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Abstract
In this paper, a conservative nonlinear implicit finite difference scheme for the generalized Rosenau-KdV equation is studied.

Convergence and stability of the proposed scheme are proved by a discrete energy method. The proof with a priori error estimate
shows that the convergence rates of numerical solutions are both the second order on time and in space. Meanwhile, numerical
experiments are carried out to verify the theoretical analysis and show that the scheme is efficient and reliable. c©2017 All rights
reserved.
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1. Introduction

In this paper, we consider the following generalized Rosenau-KdV equation,

ut + ux + uxxx + uxxxt + (up)x = 0, (1.1)

where p > 2 is an integer. When p = 2, Eq. (1.1) is called Rosenau-KdV equation as usual.
To address mathematical or physical aspects of nonlinear models, various analytical methods are

often proposed, such as the integral transforms [11, 12] and the traveling-wave method [13, 14]. By the
usual solitary ansatze method, authors discussed the solitary solutions and gave two invariants for the
generalized Rosenau-KdV equation in [4, 9]. Two types of soliton solution, whose are, the solitary wave
solution and the singular soliton were investigated in [9]. Furthermore, with the help of the perturbation
theory and the semi-variation principle, the perturbed generalized Rosenau-KdV equation was discussed
analytically. The ansatze method was employed to obtain the topological solution and the shock solution
of this equation in [10]. Especially, more solitary solutions of the equation (1.1) were derived by the
ansatze method, the G ′/G-expansion method as well as the Exp-function method in [3].
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As far as numerical methods are concerned, many numerical techniques are used for the approxima-
tion solution of the Rosenau-type equations in [2, 6, 8], the KdV-type equations and their extensions in
[1, 5, 15, 19]. Certainly, initial-boundary value conditions must be imposed. In the following, we assume
that the boundary condition of the generalized Rosenau-KdV equation (1.1) satisfies

u(Xl, t) = u(Xr, t), ux(Xl, t) = ux(Xr, t) = 0, uxx(Xl, t) = uxx(Xr, t) = 0, t ∈ [0, T ], (1.2)

and the initial condition is
u(x, 0) = u0(x). (1.3)

Obviously, the assumptions for conditions are in accordance with the Cauchy problem of equation (1.1).
In [7, 16], two conservative difference schemes for the generalized Rosenau-KdV equation were proposed,
while both only discussed one conservative law. Another conservative Crank-Nicolson implicit difference
scheme was presented in [18], but the shortcoming exists in the computation for the initial condition,
which needs the help of other scheme, such as the average linear scheme (see, for example, [16]). In this
paper, we study a new implicit finite difference scheme for the generalized Rosenau-Kdv equation. The
corresponding convergence and stability for the scheme are proved by a discrete energy method. With a
priori error estimate, the convergence rate O(τ2 + h2) of numerical solution is shown.

The rest of this paper is organized as follows. In Section 2, we propose an implicit finite difference
scheme for the generalized Rosenau-KdV equation. The convergence and the stability are proved in Sec-
tion 3. Some numerical tests are given in Section 4 to verify our theoretical analysis. Finally, conclusions
are drawn in Section 5.

2. Conservative implicit difference scheme

We first give some notations which will be used in next sections and propose the conservative differ-
ence scheme for problem (1.1)-(1.3).

As usual, denote xj = Xl + jh, tn = nτ, 0 6 j 6 J, 0 6 n 6 N, where h = (Xr − Xl)/J and τ are the
uniform spatial and temporal step size, respectively. Let unj ≈ u(jh,nτ), Z0

h = {u = (uj)|u−1 = u0 = uJ =
uJ+1 = 0, −1 6 j 6 J+ 1}. Throughout this paper, we denote C as a general constant independent of h
and τ. Define difference operators, the inner product, and norms as follows:

(unj )x =
unj+1 − u

n
j

h
, (unj )x̄ =

unj − unj−1

h
, (unj )x̂ =

unj+1 − u
n
j−1

2h
,

(unj )t =
un+1
j − unj
τ

, (unj )t̂ =
un+1
j − un−1

j

2τ
, (unj )xx̄ =

unj+1 − 2unj + unj−1

h2 ,

u
n+ 1

2
j =

un+1
j + unj

2
, 〈un, vn〉 = h

J−1∑
j=1

unj v
n
j , ‖un‖2 = 〈un,un〉, ‖un‖∞ = max

06j6J−1
|unj |.

