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1. Introduction and preliminaries

Let E be a nonempty closed convex subset of a Hilbert space H and T : E → E be a nonexpansive
mapping with a nonempty fixed point set Fix(T). The following scheme is known as the viscosity approx-
imation method or Moudafi’s viscosity approximation method: for any given x1 ∈ E,

xn+1 = αnf(xn) + (1 −αn)T(xn), ∀n > 1, (1.1)

where f : E→ E is a contraction and {αn} is a sequence in (0, 1). In [13], under some suitable assumptions,
the author proved that the sequence {xn} defined by (1.1) converges strongly to a point z ∈ Fix(T) which
satisfies the following variational inequality:

〈f(z) − z, z− x〉 > 0, ∀x ∈ Fix(T).
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We note that the Moudafi viscosity approximation method can be applied to convex optimization, linear
programming, monotone inclusions, and elliptic differential equations.

The first extension of Moudafi’s result to the so-called CAT(0) space was proved by Shi and Chen
[17]. However, they assumed that the space CAT(0) must satisfy some addition condition P. By using
the concept of quasi-linearization introduced by Berg and Nikolaev [2], Wangkeeree and Preechasilp [19]
could omit the condition P from Shi and Chen’s result. They obtained the following theorems.

Theorem 1.1 ([19, Theorem 3.1]). Let E be a nonempty closed and convex subset of a complete CAT(0) space X,
T : E → E be a nonexpansive mapping with Fix(T) 6= ∅, and f : E → E be a contraction with constant k ∈ (0, 1).
For each s ∈ (0, 1), let xs be given by

xs = sf(xs)⊕ (1 − s)T(xs).

Then the net {xs} converges strongly to x̃ as s → 0 such that x̃ = PFix(T)(f(x̃)), which is equivalent to the
variational inequality:

〈
−−−→
x̃f(x̃),

−→
xx̃〉 > 0, ∀x ∈ Fix(T).

Theorem 1.2 ([19, Theorem 3.4]). Let E, X, T , f, k be the same as in Theorem 1.1. Suppose that x1 ∈ E is
arbitrarily chosen and {xn} is iteratively generated by

xn+1 = αnf(xn)⊕ (1 −αn)T(xn), ∀n > 1,

where {αn} is a sequence in (0, 1
2−k) satisfying:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn = ∞;

(C3)
∑∞
n=1 |αn −αn+1| <∞ or limn→∞ αn

αn+1
= 1.

Then {xn} converges strongly to x̃, where x̃ = PFix(T)(f(x̃)).

As is well-known that fixed point theory for multivalued mappings has many useful applications
in applied sciences, in particular, in game theory and optimization theory. Thus, it is natural to study
the extension of the known fixed point results for single-valued mappings to the setting of multivalued
mappings.

Very recently, Panyanak and Suantai [15] by using the endpoint condition extended Theorems 1.1 and
1.2 to multivalued nonexpansive mappings and proved the following results.

Theorem 1.3 ([15, Theorem 3.3]). Let E be a nonempty closed convex subset of a complete CAT(0) space X and
K(E) be the family of all nonempty compact subsets of E. Let T : E → K(E) be a nonexpansive mapping satisfying
the endpoint condition. Let f : E→ E be a contraction with k ∈ (0, 1

2) and {αn} be a sequence in (0, 1
2−k) satisfying

the conditions (C1), (C2), (C3) in Theorem 1.2. For given x1 ∈ E, let {xn} be a sequence defined by

xn+1 = αnf(xn)⊕ (1 −αn)yn, yn ∈ T(xn), (1.2)

with
d(yn,yn+1) 6 d(xn, xn+1), ∀n > 1.

Then the sequence {xn} defined by (1.2) converges strongly to x̃, where x̃ = PFix(T)(f(x̃)).

They also put forward the following.

Open Question 1.4 ([15]). Let E be a nonempty closed convex subset of a complete CAT(0) space X, T : E→ K(E)
be a nonexpansive mapping satisfying the endpoint condition. Let f : E → E be a contraction with k ∈ [0, 1) and
{αn} be a sequence in (0, 1) satisfying the conditions (C1), (C2) and (C3) in Theorem 1.2, and {xn} be the sequence
defined by (1.2). Does {xn} converge strongly to x̃ = PFix(T)(f(x̃))?

