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1. Introduction

In this paper, we denote A the class of functions of the form

f(z) = z+

∞∑
k=1

ak+1z
k+1,

which are analytic and univalent in the open unit disk U = {z ∈ C : |z| < 1}. For functions f and g given
by

g(z) = z+

∞∑
k=1

bk+1z
k+1,

analytic in U, the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z+
∞∑
k=1

ak+1bk+1z
k+1.
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We say f is subordinate to g, written as f ≺ g or f(z) ≺ g(z) (z ∈ U), if there exists a Schwarz function
w(z), which is analytic in U with w(0) = 0, |w(z)| < 1 such that f(z) = g(w(z)). In particular, if the
function g is univalent in U, then we have f(z) ≺ g(z) if and only if f(0) = g(0) and f(U) ⊂ g(U). Denote
by P the class of all positive real part functions p(z), which satisfy the conditions <{p(z)} > 0 (z ∈ U)
and p(0) = 1. Denote by Q the class of functions φ(z) ∈ P such that φ(U) is convex and symmetrical
with respect to the real axis. Let φ ∈ Q, Ma et al. [5] introduced the following subclasses S∗(φ),K(φ) and
C(φ,ψ) defined by

S∗(φ) =
{
f : f ∈ A and

zf ′(z)

f(z)
≺ φ(z), z ∈ U

}
,

K(φ) =
{
f : f ∈ A and 1 +

zf ′′(z)

f ′(z)
≺ φ(z), z ∈ U

}
,

and

C(φ,ψ) =
{
f : f ∈ A,g(z) ∈ S∗(φ) and zf ′(z)

g(z) ≺ φ(z), z ∈ U
}

.

For details, one can refer literatures [3, 10]. For a ∈ C and c ∈ C \ Z−
0 where Z−

0 = {. . . ,−2,−1, 0}, Saitoh
[9] introduced a linear operator L(a, c) : A→ A defined by

L(a, c)f(z) = ϕ(a, c; z) ∗ f(z), (f ∈ A, z ∈ U),

where ϕ(a, c; z) is the incomplete beta function defined by

ϕ(a, c; z) =
∞∑
k=0

(a)k
(c)k

zk+1, (z ∈ U), (1.1)

where (a)k = a(a+ 1) · · · (a+ k− 1),k ∈ N,a ∈ C. The operator L(a, c) is an extension of the Carlson-
Shaffer operator [1]. Recently, Cho et al. [2] introduced a family of linear operators Jλ(a, c) : A → A as
follows

Jλ(a, c)f(z) = ϕ(+)(a, c; z) ∗ f(z), (a, c ∈ C \ Z−
0 , z ∈ U), (1.2)

where ϕ(+)(a, c; z) is the function defined in terms of the Hadamard product by the following relation

ϕ(a, c; z) ∗ϕ(+)(a, c; z) =
z

(1 − z)λ+1 , (λ > −1, z ∈ U), (1.3)

where ϕ(a, c; z) is given by (1.1). We can obtain from (1.1), (1.2), (1.3) that

ϕ(+)(a, c; z) =
∞∑
k=0

(λ+ 1)k(c)k
(1)k(a)k

ak+1z
k+1, (z ∈ U),

and

Jλ(a, c) = z+
∞∑
k=1

(λ+ 1)k(c)k
(1)k(a)k

ak+1z
k+1, (z ∈ U). (1.4)

In this paper, we define a new linear operator Nλξ(a, c) : A→ A as follows

Nλξ(a, c)f(z) = (1 − ξ)Jλ(a, c)f(z) + ξz
(
Jλ(a, c)f(z)

) ′, (z ∈ U). (1.5)

From (1.4) and (1.5), we conclude that

Nλξ(a, c)f(z) = z+
∞∑
k=1

(1 + ξk)(λ+ 1)k(c)k
(1)k(a)k

ak+1z
k+1, (z ∈ U),
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and some identities
z
(
Nλξ(a, c)f(z)

) ′
= (λ+ 1)Nλ+1

ξ (a, c)f(z) − λNλξ(a, c)f(z), (1.6)

z
(
Nλξ(a+ 1, c)f(z)

) ′
= aNλξ(a, c)f(z) + (1 − a)Nλξ(a+ 1, c)f(z).