Since (up)x =
2

1 + p

∑p−1
i=0 u

i(up−i)x (see, for details, [10]), we can construct the following conservative

implicit finite difference scheme for problem (1.1)-(1.3) as follows:

(unj )t + (u
n+1/2
j )x̂ + (u

n+1/2
j )xx̄x̂ + (unj )xxx̄x̄t +

2
1 + p

p−1∑
i=0

(u
n+1/2
j )i[(u

n+1/2
j )p−i]x̂ = 0, (2.1)

u0
j = u0(xj), 1 6 j 6 J− 1, (2.2)

un0 = unJ = 0, (un0 )x̂ = (unJ )x̂ = 0, (un0 )xx̄ = (unJ )x̄x = 0. (2.3)

3. Convergence and stability of the scheme

Firstly, we introduce the discrete Gronwall inequality, the discrete Sobolev inequality, and the discrete
summation by parts formula (see [17]).
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Lemma 3.1 (Discrete Gronwall inequality). Suppose w(k), ρ(k) are nonnegative mesh functions and ρ(k) is
non-decreasing. If C > 0 and w(k) 6 ρ(k) +Cτ

∑k−1
l=0 w(l), ∀k, then we have

w(k) 6 ρ(k)eCτk, ∀k. (3.1)

Lemma 3.2 (Discrete Sobolev inequality). There exist two constants C1 and C2 such that

‖un‖∞ 6 C1‖un‖+C2‖unx ‖.

Lemma 3.3. For any two mesh functions u, v ∈ Z0
h, one can get,

〈vx,u〉 = −〈v,ux̄〉, 〈ux̂, v〉 = −〈u, vx̂〉, 〈u, vxx̄〉 = −〈ux, vx〉. (3.2)

Then we have
〈u, vxx̄〉 = −〈ux,ux〉 = −‖ux‖2.

Furthermore, if (un0 )xx̄ = (unJ )xx̄ = 0, then

〈u,uxxx̄x̄〉 = ‖uxx‖2. (3.3)

Next, we discuss the convergence of scheme (2.1)-(2.3). Let vnj = v(xj, tn) be the analytical solution of
problem (1.1)-(1.3). Then, the truncation error of scheme (2.1)-(2.3) is written as:

rnj = (vnj )t + (v
n+ 1

2
j )x̂ + (v

n+ 1
2

j )xx̄x̂ + (vnj )xxx̄x̄t +
2

1 + p

p−1∑
i=0

{(v
n+1/2
j )i[(v

n+1/2
j )p−i]x̂}. (3.4)

Using the Taylor expansion, it follows that rnj = O(τ2 + h2) holds if τ,h→ 0.

Theorem 3.4. Suppose that u0 ∈ H2
0[Xl,Xr], u(x, t) ∈ C5,3[Xl,Xr]. Then the solution un of scheme (2.1)-(2.3)

converges to the solution of problem (1.1)-(1.3) and the convergence rate is O(τ2 + h2) by the norm ‖ · ‖∞.

Proof. Subtracting (2.1) from (3.4) and letting enj = vnj − unj , we have

rnj =(enj )t + (e
n+ 1

2
j )x̂ + (e

n+ 1
2

j )xx̄x̂ + (enj )xxx̄x̄t +
2

1 + p

p−1∑
i=0

{(v
n+ 1

2
j )i[(v

n+ 1
2

j )p−i]x̂}

−
2

1 + p

p−1∑
i=0

{(u
n+ 1

2
j )i[(u

n+ 1
2

j )p−i]x̂}.