The purpose of this paper is to prove a strong convergence theorem of the viscosity approximation
method for multivalued nonexpansive mappings in CAT(0) spaces. Our results not only give an affir-
mative answer to Panyanak and Suantai’s open question but also generalize the results of Panyanak and
Suantai [15], Wangkeeree and Preechasilp [19], and Dhompongsa et al. [6] and many others. Some related
results in R-trees are also given.
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2. Preliminaries and lemmas

Recall that a metric space (X,d) is called a CAT(0) space, if it is geodesically connected and if every
geodesic triangle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane. It is known
that any complete, simply connected Riemannian manifold having non-positive sectional curvature is a
CAT(0) space. Other examples of CAT(0) spaces include pre-Hilbert spaces (see [3]), R-trees (see [11]),
Euclidean buildings (see [4]), the complex Hilbert ball with a hyperbolic metric (see [9]), and many others.
A complete CAT(0) space is often called Hadamard space. A subset K of a CAT(0) space X is convex, if
for any x,y ∈ K, we have [x,y] ⊂ K, where [x,y] is the uniquely geodesic joining x and y.

In this paper, we write (1 − t)x⊕ ty for the unique point z in the geodesic segment joining from x to
y such that

d(x, z) = td(x,y), d(y, z) = (1 − t)d(x,y).

It is well-known that a geodesic space (X,d) is a CAT(0) space, if and only if the following inequality

d2((1 − t)x⊕ ty, z) 6 (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x,y), (2.1)

is satisfied for all x,y, z ∈ X and t ∈ [0, 1]. In particular, if x,y, z are points in a CAT(0) space (X,d) and
t ∈ [0, 1], then

d((1 − t)x⊕ ty, z) 6 (1 − t)d(x, z) + td(y, z). (2.2)

The concept of quasi-linearization was introduced by Berg and Nikolaev [2]. Let (X,d) be a metric
space. We denote a pair (a,b) ∈ X× X by

−→
ab and call it a vector. The quasi-linearization is a mapping

〈·, ·〉 : (X×X)× (X×X)→ R defined by

〈
−→
ab,
−→
cd〉 = 1

2
(d2(a,d) + d2(b, c) − d2(a, c) − d2(b,d)), ∀a,b, c,d ∈ X. (2.3)

It is easy to see that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉+ 〈

−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 for all

a,b, c,d ∈ X.
We say that (X,d) satisfies the Cauchy-Schwarz inequality, if

|〈
−→
ab,
−→
cd〉| 6 d(a,b)d(c,d), ∀a,b, c,d ∈ X. (2.4)

It is well-known [2] that (X,d) is a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.
Some other properties of quasi-linearization are included as follows.

Lemma 2.1 ([7, 8]). Let C be a nonempty convex subset of a complete CAT(0) space (X,d), x ∈ X and u ∈ C.
Then u = PC(x) (the metric projection of x to C) if and only if

〈−→yu,−→ux〉 > 0, ∀y ∈ C.

Lemma 2.2 ([20]). Let X be a complete CAT(0) space. For any t ∈ [0, 1] and u, v ∈ X, let ut = tu⊕ (1 − t)v.
Then, for any x,y ∈ X,

(i) 〈−−→utx,−−→uty〉 6 t〈−→ux,−−→uty〉+ (1 − t)〈−→vx,−−→uty〉;
(ii) 〈−−→utx,−→uy〉 6 t〈−→ux,−→uy〉+ (1 − t)〈−→vx,−→uy〉 and 〈−−→utx,−→vy〉 6 t〈−→ux,−→vy〉+ (1 − t)〈−→vx,−→vy〉.

Recall that a continuous linear functional µ on l∞, the Banach space of bounded real sequences is
called a Banach limit, if ||µ|| = µ(1, 1, 1, · · · ) = 1 and µn(an) = µn(an+1) for all {an} ∈ l∞.

Lemma 2.3 ([18]). Let α be a real number and let (a1, a2, · · · ) ∈ l∞ be such that µn(an) 6 α for all Banach
limits µ and lim supn→∞(an+1 − an) 6 0. Then lim supn→∞ an 6 α.
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Lemma 2.4 ([21]). Let {cn} be a sequence of non-negative real numbers satisfying the property

cn+1 6 (1 − γn)cn + γnηn, n > 1,

where {γn} ⊂ (0, 1) and {ηn} ⊂ R such that

(i) Σ∞
n=1γn = ∞;

(ii) lim supn→∞ ηn 6 0 or Σ∞
n=1|γnηn| <∞.

Then {cn} converges to zero as n→∞.

Definition 2.5. A multivalued mapping T : E→ BC(X) is said to be nonexpansive, if

H(T(x), T(y)) 6 d(x,y), x,y ∈ E.

