models are usually
solved by numerical methods (iterative procedures or heuristic algorithms) which produce approxima-
tions to the exact solutions. So it is impossible to obtain an exact solution of many practical problems.
Naturally, investigating approximate solutions of parametric equilibrium problems is very interesting in
both practical applications and computations. However, to the best of our knowledge, there are only a few
papers concerning the stability of approximate solution mappings for parametric variational inequality or
parametric equilibrium problems. Khanh and Luu [18] obtained the semicontinuity of the approximate
solution mappings of parametric multivalued quasivariational inequalities in topological vector spaces.
Kimura and Yao [19] established the existence results for two types of approximate generalized vector
equilibrium problems, and further obtained the semicontinuity of approximate solution mappings. Anh
and Khanh [1] obtained Hausdorff semicontinuity (or Berge semicontinuity) of two kinds of approximate
solution mappings to parametric generalized vector quasiequilibrium problems. By using a scalarization
method, Li and Li [22] have investigated the Hausdorff continuity (or Berge continuity) of the approx-
imate solution mapping for a parametric scalar equilibrium problem. By using a scalarization method,
they also obtained a sufficient condition of the lower semicontinuity of the approximate solution map-
ping for a parametric vector equilibrium problem. By using the monotonicity of the approximate solution
mappings, Li et al. [23] established the Lipschitz continuity of the approximate solution mappings for a
parametric scalar equilibrium problem.

Motivated by the work reported in [17, 23, 25, 26, 27], the aim of this paper is to establish the lower
semicontinuity and the upper semicontinuity of the approximate solution mapping to a parametric gener-
alized weak vector equilibrium problem (in short, PGWVEP). By a scalarization method and introducing
a new set-valued mapping, we establish the lower semicontinuity of the approximate solution mapping
to PGWVEP without the assumptions about monotonicity and approximate solution mappings. We also
establish the upper semicontinuity of the approximate solution mapping to PGWVEP. Our main proof
methods are new and different from the ones used in the literature.

The rest of the paper is organized as follows. In Section 2, we recall some basic concepts and some of
their properties. In Section 3, we discuss the lower semicontinuity of the approximate solution mapping
to PGWVEP. In Section 4, we establish the upper semicontinuity of the approximate solution mapping to
PGWVEP.

2. Preliminaries and notations

Throughout this paper, let X and Y be real normed and Hausdorff topological vector spaces. We also
assume that C is a pointed closed convex cone in Y with its interior intC 6= ∅. Let Y∗ be the topological
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dual space of Y and let C∗ be the dual cone of cone C, defined by

C∗ = {f ∈ Y∗ : f(c) > 0, ∀c ∈ C}.

Denote the quasi-interior of C by C], i.e.,

C] = {f ∈ Y∗ : f(c) > 0, ∀c ∈ C \ {0}}.

Since intC 6= ∅, the dual cone C∗ has a weak∗ compact base. Let c0 ∈ intC be a fixed point and

B∗c0
= {f ∈ C∗|f(c0) = 1} and B]

c0
= {f ∈ C]|f(c0) = 1}.

Then B∗c0
= {f ∈ C∗|f(c0) = 1} is a weak∗ compact base of C∗.

We denote by BY the closed unit ball in Y. We also assume that 0X and 0Y denote the origins of X
and Y, respectively. Let E be a nonempty subset of X and let F : E× E → 2Y be a nonempty set-valued
mapping. We consider the following generalized weak vector equilibrium problem (in short, GWVEP) of
finding x ∈ E such that

F(x,y)
⋂

(−intC) = ∅, ∀y ∈ E.

Let Z be a real topological space. When the mapping F is perturbed by a parameter µ which varies
over a subset Λ of Z, we consider the following parametric generalized weak vector equilibrium problem
(in short, PGWVEP) of finding x ∈ E such that

F(x,y,µ)
⋂

(−intC) = ∅, ∀y ∈ E,

where F : E× E×Λ ⊂ X×X×Z→ 2Y \ {∅} is a set-valued mapping.
For each µ ∈ Λ and t ∈ R+, let S(µ, t) denote the approximate solution mapping of PGWVEP corre-

sponding to (µ, t), i.e.,

S(µ, t) = {x ∈ E : [F(x,y,µ) + tc0]
⋂

(−intC) = ∅, ∀y ∈ E},

where c0 ∈ intC. For each µ ∈ Λ, t ∈ R+ and f ∈ B∗c0
, we denote by Sf(µ, t) the f-approximate solution

mapping of PGWVEP corresponding to (µ, t), i.e.,

Sf(µ, t) := {x ∈ E : f(z) + t > 0, ∀z ∈ F(x,y,µ), ∀y ∈ E}.