We observe that

(1) N1
0(2, 1)f(z) = f(z);

(2) N1
0(1, 1)f(z) = zf ′(z);

(3) Nn0 (a,a)f(z) = Dnf(z) (n > −1), see [4];

(4) N
1−µ
0 (1 − µ, 2)f(z) = Ωµz f(z) (µ < 2), see [8];

(5) Nδ0 (δ+ 2, 1)f(z) = Fδf(z) (δ > −1), see [3].

With the operator Nλξ(a, c), we introduce some function classes for some η (0 6 η < 1), γ(> 0) and
for some φ,ψ ∈ Q as follows

Sa,c
λ,ξ(η;φ) =

{
f : f ∈ A,

1
1 − η

(z(Nλξ(a, c)f(z)
) ′

Nλξ(a, c)f(z)
− η

)
≺ φ(z)

}
, (1.7)

Ca,c
λ,ξ(η;φ,ψ) =

{
f : f ∈ A, Nλξ(a, c)g(z) ∈ S∗(ψ),

1
1 − η

(z(Nλξ(a, c)f(z)
) ′

Nλξ(a, c)g(z)
− η

)
≺ φ(z)

}
, (1.8)

and

Ra,c
λ,ξ(η,γ;φ,ψ) =

{
f : f ∈ A, Nλξ(a, c)g(z) ∈ S∗(ψ),

1
1 − η

(
(1 − γ)

Nλξ(a, c)f(z)
Nλξ(a, c)g(z)

+ γ

(
Nλξ(a, c)f(z)

) ′(
Nλξ(a, c)g(z)

) ′ − η) ≺ φ(z)}. (1.9)

In particular, for η = 0 in (1.7), we denote Sa,c
λ,ξ(0;φ) = Sa,c

λ,ξ(φ). Based on differential subordination
properties, we derive some inclusion relationships of above classes.

In order to derive our main results, we shall need the following lemmas.

Lemma 1.1 ([6]). Let the function h(z) be convex in U with <{βh(z) + γ} > 0. If the function p(z) is analytic in
U with p(0) = h(0) = 1, then

p(z) +
zp ′(z)

βp(z) + γ
≺ h(z)⇒ p(z) ≺ h(z).

Lemma 1.2 ([6]). Let the function h(z) be convex in U and let P : U → C with <{P(z)} > 0 (z ∈ U). If the
function p(z) is analytic in U with p(0) = h(0) = 1, then

p(z) + P(z) · zp ′(z) ≺ h(z)⇒ p(z) ≺ h(z).

2. Main results

In this section, we state and prove our general results involving the function classes given by Section
1.

Theorem 2.1. Let λ > 0, <{a} > 1 − η, Nλξ(a, c)f(z) 6= 0 (z ∈ U \ {0}). Then

Sa,c
λ+1,ξ(η;φ) ⊂ Sa,c

λ,ξ(η;φ) ⊂ Sa+1,c
λ,ξ (η;φ). (2.1)
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Proof. First of all, let us suppose f(z) ∈ Sa,c
λ+1,ξ(η;φ). Then from definition of this class, we have

1
1 − η

(z(Nλ+1
ξ (a, c)f(z)

) ′
Nλ+1
ξ (a, c)f(z)

− η
)
≺ φ(z). (2.2)

Denote

p(z) =
1

1 − η

(z(Nλξ(a, c)f(z)
) ′

Nλξ(a, c)f(z)
− η

)
. (2.3)

We can easily check that p(z) is univalent in U with p(0) = 1. From (1.6) and (2.3), we give another
identities that

[(1 − η)p(z) + η]Nλξ(a, c)f(z) = z
(
Nλξ(a, c)f(z)

) ′,
and

(1 − η)p(z) + η+ λ =
z
(
Nλξ(a, c)f(z)

) ′
Nλξ(a, c)f(z)

+ λ =
z
(
Nλξ(a, c)f(z)

) ′
+ λNλξ(a, c)f(z)

Nλξ(a, c)f(z)

=
(λ+ 1)Nλ+1

ξ (a, c)f(z)

Nλξ(a, c)f(z)
.