(3.5)

Taking the inner product of (3.5) with 2en+
1
2 , that is, (en+1 + en), we have

〈rn, 2en+
1
2 〉 =

J−1∑
j=1

{(enj )t · 2e
n+ 1

2
j + (e

n+ 1
2

j )}x̂ · 2e
n+ 1

2
j + (e

n+ 1
2

j )xxx̂ · 2e
n+ 1

2
j

+
1
τ
(((en+1

j )xxx̄x̄) − ((enj )xxx̄x̄)) · 2e
n+ 1

2
j +

2
1 + p

p−1∑
i=0

{(v
n+1/2
j )i[(v

n+1/2
j )p−i]x̂ · 2e

n+ 1
2

j }

−
2

1 + p

p−1∑
i=0

{(v
n+1/2
j )i[(v

n+1/2
j )p−i]x̂ · 2e

n+ 1
2

j }.

(3.6)

By the definition of (enj )t, it follows from the first term of (3.6) on the right side that

J−1∑
j=1

(
1
τ
(en+1
j − enj ) · 2e

n+ 1
2

j ) =
1
τ
(‖en+1‖2 − ‖en‖2). (3.7)
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Similarly, with the definition of ex̂ and (3.2), for the second and the third term of (3.6), we get

J−1∑
j=1

((e
n+ 1

2
j )x̂ · 2e

n+ 1
2

j ) =

J−1∑
j=1

((e
n+ 1

2
j )x + (e

n+ 1
2

j )x̄) · e
n+ 1

2
j

=

J−1∑
j=1

(e
n+ 1

2
j )x · e

n+ 1
2

j +

J−1∑
j=1

(e
n+ 1

2
j )x̄ · e

n+ 1
2

j = 0,

(3.8)

and
J−1∑
j=1

(e
n+ 1

2
j )xx̄x̂ · 2e

n+ 1
2

j = 0. (3.9)

According to the boundary conditions (2.3) and (3.3), it follows from the fourth term of (3.6) that

J−1∑
j=1

1
τ
((en+1
j )xxx̄x̄ − (enj )xxx̄x̄ · 2e

n+ 1
2

j ) =
1
τ
(‖en+1

xx ‖2 − ‖enxx‖2). (3.10)

From (3.6)-(3.10), we get

〈rn, 2en+
1
2 〉 = 1

τ
(‖en+1‖2 − ‖en‖2) +

1
τ
(‖en+1

xx ‖2 − ‖enxx‖2) + 〈Q1 +Q2, 2en+
1
2 〉,

where 
Q1 =

2
1 + p

J∑
j=1

p−1∑
i=0

{[(v
n+1/2
j )i − (u

n+1/2
j )i][(v

n+1/2
j )p−i]x̂},

Q2 = −
2

1 + p

J−1∑
j=0

p−1∑
i=0

{(u
n+1/2
j )i[(u

n+1/2
j )p−i − (v

n+1/2
j )p−i]x̂}.

Therefore, we get

(‖en+1‖2 − ‖en‖2) + (‖en+1
xx ‖2 − ‖enxx‖2) = τ〈rn, 2en+

1
2 〉− τ〈Q1 +Q2, 2en+

1
2 〉. (3.11)

According to Theorem 9 in reference [7], Theorem 2.7 in reference [18], and Cauchy-Schwartz inequal-
ity, we have

− 〈Q1, en+1/2〉

=
−2

1 + p

J∑
j=1

{

p−1∑
i=0

[(v
n+1/2
j )i − (u

n+1/2
j )i][(v

n+1/2
j )p−i]}e

n+1/2
j

=
−2

1 + p

J−1∑
j=1

{

p−1∑
i=0

e
n+1/2
j

k−1∑
k=0

(v
n+1/2
j )i−k−1(u

n+1/2
j )k[(v

n+1/2
j )p−i]}e

n+1/2
j

=
−2

1 + p

J−1∑
j=1

{

p−1∑
i=0

[

k−1∑
k=0

e
n+1/2
j (v

n+1/2
j )i−k−1(u

n+1/2
j )k][

p−i−1∑
k=0

(v
n+1/2
j+1 )p−i−k−1(v

n+1/2
j−1 )k]}e

n+1/2
j

6 C(‖en+1‖2 + ‖en+1‖2)

6 C(‖en+1
x ‖2 + ‖enx ‖2 + en+1‖2 + ‖en‖2).

(3.12)