Now, we recall some concepts and properties which will be useful in the sequel.

Definition 2.1 ([2]). Let G be a set-valued map from X to Y.

(i) G is said to be lower semicontinuous (in short, l.s.c.) at x0 ∈ X, if for any sequence {xn} with xn → x0
and y0 ∈ G(x0), there exists a sequence {yn} ⊆ G(xn) such that yn → y0.
It could be phrased as follows:
G is said to be l.s.c. at x0 ∈ X, if for any y0 ∈ G(x0) and any neighborhood W(y0) of y0, there exists
a neighborhood V(x0) of x0 such that

G(x)
⋂
W(y0) 6= ∅, ∀x ∈ V(x0).

G is said to be lower semicontinuous if G is l.s.c. at every point x ∈ X.

(ii) G is said to be upper semicontinuous (in short, u.s.c.) at x0 ∈ X, if for any neighborhood W(G(x0))
of G(x0), there exists a neighborhood W(x0) of x0 such that

G(x) ⊆W(G(x0)), ∀x ∈W(x0).

G is said to be upper semicontinuous if G is u.s.c. at every point x ∈ X.
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Definition 2.2 ([25]). Let E be a convex subset of X and G : E → 2Y be a set-valued map with G(x) 6= ∅,
for all x ∈ E. G is said to be convex on E, if for any x1, x2 ∈ E and λ ∈ (0, 1),

λG(x1) + (1 − λ)G(x2) ⊆ G[λx1 + (1 − λ)x2].

Definition 2.3 ([4]). Let E be a convex subset of X, C be a cone of Y and G : E → 2Y be a set-valued
mapping with G(x) 6= ∅, for all x ∈ E. G is said to be C-convex on E, if for any x1, x2 ∈ E and λ ∈ (0, 1),

λG(x1) + (1 − λ)G(x2) ⊆ G[λx1 + (1 − λ)x2] +C.

Definition 2.4 ([17]). Let E be a convex subset of X, C be a cone of Y and G : E → 2Y be a set-valued
mapping with G(x) 6= ∅, for all x ∈ E. G is said to be C-concave on E, if for any x1, x2 ∈ E and λ ∈ (0, 1),

G[λx1 + (1 − λ)x2] ⊆ λG(x1) + (1 − λ)G(x2) +C.

Definition 2.5 ([20]). Let E be a subset of X, D be a cone of Z and G : E → 2Z be a set-valued map with
G(x) 6= ∅, for all x ∈ E. G is said to be D-subconvexlike on E, if there exists θ ∈ intD such that for any
x1, x2 ∈ E, λ ∈ (0, 1) and ε > 0,

εθ+ λG(x1) + (1 − λ)G(x2) ⊆ G(E) +D.

Definition 2.6 ([17]). Let P and Q be two topological vector spaces. Let D be a nonempty subset of P. A
set-valued mapping H : P → 2Q is said to be uniformly continuous on D, if for any neighborhood V of
0Q ∈ Q, there exists a neighborhood U of 0P ∈ P such that for any x1, x2 ∈ D with x1 − x2 ∈ U,

H(x1) ⊆ H(x2) + V .

Lemma 2.7 ([3]). For each neighborhood U of 0X, there exists a balanced open neighborhood U1 of 0X such that

U1 +U1 ⊂ U.

Lemma 2.8 ([3]). The union Γ =
⋃
i∈I Γi of a family of l.s.c. set-valued mappings Γi from a topological space X

into a topological space Y also is an l.s.c. set-valued mapping from X into Y, where I is an index set.

Lemma 2.9 ([16]). Let G be a set-valued map from X to Y and u0 ∈ X. If G(u0) is compact, then G is u.s.c. at u0
if and only if for any sequence {un} ⊂ X with {un} → u0 and for any yn ∈ G(un), there exist y0 ∈ G(u0) and a
subsequence {ynk} of {yn} such that ynk → y0.

The following lemma plays an important role in the proof of the lower semicontinuity of the solution
mapping S(·, ·).

Lemma 2.10 (see[25]). Let E be a convex subset of X and G : E → 2Y be a set-valued map with G(x) 6= ∅, for all
x ∈ E. If G is convex on E and x0 ∈ intE, then G is l.s.c. at x0.