(2.4)

Taking logarithmic and differentiating both sides of (2.4) with respect to z, we have

(1 − η)p ′(z)

(1 − η)p(z) + η+ λ
=

(
Nλ+1
ξ (a, c)f(z)

) ′
Nλ+1
ξ (a, c)f(z)

−

(
Nλξ(a, c)f(z)

) ′
Nλξ(a, c)f(z)

. (2.5)

Then from (2.3) and (2.5), we get

z
(
Nλ+1
ξ (a, c)f(z)

) ′
Nλ+1
ξ (a, c)f(z)

= (1 − η)p(z) + η+
(1 − η)zp ′(z)

(1 − η)p(z) + η+ λ
.

Hence, we have
1

1 − η

(z(Nλ+1
ξ (a, c)f(z)

) ′
Nλ+1
ξ (a, c)f(z)

− η
)
= p(z) +

zp ′(z)

(1 − η)p(z) + η+ λ
. (2.6)

Thus from (2.2), (2.6), we obtain that

p(z) +
zp ′(z)

(1 − η)p(z) + η+ λ
≺ φ(z). (2.7)

Because φ(z) ∈ Q is positive real part function, and

<
{
(1 − η)φ(z) + η+ λ

}
> η+ λ > 0,

from Lemma 1.1 and (2.7), it follows that p(z) ≺ φ(z), that is, f(z) ∈ Sa,c
λ,ξ(η;φ).

Next, we will show that Sa,c
λ,ξ(η;φ) ⊂ Sa+1,c

λ,ξ (η;φ). Let f(z) ∈ Sa,c
λ,ξ(η;φ), then from (1.7) we have

1
1 − η

(z(Nλξ(a, c)f(z)
) ′

Nλξ(a, c)f(z)
− η

)
≺ φ(z). (2.8)

Denote

q(z) =
1

1 − η

(z(Nλξ(a+ 1, c)f(z)
) ′

Nλξ(a+ 1, c)f(z)
− η

)
. (2.9)
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It is easy to check that q(z) is univalent in U with q(0) = 1. From (2.9), we give another identities that

[(1 − η)q(z) + η]Nλξ(a+ 1, c)f(z) = z
(
Nλξ(a+ 1, c)f(z)

) ′,
and

(1 − η)q(z) + η+ a− 1 =
z
(
Nλξ(a+ 1, c)f(z)

) ′
Nλξ(a+ 1, c)f(z)

+ a− 1

=
z
(
Nλξ(a+ 1, c)f(z)

) ′
+ (a− 1)Nλξ(a+ 1, c)f(z)

Nλξ(a+ 1, c)f(z)

=
aNλξ(a, c)f(z)

Nλξ(a+ 1, c)f(z)
.

(2.10)

Taking logarithmic and differentiating both sides of (2.10) with respect to z, we have

(1 − η)q ′(z)

(1 − η)q(z) + η+ a− 1
=

(
Nλξ(a, c)f(z)

) ′
Nλξ(a, c)f(z)

−

(
Nλξ(a+ 1, c)f(z)

) ′
Nλξ(a+ 1, c)f(z)

. (2.11)

Then from (2.9) and (2.11), we get

z
(
Nλξ(a, c)f(z)

) ′
Nλξ(a, c)f(z)

= (1 − η)q(z) + η+
(1 − η)zq ′(z)

(1 − η)q(z) + η+ a− 1
.