A point x ∈ E is called a fixed point of T if x ∈ T(x). We shall denote by Fix(T) the set of all fixed
points of T . A multivalued mapping T is said to satisfy the endpoint condition [5], if Fix(T) 6= ∅ and
T(x) = {x} for all x ∈ Fix(T).

Lemma 2.6 ([15, Theorem 3.1]). Let E be a nonempty closed convex subset of a complete CAT(0) space X and
K(E) be the family of all nonempty compact subsets of E. Let T : E → K(E) be a nonexpansive mapping satisfying
the endpoint condition, and f : E→ E be a contraction with k ∈ (0, 1). Then the following statements hold:

(i) the net {xs} defined by
xs ∈ sf(xs)⊕ (1 − s)T(xs), s ∈ (0, 1), (2.5)

converges strongly to x̃ as s→ 0 where x̃ = PFix(T)(f(x̃));
(ii) if {xn} is a bounded sequence in E such that limn→∞ d(xn, T(xn)) = 0, then

d2(f(x̃), x̃) 6 µnd2(f(x̃), xn),

for all Banach limits µ.

Let E be a nonempty subset of a CAT(0) space (X,d). We shall denote the family of nonempty bounded
and closed subsets of E by BC(E), the family of nonempty bounded and closed convex subsets of E by
BCC(E), and the family of nonempty compact subsets of E by K(E). Let H(·, ·) be the Hausdorff distance
on BC(X) defined by

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b,A)}, A,B ∈ BC(X),

where d(a,B) := inf{d(a,b) : b ∈ B} is the distance from the point a to the set B.

Lemma 2.7 (Nadler [14]). Let (X,d) be a metric space, E be a nonempty and closed subset of X, and A,B ∈ K(E).
Then for any given a ∈ A, there exists a point b ∈ B such that

d(a,b) 6 H(A,B).

3. Main results

We are now in a position to give the main results of the paper.

Theorem 3.1. Let E be a nonempty closed convex subset of a complete CAT(0) space X, T : E → K(E) be a
nonexpansive mapping satisfying the endpoint condition. Let f : E → E be a contraction with k ∈ (0, 1) and {αn}

be a sequence in (0, 1) satisfying the following conditions:

(C1) limn→∞ αn = 0;
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(C2)
∑∞
n=1 αn = ∞;

(C3)
∑∞
n=1 |αn −αn+1| <∞ or limn→∞ αn

αn+1
= 1.

Then the sequence {xn} defined by (1.2) converges strongly to x̃, where x̃ = PFix(T)(f(x̃)).

Proof. We divide the proof into four steps.

Step 1: We show that {xn}, {yn}, and {f(xn)} are bounded sequences in E. Let p ∈ Fix(T). By inequality
(2.2) we have

d(xn+1,p) 6 αnd(f(xn),p) + (1 −αn)d(yn,p)
6 αn[d(f(xn), f(p)) + d(f(p),p)] + (1 −αn)H(T(xn), T(p))
6 αn[d(f(xn), f(p)) + d(f(p),p)] + (1 −αn)d(xn,p)
6 αnkd(xn,p) +αnd(f(p),p) + (1 −αn)d(xn,p)
= (1 −αn(1 − k))d(xn,p) +αnd(f(p),p)

6 max{d(xn,p),
d(f(p),p)

1 − k
}.

By induction, we have

d(xn,p) 6 max{d(x1,p),
d(f(p),p)

1 − k
}, ∀n > 1.

Hence, {xn} is bounded, so is {f(xn)}. Again since

d(yn,p) 6 H(Txn, Tp) 6 d(xn,p).

This implies that {yn} is also bounded.

Step 2: Next we show that
lim
n→∞d(xn+1, xn) = 0. (3.1)

In fact, we have

d(xn+1, xn) 6 d(αnf(xn)⊕ (1 −αn)yn,αn−1f(xn−1)⊕ (1 −αn−1)yn−1)

6 d(αnf(xn)⊕ (1 −αn)yn,αnf(xn)⊕ (1 −αn)yn−1)

+ d(αnf(xn)⊕ (1 −αn)yn−1,αnf(xn−1)⊕ (1 −αn)yn−1)

+ d(αnf(xn−1)⊕ (1 −αn)yn−1,αn−1f(xn−1)⊕ (1 −αn−1)yn−1)

6 (1 −αn)d(yn,yn−1) +αnd(f(xn), f(xn−1))

+ |αn −αn−1|d(f(xn−1),yn−1) (by condition (1.3))
6 (1 −αn(1 − k))d(xn, xn−1) + |αn −αn−1|d(f(xn−1),yn−1).