3. Lower semicontinuity

In this section, we first introduce a new set-valued mapping Hfµ0
(·) by the f-approximate solution

mapping Sf(·, ·) of PGWVEP and establish its lower semicontinuity. Then by the lower semicontinuity of
Hfµ0

(·), we obtain the lower semicontinuity of Sf(·, ·). Finally, we discuss the lower semicontinuity of S(·, ·)
of PGWVEP.

Let µ0 ∈ Λ, c0 ∈ intC and f ∈ B∗c0
. We define a new set-valued Hfµ0

: R+ → 2X by

Hfµ0
(t) = Sf(µ0, t), ∀t ∈ R+.
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Lemma 3.1. Let µ0 ∈ Λ and f0 ∈ B∗c0
. Let E be a nonempty convex subset of X and dom(Hf0

µ0) 6= ∅. If for any
y ∈ E, F(·,y,µ0) is C-concave on E, then dom(Hf0

µ0) is convex and Hf0
µ0(·) is convex on dom(Hf0

µ0).

Proof. Take any t1, t2 ∈ dom(Hf0
µ0), x1 ∈ Hf0

µ0(t1), x2 ∈ Hf0
µ0(t2) and λ ∈ [0, 1]. Then by the definition of Hf0

µ0 ,
for any y ∈ E, for any z1 ∈ F(x1,y,µ0) and z2 ∈ F(x2,y,µ0), we have

f0(z1) + t1 > 0,

and
f0(z2) + t2 > 0.

Therefore, by the linearity of f0, for any y ∈ E, z1 ∈ F(x1,y,µ0), z2 ∈ F(x2,y,µ0), we have

λ[f0(z1) + t1] + (1 − λ)[f0(z2) + t2] = [f0(λz1 + (1 − λ)z2] + [λt1 + (1 − λ)t2] > 0. (3.1)

Since, for any y ∈ E, F(·,y,µ0) is C-concave on E,

F(λx1 + (1 − λ)x2,y,µ0) ⊆ λF(x1,y,µ0) + (1 − λ)F(x2,y,µ0) +C, ∀y ∈ E.

Thus, for any z ∈ F(λx1 + (1 − λ)x2,y,µ0), there exist z1 ∈ F(x1,y,µ0), z2 ∈ F(x2,y,µ0) and c ∈ C such that

z = λz1 + (1 − λ)z2 + c.

Then it follows from (3.1) and f0 ∈ B∗c0
that

f0(z) + [λt1 + (1 − λ)t2] > 0, ∀z ∈ F(λx1 + (1 − λ)x2,y,µ0), ∀y ∈ E. (3.2)

Note that x1, x2 ∈ E. Since E is convex, λx1 + (1 − λ)x2 ∈ E. Thus, by (3.2) we have

λx1 + (1 − λ)x2 ∈ Hf0
µ0
(λt1 + (1 − λ)t2).

Therefore, dom(Hf0
µ0) is convex and

λHf0
µ0
(t1) + (1 − λ)Hf0

µ0
(t2) ⊆ Hf0

µ0
(λt1 + (1 − λ)t2).

So Hf0
µ0(·) is convex on dom(Hf0

µ0) and the proof is complete.

Remark 3.2. Since concave functions must be cone-concave and the converse may not hold, Lemma 3.1
improves and generalizes [22, Lemma 3.3].

Lemma 3.3. Let µ0 ∈ Λ, f0 ∈ B∗c0
and t0 ∈ intdom(Hf0

µ0). Let E be a convex subset of X. If for any y ∈ E,
F(·,y,µ0) is C-concave on E, then Hf0

µ0(·) is l.s.c. at t0.

Proof. By Lemma 3.1, dom(Hf0
µ0) is convex and Hf0

µ0(·) is convex on dom(Hf0
µ0). So, by Lemma 2.10, it

follows from t0 ∈ int(domHf0
µ0) that Hf0

µ0(·) is l.s.c. at t0, and the proof is complete.

Theorem 3.4. Let µ0 ∈ Λ, f0 ∈ B∗c0
and t0 ∈ intdom(Hf0

µ0). Suppose that the following conditions are satisfied:

(i) E is a nonempty convex subset of X and for any y ∈ E, F(·,y,µ0) is C-concave on E;

(ii) F(·, ·, ·) is uniformly continuous on E× E×N(µ0), where N(µ0) is a neighborhood of µ0.

Then Sf0(·, ·) is l.s.c. at (µ0, t0).