Hence, it follows that

1
1 − η

(z(Nλξ(a, c)f(z)
) ′

Nλξ(a, c)f(z)
− η

)
= q(z) +

zq ′(z)

(1 − η)q(z) + η+ a− 1
. (2.12)

Thus from (2.8), (2.12) we obtain that

q(z) +
zq ′(z)

(1 − η)q(z) + η+ a− 1
≺ φ(z). (2.13)

Because of φ(z) ∈ Q and

<
{
(1 − η)φ(z) + η+ a− 1

}
> <{η+ a− 1} > 0,

from Lemma 1.1 and (2.13), it follows that f(z) ∈ Sa+1,c
λ,ξ (η;φ). Therefore, the theorem is proved.

If η = 0, in view of (1.7) and (2.1), we get the following inclusion relation

Sa,c
λ+1,ξ(φ) ⊂ Sa,c

λ,ξ(φ). (2.14)

Theorem 2.2. Let λ > 0, Nλξ(a, c)g(z) 6= 0 (z ∈ U \ {0}). Then

Ca,c
λ+1,ξ(η;φ,ψ) ⊂ Ca,c

λ,ξ(η;φ,ψ) ⊂ Ca+1,c
λ,ξ (η;φ,ψ).

Proof. Suppose f(z) ∈ Ca,c
λ+1,ξ(η;φ,ψ). Then from (1.8), the subordination is satisfied

1
1 − η

(z(Nλ+1
ξ (a, c)f(z)

) ′
Nλ+1
ξ (a, c)g(z)

− η
)
≺ φ(z), (2.15)
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where Nλ+1
ξ (a, c)g(z) ∈ S∗(ψ). In view of (2.14), we get

z
(
Nλ+1
ξ (a, c)g(z)

) ′
Nλ+1
ξ (a, c)g(z)

≺ ψ(z)⇒
z
(
Nλξ(a, c)g(z)

) ′
Nλξ(a, c)g(z)

≺ ψ(z), (2.16)

i.e.,
Nλ+1
ξ (a, c)g(z) ≺ S∗(ψ)⇒ Nλξ(a, c)g(z) ≺ S∗(ψ).

Denote

u(z) =
1

1 − η

(z(Nλξ(a, c)f(z)
) ′

Nλξ(a, c)g(z)
− η

)
. (2.17)

We can easily check that u(z) is univalent in U with u(0) = 1. From (2.17), we give another identity that

[(1 − η)u(z) + η]Nλξ(a, c)g(z) = z
(
Nλξ(a, c)f(z)

) ′. (2.18)

Using the formula

z
(
Nλξ(a, c)f(z)

) ′
= Nλξ(a, c)(zf ′(z)),

and differentiating both sides of (2.18) with respect to z, we get

(1 − η)u ′(z)Nλξ(a, c)g(z) + [(1 − η)u(z) + η]
(
Nλξ(a, c)g(z)

) ′
=

(
Nλξ(a, c)(zf ′(z))

) ′,
which yields that

(1 − η)zu ′(z) + [(1 − η)u(z) + η]
z
(
Nλξ(a, c)g(z)

) ′
Nλξ(a, c)g(z)

=
z
(
Nλξ(a, c)(zf ′(z))

) ′
Nλξ(a, c)g(z)

. (2.19)

If we apply (1.6), (2.17), (2.19), then

z
(
Nλ+1
ξ (a, c)f(z)

) ′
Nλ+1
ξ (a, c)g(z)

=
(λ+ 1)Nλ+1

ξ (a, c)(zf ′(z))

(λ+ 1)Nλ+1
ξ (a, c)g(z)

=
z
(
Nλξ(a, c)(zf ′(z))

) ′
+ λNλξ(a, c)(zf ′(z))

z
(
Nλξ(a, c)g(z)

) ′
+ λNλξ(a, c)g(z)

=

z
(
Nλξ(a,c)(zf ′(z))

) ′
Nλξ(a,c)g(z) +

λNλξ(a,c)(zf ′(z))
Nλξ(a,c)g(z)

z
(
Nλξ(a,c)g(z)

) ′
Nλξ(a,c)g(z) + λ

= (1 − η)
zu ′(z)

z
(
Nλξ(a,c)g(z)

) ′
Nλξ(a,c)g(z) + λ

+ (1 − η)u(z) + η.