Putting, in Lemma 2.4,
cn = d(xn, xn−1), γn = (1 − k)αn,

and
ηn =

1
1 − k

|1 −
αn−1

αn
|d(f(xn−1),yn−1),

from conditions (C1), (C2) and (C3), we get that limn→∞ d(xn+1, xn) = 0.

Step 3: Next we show that

lim
n→∞d(xn, T(xn)) = 0, lim

n→∞d(xn,yn) = 0, lim
n→∞d(yn,yn+1) = 0, lim

n→∞d(yn, T(yn)) = 0. (3.2)
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In fact, it follows from (3.1) and condition (C1) that

d(xn, T(xn)) 6 d(xn,yn)
6 d(xn, xn+1) + d(xn+1,yn)
6 d(xn, xn+1) +αnd(f(xn),yn)→ 0 as n→∞.

(3.3)

By (1.2) and (2.2) we have

d(xn+1,yn) = d(αnf(xn)⊕ (1 −αn)yn,yn) 6 αnd(f(xn),yn)→ 0, as n→∞.

Hence we have
d(xn,yn) 6 d(xn, xn+1) + d(xn+1,yn)→ 0, as n→∞, (3.4)

and
d(yn+1,yn) 6 d(yn+1, xn+1) + d(xn+1, xn) + d(xn,yn)→ 0, as n→∞.

It follows from (3.3) and (3.4) that

d(yn, T(yn)) 6 d(yn.xn) + d(xn, Txn) +H(Txn, Tyn) 6 2d(yn.xn) + d(xn, Txn)→ 0 as n→∞.

Step 4: Next we show that {xn} converges strongly to a point x̃ ∈ Fix(T) with x̃ = PFix(T)(f(x̃)).
For each s ∈ (0, 1), let xs be defined by (2.5). By Lemma 2.6, {xs} converges strongly to a point

x̃ ∈ Fix(T) and x̃ = PFix(T)(f(x̃)).
By (3.2) limn→∞ d(yn, T(yn)) = 0, therefore from Lemma 2.6 (ii) we have that

d2(f(x̃), x̃) 6 µnd2(f(x̃),yn),

for all Banach limits µ.
Moreover, since limn→∞ d(yn+1,yn) = 0,

lim sup
n→∞ [d2(f(x̃), x̃) − d2(f(x̃),yn+1) − (d2(f(x̃), x̃) − d2(f(x̃),yn))] 6 0.

It follows from Lemma 2.3 that

lim sup
n→∞ (d2(f(x̃), x̃) − d2(f(x̃),yn)) 6 0. (3.5)

Furthermore, from (2.1) and Lemma 2.2 we have that

d2(xn+1, x̃) = d2(αnf(xn)⊕ (1 −αn)yn, x̃)

6 αnd
2(f(xn), x̃) + (1 −αn)d

2(yn, x̃) −αn(1 −αn)d
2(f(xn),yn)

= (1 −αn)d
2(yn, x̃) +αn(d2(f(xn), x̃) − d2(f(xn),yn)) +α2

nd
2(f(xn),yn).

(3.6)

By using (2.3) and the Cauchy-Schwarz inequality (2.4), we have

αn(d
2(f(xn),x̃) − d2(f(xn),yn))

= 2αn{〈
−−−−→
f(xn)x̃,

−−→
ynx̃〉− d2(yn, x̃)}

= 2αn{〈
−−−−−−→
f(xn)f(x̃),

−−→
ynx̃〉+ 〈

−−−→
f(x̃)x̃,

−−→
ynx̃〉− d2(yn, x̃)}

6 2αn{kd(xn, x̃)d(yn, x̃) + 〈
−−−→
f(x̃)x̃,

−−→
ynx̃〉− d2(yn, x̃)}

6 αnk(d
2(xn, x̃) + d2(yn, x̃)) + 2αn〈

−−−→
f(x̃)x̃,

−−→
ynx̃〉− 2αnd2(yn, x̃)}

= αnkd
2(xn, x̃) −αn(2 − k)d2(yn, x̃) + 2αn〈

−−−→
f(x̃)x̃,

−−→
ynx̃〉

= αnkd
2(xn, x̃) −αn(2 − k)d2(yn, x̃) +αn(d2(f(x̃), x̃) + d2(yn, x̃) − d2(f(x̃),yn))