Similarly,
− 〈Q2, en+1/2〉 6 C(‖en+1

x ‖2 + ‖enx ‖2 + ‖en+1‖2 + ‖en‖2). (3.13)
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Note that
〈rn, 2en+

1
2 〉 = 〈rn, en+1 + en〉 6 ‖rn‖2 +

1
2
[‖en+1‖2 + ‖en‖2]. (3.14)

Substituting (3.12)-(3.14) into (3.11), we have

(‖en+1‖2 − ‖en‖2) + (‖en+1
xx ‖2 − ‖enxx‖2) 6 Cτ[‖en+1

x ‖2 + ‖enx ‖2 + ‖en+1‖2 + ‖en‖2] + τ‖rn‖2. (3.15)

Letting Dn = ‖en‖2 + ‖enxx‖2, from (3.15), we obtain

(1 −Cτ)(Dn+1 −Dn) 6 2CτDn + τ‖rn‖2.

If τ is sufficiently small which satisfies 1 −Cτ > 0, then we obtain

Dn+1 −Dn 6 CτDn +Cτ‖rn‖2. (3.16)

Summing up in (3.16) from 0 to n− 1, we get

Dn 6 D0 +Cτ

n−1∑
l=0

Dn +Cτ

n−1∑
l=0

‖rl‖2.

Noticing

τ

n−1∑
l=0

‖rl‖2 6 nτ max
06l6n−l

‖rl‖2 6 T ·O(τ2 + h2)2,

from discrete initial conditions, we have e0 = 0 such that D0 = O(τ2 + h2)2. Therefore

Dn 6 O(τ2 + h2)2 +Cτ

n−1∑
l=0

Dl.

According to Lemma 3.1, we get Dn 6 O(τ2 + h2)2, which implies that

‖en‖ 6 O(τ2 + h2), ‖enxx‖ 6 O(τ2 + h2).

It follows from (3.1) that
‖enx ‖ 6 O(τ2 + h2).

By Lemma 3.1, we have
‖en‖∞ 6 O(τ2 + h2).

This completes the proof of Theorem 3.4.

To prove the stability of the difference scheme, we consider the following initial boundary problem as

ut + ux + uxxx + uxxxt + (up)x = ω(x, t), (3.17)

u(Xl, t) = u(Xr, t) = 0, ux(Xl, t) = ux(Xr, t) = 0, uxx(Xl, t) = uxx(Xr, t) = 0, t ∈ [0, T ], (3.18)

u(x, 0) = u0(x) +ψ(x), x ∈ [Xl,Xr], (3.19)

where ω(x, t) and ψ(x) are smooth enough.
We also propose the difference scheme of problem (3.17)-(3.19) given as:

(Unj )t + (U
n+1/2
j )x̂ + (U

n+1/2
j )xx̄x̂ + (Unj )xxx̄x̄t +

2
1 + p

p−1∑
i=0

(U
n+1/2
j )i[(U

n+1/2
j )p−i]x̂ + (ωnj )t = 0, (3.20)

U0
j = U0(xj) +ψj, 0 6 j 6 J− 1, (3.21)

Un0 = UnJ = 0, (Un0 )x̂ = (UnJ )x̂ = 0, (Un0 )xx̄ = (UnJ )x̄x = 0, (3.22)

where ωnj = ω(xj, tn),ψj = ψ(xj).
The proof is similar to that of Theorem 3.4. We omit the details and present the stability theorem as

follows.
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Theorem 3.5. Suppose that {unj } is the solution of scheme (2.1)-(2.3) and {Unj } is the solution of scheme (3.20)-
(3.22). If the mesh step h and τ are small enough for εnj = Unj − unj , then we can get

‖εn‖+ ‖εnxx‖ 6 C(‖ψ‖2 + τ

n−1∑
l=0

‖ωl‖2).