Hence
1

1 − η

(z(Nλ+1
ξ (a, c)f(z)

) ′
Nλ+1
ξ (a, c)g(z)

− η
)
= u(z) +

zu ′(z)

Q(z) + λ
, (2.20)

where

Q(z) =
z
(
Nλξ(a, c)g(z)

) ′
Nλξ(a, c)g(z)

≺ ψ(z), (ψ(z) ∈ Q),

from (2.16). We know that

<

{
1

Q(z) + λ

}
= <

{
Q(z) + λ

(Q(z) + λ)(Q(z) + λ)

}
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=
1

|Q(z) + λ|2
<{Q(z) + λ} >

λ

|Q(z) + λ|2
> 0.

Applying Lemma 1.2 and (2.15), (2.20), it follows that u(z) ≺ φ(z), that is, f(z) ∈ Ca,c
λ,ξ(η;φ,ψ).

The second part of the theorem is similar to Theorem 2.1. We omit it.

Theorem 2.3. Let γ > 0, Nλξ(a, c)g(z) 6= 0 (z ∈ U \ {0}). Then

Ra,c
λ,ξ(η,γ;φ,ψ) ⊂ Ra,c

λ,ξ(η, 0;φ,ψ).

Proof. If γ = 0, the result is obvious. Now let us consider the case of γ > 0. Let f(z) ∈ Ra,c
λ,ξ(η,γ;φ,ψ).

Then from (1.9), we have

1
1 − η

(
(1 − γ)

Nλξ(a, c)f(z)
Nλξ(a, c)g(z)

+ γ

(
Nλξ(a, c)f(z)

) ′(
Nλξ(a, c)g(z)

) ′ − η) ≺ φ(z), (2.21)

where Nλξ(a, c)g(z) ∈ S∗(ψ), i.e.,

z
(
Nλξ(a, c)g(z)

) ′
Nλξ(a, c)g(z)

≺ ψ(z), (ψ(z) ∈ Q).

Denote

s(z) =
1

1 − η

(Nλξ(a, c)f(z)
Nλξ(a, c)g(z)

− η
)

. (2.22)

The function s(z) is univalent in U with u(0) = 1. From (2.22), we get

[(1 − η)s(z) + η]Nλξ(a, c)g(z) = Nλξ(a, c)f(z). (2.23)

Differentiating both sides of (2.23) with respect to z, we get

(1 − η)s ′(z)Nλξ(a, c)g(z) + [(1 − η)s(z) + η]
(
Nλξ(a, c)g(z)

) ′
=

(
Nλξ(a, c)f(z)

) ′,
which yields that

(1 − η)s(z) + η+
(1 − η)s ′(z)Nλξ(a, c)g(z)(

Nλξ(a, c)g(z)
) ′ =

(
Nλξ(a, c)f(z)

) ′(
Nλξ(a, c)g(z)

) ′ . (2.24)

If we apply (2.23), (2.24), we find that

(1 − γ)
Nλξ(a, c)f(z)
Nλξ(a, c)g(z)

+ γ

(
Nλξ(a, c)f(z)

) ′(
Nλξ(a, c)g(z)

) ′ = (1 − η)s(z) + η+ (1 − η)γ
zs ′(z)

P(z)
, (2.25)

where

P(z) =
z
(
Nλξ(a, c)g(z)

) ′
Nλξ(a, c)g(z)

≺ ψ(z),

and
<{P(z)} > 0.

Hence, from (2.21) and (2.25) we have

s(z) + γ
zs ′(z)

P(z)
≺ φ(z). (2.26)

We know that

<

{
γ

P(z)

}
= <

{
γP(z)

P(z)P(z)

}
=

γ

|P(z)|2
<{P(z)} > 0.