Proof. To prove the result by contradiction, suppose that Sf0(·, ·) is not l.s.c. at (µ0, t0). Then there exist
x0 ∈ Sf0(µ0, t0) and a neighborhood W0 of 0X, for any neighborhoods U(µ0) and U(t0) of µ0 and t0,
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respectively, there exist µ ∈ U(µ0) and t ∈ V(t0) such that

({x0}+W0)
⋂
Sf0(µ, t) = ∅.

Hence, there exist sequences {µn} with µn → µ0 and {tn} with tn → t0 such that

({x0}+W0)
⋂
Sf0(µn, tn) = ∅, ∀n. (3.3)

For the above W0, it follows from Lemma 2.7 that there exists a balanced neighborhood W1 of 0X such
that

W1 +W1 ⊂W0. (3.4)

By condition (i) and Lemma 3.3, we get that Hf0
µ0(·) is l.s.c. at t0. Thus, for the above x0 ∈ Sf0(µ0, t0) =

Hf0
µ0(t0) and W1, there exists a balanced neighborhood V1(t0) of t0 such that

({x0}+W1)
⋂
Hf0
µ0
(t) = ({x0}+W1)

⋂
Sf0(µ0, t) 6= ∅,∀t ∈ V1(t0).

Let t
′ ∈ V1(t0) be fixed with t0 − t

′
> 0 . Then

({x0}+W1)
⋂
Hf0
µ0
(t
′
) = ({x0}+W1)

⋂
Sf0(µ0, t

′
) 6= ∅.

Take
x1 ∈ ({x0}+W1)

⋂
Sf0(µ0, t

′
). (3.5)

Since t0 − t
′
> 0 and c0 ∈ intC, there exists δ0 > 0 such that

δ0BY + {(t0 − t
′
)c0} ⊂ C. (3.6)

For the above δ0BY , it follows from Lemma 2.7 that there exists δ1 > 0 such that

δ1BY + δ1BY ⊂ δ0BY . (3.7)

Since tn → t0, there exists a natural number N0 such that

tnc0 ∈ {t0c0}+ δ1BY , ∀n > N0.

Therefore, combining with (3.6) and (3.7), we get that

δ1BY + {tnc0} ⊂ C+ {t
′
c0}, ∀n > N0. (3.8)

Since F(·, ·, ·) is uniformly continuous on E× E×N(µ0), for the above δ1BY , there exist two neigh-
borhoods W1(0X) and W̄1(0X) of 0X and a neighborhood V(0Z) of 0Z, for any (x̄1, ȳ1, µ̄1), (x̄2, ȳ2, µ̄2) ∈
E× E×N(µ0) with x̄1 − x̄2 ∈W1(0X), ȳ1 − ȳ2 ∈ W̄1(0X) and µ̄1 − µ̄2 ∈ V(0Z), we have

F(x̄1, ȳ1, µ̄1) ⊂ δ1BY + F(x̄2, ȳ2, µ̄2). (3.9)

By (3.5), we can see that x1 ∈ E. Naturally, [{x1}+W1
⋂
W1(0X)]

⋂
E 6= ∅. We take

x2 ∈ [{x1}+W1

⋂
W1(0X)]

⋂
E. (3.10)

We show that x2 ∈ Sf0(µn0 , tn0). It follows from µn → µ0 that there exists µn0 with n0 > N0 such that

µn0 ∈ N(µ0)
⋂

({µ0}+ V(0Z)). (3.11)
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By (3.5), we have
f0(z) + t

′
> 0, ∀z ∈ F(x1,y,µ0), ∀y ∈ E. (3.12)

For any y
′ ∈ E, we can see that there exists y0 ∈ E such that y

′
− y0 ∈ W̄1(0X). By (3.10), x2 − x1 ∈

W1(0X). Then it follows from (3.11) and (3.9) that

F(x2,y
′
,µn0) ⊂ δ1BY + F(x1,y0,µ0).

Thus, it follows from n0 > N0 and (3.8) that

F(x2,y
′
,µn0) + {tn0c0} ⊂ C+ {t

′
c0}+ F(x1,y0,µ0), ∀y

′ ∈ E.