= αnkd
2(xn, x̃) −αn(1 − k)d2(yn, x̃) +αn(d2(f(x̃), x̃) − d2(f(x̃),yn))

6 αnkd
2(xn, x̃) +αn(d2(f(x̃), x̃) − d2(f(x̃),yn)),

(3.7)
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and
d2(yn, x̃) 6 H2(Txn, Tx̃) 6 d2(xn, x̃). (3.8)

Substituting (3.7) and (3.8) into (3.6) and simplifying we have

d2(xn+1, x̃) 6 (1 −αn(1 − k))d2(xn, x̃) +αn(d2(f(x̃), x̃) − d2(f(x̃),yn)) +α2
nd

2(f(xn),yn). (3.9)

Putting, in Lemma 2.4, cn = d2(xn, x̃), γn = αn(1 − k) and

ηn =
d2(f(x̃), x̃) − d2(f(x̃),yn) +αnd2(f(xn),yn)

1 − k
,

then (3.9) can be written as
cn+1 6 (1 − γn)cn + γnηn, ∀n > 1.

It follows from conditions (C1), (C2), (C3) and (3.5) that

(i) γn ∈ (0, 1) and
∑∞
n=1 γn = ∞;

(ii) lim supn→∞ ηn 6 0.

Therefore all conditions in Lemma 2.4 are satisfied. We have cn → 0 as n → ∞. This implies that xn
converges strongly to x̃, where x̃ = PFix(T)f(x̃). This completes the proof of Theorem 3.1.

Remark 3.2. Theorem 3.1 not only gives an affirmative answer to the open question raised by Panyanak
and Suantai [15], but also generalizes the corresponding results of Panyanak and Suantai [15, Theorem
3.3], Wangkeeree and Preechasilp [19], Dhompongsa et al. [6], Qin [16], Gunduz et al. [10] and many
others.

The following result can be obtained from Theorem 3.1 immediately.

Corollary 3.3. Let E be a nonempty closed convex subset of a complete CAT(0) space X, and T : E → K(E) be a
nonexpansive mapping satisfying the endpoint condition. Suppose that u, x1 ∈ E are arbitrarily chosen and {xn} is
defined by

xn+1 = αnu⊕ (1 −αn)yn, ∀n > 1,

where yn ∈ T(xn) such that d(yn,yn+1) 6 d(xn, xn+1) for all n > 1 and {αn} is a sequence in (0, 1) satisfying
(C1), (C2) and (C3). Then {xn} converges strongly to the unique nearest point of u in Fix(T).

4. R-Trees

To avoid the endpoint condition, we prefer to work on R-trees. Although an R-tree is not strong
enough to make all nonexpansive mappings having the endpoint condition, but it is strong enough to
make our theorems hold without this condition.

Definition 4.1. An R-tree is a geodesic space X such that:

(i) there is a unique geodesic segment [x,y] joining each pair of points x,y ∈ X;
(ii) if [y, x]∩ [x, z] = {x}, then [y, x]∪ [x, z] = [y, z]. By (i) and (ii) we have

(iii) if u, v,w ∈ X, then [u, v]∩ [u,w] = [u, z], for some z ∈ X.

Let E be a closed convex subset of a complete R-tree (X,d) and T : E → BCC(E) be a multivalued
mapping. Then, by [1, Theorem 4.1], there exists a single-valued mapping t : E→ E such that t(x) ∈ T(x)
and

d(t(x), t(y)) 6 H(T(x), T(y)), ∀x,y ∈ E. (4.1)

In this case, we call t a nonexpansive selection of T .
Let f : E→ E be a contraction and fix x1 ∈ E. We define a sequence {xn} in E by

xn+1 = αnf(xn)⊕ (1 −αn)yn, (4.2)

where yn = t(xn) ∈ T(xn) for all n > 1.
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Theorem 4.2. Let E be a nonempty closed convex subset of a complete R-tree X, and T : E → BCC(E) be a
nonexpansive mapping with Fix(T) 6= ∅. Let f : E → E be a contraction with k ∈ (0, 1) and {αn} be a sequence
in (0, 1) satisfying the conditions (C1), (C2) and (C3) in Theorem 3.1. Then the sequence {xn} defined by (4.2)
converges strongly to x̃ = PFix(T)(f(x̃)).

Proof. By [1, Theorem 4.2], Fix(t) = Fix(T). And the set of fixed points Fix(T) is closed and convex
by [12, Proposition 1] and t is nonexpansive by (4.1). Hence the conclusion follows from Theorem 3.1,
immediately.
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