Applying Lemma 1.2 and (2.26), it follows that s(z) ≺ φ(z), i.e., f(z) ∈ Ra,c
λ,ξ(η, 0;φ,ψ).
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3. Applications based on above classes

In this section, we define another subclasses of above classes introduced in Section 1, and apply
Nunokawa’s Lemma to derive further inclusion relationships.

For 0 < α 6 1, and φ(z) =
(1+z

1−z

)α in the classes Sa,c
λ,ξ(η;φ), Ca,c

λ,ξ(η;φ,ψ), Ra,c
λ,ξ(η,γ;φ,ψ), we denote

SSa,c
λ,ξ(η,α), SCa,c

λ,ξ(η,α,ψ), SRa,c
λ,ξ(η,γ,α,ψ) defined by the followings

SSa,c
λ,ξ(η,α) =

{
f : f ∈ A,

∣∣∣ arg
(z(Nλξ(a, c)f(z)

) ′
Nλξ(a, c)f(z)

− η
)∣∣∣ < πα

2

}
, (3.1)

SCa,c
λ;ξ(η,α,ψ) =

{
f : f ∈ A, Nλξ(a, c)g(z) ∈ S∗(ψ),

∣∣∣ arg
(z(Nλξ(a, c)f(z)

) ′
Nλξ(a, c)g(z)

− η
)∣∣∣ < πα

2

}
,

and

SRa,c
λ;ξ(η,γ,α,ψ) =

{
f : f ∈ A, Nλξ(a, c)g(z) ∈ S∗(ψ),∣∣∣ arg

(
(1 − γ)

Nλξ(a, c)f(z)
Nλξ(a, c)g(z)

+ γ

(
Nλξ(a, c)f(z)

) ′(
Nλξ(a, c)g(z)

) ′ − η)∣∣∣ < πα

2

}
.

Lemma 3.1 ([7, Nunokawa’s Lemma]). Let the function p(z) given by

p(z) = 1 +

∞∑
k=m

pkz
k, (pm 6= 0),

be analytic in U with p(z) 6= 0 (z ∈ U). If there exists a point z0 (|z0| < 1) such that

| arg{p(z)}| <
πα

2
, (|z| < |z0)),

and
| arg{p(z0)}| =

πα

2
,

for some α > 0, then
z0p
′(z0)

p(z0)
=

2il arg{p(z0)}

π
,

for some

l >
m(a+ a−1)

2
> m,

where [p(z0)]
1/α = ±ia (a > 0).

Theorem 3.2. Let λ > 0, <{a} > 1 − η, Nλξ(a, c)f(z) 6= 0 (z ∈ U \ {0}). Then

SSa,c
λ+1,ξ(η,σ) ⊂ SSa,c

λ,ξ(η,α),

where

σ = α+
2
π

tan−1
( mα cos(πδ2 )

r+mα sin(πδ2 )

)
, (3.2)

for some r > 0,m ∈N and 0 6 δ < α.

Proof. Suppose f(z) ∈ SSa,c
λ+1,ξ(η,σ). Then from (3.1), we have

∣∣∣ arg
(z(Nλξ(a, c)f(z)

) ′
Nλξ(a, c)f(z)

− η
)∣∣∣ < πσ

2
, (0 6 η < 1, 0 < σ 6 1). (3.3)
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It follows that there exists a function φ(z) given by

φ(z) =
(1 + z

1 − z

)σ ∈ Q,

such that
1

1 − η

(z(Nλ+1
ξ (a, c)f(z)

) ′
Nλ+1
ξ (a, c)f(z)

− η
)
≺ φ(z). (3.4)

Let function p(z) defined by

p(z) =
1

1 − η

(z(Nλξ(a, c)f(z)
) ′

Nλξ(a, c)f(z)
− η

)
. (3.5)

Based on analysis in Theorem 2.1 and also from (3.4), (3.5), we know that p(z) ≺ φ(z). Because φ(z) ∈ Q,
we have p(z) 6= 0. Therefore, the argument arg{p(z)} is well-defined.