Combining with (3.12) and f0 ∈ B∗c0
we have f0(z) + tn0 > 0, for all z ∈ F(x2,y

′
,µn0), y

′ ∈ E. So

x2 ∈ Sf0(µn0 , tn0). (3.13)

It follows from (3.4), (3.5) and (3.10) that x2 ∈ {x0}+W0. Thus, combine with (3.13), we have

[{x0}+W0]
⋂
Sf0(µn0 , tn0) 6= ∅,

which contradicts (3.3). So Sf0(·, ·) is l.s.c. at (µ0, t0), and this completes the proof. �

Remark 3.5. Li and Fang [21, Lemma 3.1] and Chen and Huang [5, Lemma 3.1] used a key assumption
which includes the solution set information to obtain the lower semicontinuity of Sf(·). Under the as-
sumption of cone-strict monotonicity, Chen et al. [7, Lemma 3.2] obtained the lower semicontinuity of
Sf(·). The main advantage of Theorem 3.4 is that it does not require any information on the approximate
solution set and monotonicity.

Lemma 3.6. Let t > 0, c0 ∈ intC and µ ∈ Λ. If for each x ∈ E, F(x, ·,µ) is C-subconvexlike on E, then

S(µ, t) =
⋃
f∈B∗c0

Sf(µ, t).

Proof. Since F(x, ·,µ) is C-subconvexlike on E, by Definition 2.5, F(x, ·,µ)+ {tc0} is also C-subconvexlike on
E. It follows from the proof similar to [26, Lemma 3.2] that

S(µ, t) =
⋃

f∈C∗\{0Y∗}

Sf(µ, t).

Obviously,
⋃
f∈B∗c0

Sf(µ, t) ⊂
⋃
f∈C∗\{0Y∗} Sf(µ, t). So it suffices to prove that⋃

f∈C∗\{0Y∗}

Sf(µ, t) ⊂
⋃
f∈B∗c0

Sf(µ, t). (3.14)

Let x0 ∈
⋃
f∈C∗\{0Y∗} Sf(µ, t). Then there exists f0 ∈ C∗ \ {0Y∗} such that

f0(z+ tc0) > 0, ∀z ∈ F(x0,y,µ0), ∀y ∈ E. (3.15)

Since c0 ∈ intC and f0 ∈ C∗ \ {0Y∗}, f0(c0) > 0. It follows from (3.15) that

[
1

f0(c0)
f0](z) + t > 0, ∀z ∈ F(x0,y,µ0), ∀y ∈ E.

Naturally, f1 := 1
f0(c0)

f0 ∈ B∗c0
and

f1(z) + t > 0, ∀z ∈ F(x0,y,µ0), ∀y ∈ E.

Then x0 ∈ Sf1(µ, t). So (3.14) holds, and the proof is complete.
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Remark 3.7. Since cone-convex mapping must be cone-subconvexlike and the converse may not hold,
Lemma 3.6 improves and generalizes [22, Lemma 4.1].

Now we establish the lower semicontinuity of S(·, ·).

Theorem 3.8. Let µ0 ∈ Λ. Suppose that the following conditions are satisfied:

(i) the assumptions (i) and (ii) of Theorem 3.4 are fulfilled;

(ii) for every f ∈ B∗c0
, t0 ∈ int(domHfµ0

);

(iii) for any x ∈ E, F(x, ·,µ0) is C-subconvexlike on E.

Then S(·, ·) is l.s.c. at (µ0, t0).

Proof. Since F(x, ·,µ) is C-subconvexlike on E for any x ∈ E, by Lemma 3.6, we have

S(µ0, t0) =
⋃
f∈B∗c0

Sf(µ0, t0).

By Theorem 3.4, for any f ∈ B∗c0
, Sf(·, ·) is l.s.c. at (µ0, t0). So it follows from Lemma 2.8 that S(·, ·) is l.s.c.

at (µ0, t0), and this completes the proof.

Remark 3.9. Under the assumptions of cone-strict monotonicity and cone-convexity, Gong [14, Theorem
4.1] obtained the lower semicontinuity of the solutions set for the parameterized weak vector equilibrium
problem. The main advantages of Theorem 3.8 are that it uses cone-subconvexlike mappings instead of
cone-convex mppings and removes the assumption of the cone-strict monotonicity.

Remark 3.10. Since cone-convex mappings must be cone-subconvexlike and the converse may not hold,
Theorem 3.8 improves and generalizes the l.s.c. of [22, Theorem 4.1].

We give an example to illustrate Theorem 3.8.

Example 3.11. Let X = R, Y = R2,C = R2
+ = {(y1,y2) : y1 > 0,y2 > 0},D = [0, 2]× [0, 2],Λ = [−2, 2],E =

[0, 2],∀µ ∈ Λ. F : [−2, 2]× [−2, 2]×Λ→ 2Y is defined by

F(x,y,µ) = {(−x2 + y2 − µ,−x+ y− µ2)}+D.