4. Numerical experiments

In this section, we present some numerical experiments to verify theoretical analysis obtained in the
previous section.

Take Xl = −60 and Xr = 90, and consider two cases: p = 3 and p = 5, respectively.
According to the references [4, 9], the soliton solution with p = 3 is as follows:

u(x, t) =
1
4

√
−15 + 3

√
41 sech2 1

4

√
−5 +

√
41

2
[x−

1
10

(5 +
√

41)t],

with the given initial condition

u(x, 0) =
1
4

√
−15 + 3

√
41 sech2 1

4

√
−5 +

√
41

2
x.

For p = 5, we have the soliton solution,

u(x, t) = 4

√
4
15

(−5 +
√

34) sech
1
3

√
−5 +

√
34[x−

1
10

(5 +
√

34)t],

with the initial condition

u(x, 0) = 4

√
4

15
(−5 +

√
34) sech

1
3

√
−5 +

√
34x.

Firstly, we present numerical simulations in different time and space steps for p = 3 and p = 5, respec-
tively, in which we take T = 10, 20, 30, and 40. Some results are listed in Tables 1 and 2 for p = 3 and p = 5,
respectively. For the simplicity of presentation, we can denote the convergence rate by cor = ‖e(h,τ)‖∞

‖e(h/2,τ/2)‖∞ .
Clearly, it verifies the second order accuracy in Theorems 3.4 and 3.5.

Table 1: The errors estimations in the sense of L∞ for p = 3 at various time.

(h, τ) (0.25, 0.25) (0.125, 0.125) (0..625, 0.0625) (0.03125, 0.03125)

T = 10 ‖e‖∞ 2.56674e− 3 6.44399e− 4 1.61280e− 4 4.03336e− 5
cor − 3.98315 3.99552 3.99866

T = 20 ‖e‖∞ 4.48735e− 3 1.12931e− 3 2.82731e− 4 7.07084e− 5
cor − 3.97352 3.99430 3.99855

T = 30 ‖e‖∞ 6.15513e− 3 1.54976e− 3 3.88116e− 4 9.70716e− 5
cor − 3.97167 3.99303 3.99825

T = 40 ‖e‖∞ 7.70544e− 3 1.94252e− 3 4.86553e− 4 1.21699e− 4
cor − 3.96672 3.99242 3.99800

Secondly, we simulate the wave graph of the numerical solution of the nonlinear implicit scheme (2.1)-
(2.3). The comparison of numerical solutions unj with the different time step and space step at various
times is given in Figure 1 for p = 5. The figure shows that the height of the wave graph at different time
is almost identical, which implies that invariants M and E studied in [18] are conservative. As illustrated
in Figure 1, the scheme is also stable.
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Table 2: The errors estimations in the sense of L∞ for p = 5 at various time.

(h, τ) (0.25, 0.25) (0.125, 0.125) (0..625, 0.0625) (0.03125, 0.03125)

T = 10 ‖e‖∞ 3.61271e− 3 9.08877e− 4 2.27537e− 4 5.69039e− 5
cor − 3.97492 3.99442 3.99862

T = 20 ‖e‖∞ 6.67461e− 3 1.68217e− 3 4.21381e− 4 1.05398e− 4
cor − 3.96787 3.99203 3.99800

T = 30 ‖e‖∞ 9.67548e− 3 2.44308e− 3 6.12310e− 4 1.53180e− 4
cor − 3.97167 3.99303 3.99825

T = 40 ‖e‖∞ 7.70544e− 3 1.94252e− 3 4.86553e− 4 1.21699e− 4
cor − 3.96036 3.98994 3.99732

Figure 1: Wave graph of u(x, t) at various time when p = 5 and τ = h = 0.25.

5. Conclusion

In the present work, we proposed a finite difference scheme for the generalized Rosenau-KdV equa-
tion, and proved its convergence and stability. By the discrete energy method, it shows that the scheme is
unconditionally stable and convergent. Numerical experiments also verify that the new scheme is reliable
and efficient.
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