Now, let us prove Theorem 3.2 by contradiction. Suppose there exists a point z0(|z0| < 1) such that

| arg{p(z)}| <
πα

2
, (|z| < |z0)),

and
| arg{p(z0)}| =

πα

2
,

for some α > 0, then applying Lemma 3.1 we have

z0p
′(z0)

p(z0)
=

2il arg{p(z0)}

π
, (3.6)

for some

l >
m(a+ a−1)

2
> m,

where [p(z0)]
1/α = ±ia (a > 0). From (2.6), we get

arg
(z(Nλ+1

ξ (a, c)f(z0)
) ′

Nλ+1
ξ (a, c)f(z0)

− η
)
= arg

(
p(z0) +

z0p
′(z0)

(1 − η)p(z0) + η+ λ

)
= arg

(
p(z0)

(
1 +

z0p
′(z0)

p(z0)[(1 − η)p(z0) + η+ λ]

))
= arg{p(z0)}+ arg

(
1 +

z0p
′(z0)

p(z0)[(1 − η)p(z0) + η+ λ]

)
.

We denote

(1 − η)p(z0) + η+ λ =
z
(
Nλξ(a, c)f(z0)

) ′
Nλξ(a, c)f(z0)

+ λ
.
= re±i

πδ
2 ,

for some r > 0 and 0 6 δ < α.
In case of arg{p(z0)} =

πα
2 , from (3.6) we have

arg
(z(Nλ+1

ξ (a, c)f(z0)
) ′

Nλ+1
ξ (a, c)f(z0)

− η
)
=
πα

2
+ arg

(
1 +

ilα

r
e∓i

πδ
2
)

>
πα

2
+ tan−1

( lα cos(πδ2 )

r+ lα sin(πα2 )

)
.

It is obvious that the function G(l) given by

G(l) =
lα cos(πδ2 )

r+ lα sin(πα2 )
,
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is increasing. Hence, applying (3.2), we get

argp(z0) = arg
(z(Nλ+1

ξ (a, c)f(z0)
) ′

Nλ+1
ξ (a, c)f(z0)

− η
)

>
πα

2
+ tan−1

( mα cos(πδ2 )

r+mα sin(πα2 )

)
=
πσ

2
.

In case of arg{p(z0)} = −πα2 , with the same method we have

argp(z0) = arg
(z(Nλ+1

ξ (a, c)f(z0)
) ′

Nλ+1
ξ (a, c)f(z0)

− η
)

= −
πα

2
+ arg

(
1 −

ilα

r
e∓i

πδ
2
)

6 −
πα

2
− tan−1

( mα cos(πδ2 )

r+mα sin(πα2 )

)
= −

πσ

2
.

Therefore, we obtain a contradiction of the condition (3.3). So there is no point z0 ∈ U such that
| arg{p(z0)}| =

πα
2 , that is, | arg{p(z)}| < πα

2 for all z ∈ U. Therefore, f(z) ∈ SSa,c
λ,ξ(η,α). Therefore, the

theorem is proved.

With the same method, we can obtain the following Theorem 3.3 and Theorem 3.4.

Theorem 3.3. Let λ > 0, Nλξ(a, c)g(z) 6= 0 (z ∈ U \ {0}). Then

SCa,c
λ+1,ξ(η,σ1,ψ) ⊂ SCa,c

λ,ξ(η,α,ψ),

where

σ1 = α+
2
π

tan−1
( mα cos(πδ1

2 )

r1 +mα sin(πδ1
2 )

)
,

for some r1 > 0, m ∈N and 0 6 δ1 < α.

Theorem 3.4. Let γ > 0,Nλξ(a, c)g(z) 6= 0 (z ∈ U \ {0}). Then

SRa,c
λ,ξ(η,γ,σ2,ψ) ⊂ SRa,c

λ,ξ(η, 0,α,ψ),

where

σ2 = α+
2
π

tan−1
( mα cos(πδ2

2 )

r2 +mα sin(πδ2
2 )

)
,

for some r2 > 0,m ∈N and 0 6 δ2 < α.
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