Take µ0 = 0, N(µ0) = [−1, 1], c0 = (3, 3) ∈ intC and t0 = 2. Then it is easy to see that all assumptions of
Theorem 3.8 are fulfilled, by Theorem 3.8, S(·, ·) is l.s.c. at (µ0, t0).

4. Upper semicontinuity

In this section, we discuss the upper semicontinuity of the approximate solution mapping of PGWVEP
under the assumptions which do not contain any information about monotonicity and approximate solu-
tion mappings.

Theorem 4.1. Let (µ0, t0) ∈ domS and E be compact. If for any y ∈ E, F(·,y, ·) is l.s.c. on E×Λ, then S(·, ·) is
u.s.c. at (µ0, t0).

Proof. To prove the result by contradiction, suppose that S(·, ·) is not u.s.c. at (µ0, t0). Then there exists
an open neighborhood U0 of S(µ0, t0) for any neighborhoods U(µ0) and U(t0) of µ0 and t0, respectively,
there exist µ̄ ∈ U(µ0) and t̄ ∈ U(t0) such that

S(µ̄, t̄) 6⊆ U0.
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It follows from the arbitrariness of U(µ0) and U(t0) that there exist sequences {µn} with µn → µ0 and {tn}

with tn → t0 such that
S(µn, tn) 6⊆ U0, ∀n,

and then for all n, there exists
xn ∈ S(µn, tn), (4.1)

such that
xn 6∈ U0. (4.2)

Naturally, xn ∈ E for all n. Since E is compact, there exist x0 ∈ E and a subsequence {xnk} of {xn} such
that xnk → x0.

We next prove that x0 ∈ S(µ0, t0). In fact if x0 6∈ S(µ0, t0), then there exists y0 ∈ E such that

[F(x0,y0,µ0) + t0c0]
⋂

(−intC) 6= ∅.

Therefore there exists z0 ∈ F(x0,y0,µ0) such that

z0 + t0c0 ∈ −intC. (4.3)

Naturally, (xnk ,µnk) → (x0,µ0). Since, for any y ∈ E, F(·,y, ·) is l.s.c. on E×Λ, there exists znk ∈
F(xnk ,y0,µnk) such that

znk → z0. (4.4)

Since −intC is an open set and tn → t0, it follows from (4.3) and (4.4) that there exists a natural number
k0 such that

znk + tnkc0 ∈ −intC, ∀k > k0.

Thus
[F(xnk ,y0,µnk) + tnkc0]

⋂
(−intC) 6= ∅, ∀k > k0,

which contradicts (4.1). So
x0 ∈ S(µ0, t0).

Since U0 is an open neighborhood of S(µ0, t0) and xnk → x0, there exists a natural number k̄ such that

xnk ∈ U0, ∀k > k̄,

which contradicts (4.2). Thus S(·, ·) is u.s.c. at (µ0, t0), and the proof of the theorem is complete.

Remark 4.2. Under the assumptions of cone-strictly monotone and cone-convexity, Gong [14, Theorem
3.1] obtained the upper semicontinuity of the solutions set for the parameterized weak vector equilibrium
problem. The main advantage of Theorem 4.1 is that it does not require any information on the cone-
strictly monotone and the cone-convexity.
Remark 4.3. Theorem 4.1 discusses the upper semicontinuity of the approximate solution mapping involv-
ing set-valued mappings, which is more general than the corresponding result in [22, Theorem 4.1] in the
case that F is a set-valued mapping.

We give an example to illustrate Theorem 4.1.

Example 4.4. Let X = R, Y = R2,C = R2
+ = {(y1,y2) : y1 > 0,y2 > 0}, Λ = [0, 2], E(µ) = [µ, 3], ∀µ ∈ Λ.

F : [0, 3]× [0, 3]×Λ→ 2Y is defined by

F(x,y,µ) = [x+ y− µ, 10]× [x− y+ µ, 10].

Take c0 = (1, 1) ∈ intC. Then it is easy to see that all assumptions of Theorem 4.1 are fulfilled, and
domS = [0, 2]× R+ and

S(µ, t) =
{

[µ− t, 3], µ ∈ [ 3
2 , 2],

[3 − µ− t, 3], µ ∈ [0, 3
2 ].

Naturally, S(·, ·) is u.s.c. on domS.
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