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Abstract

By using generating functions and their functional equations for the special numbers and polynomials, we derive various
identities and combinatorial sums including the Korobov-type polynomials, the Bernoulli numbers, the Stirling numbers, the
Daehee numbers and the Changhee numbers. Furthermore, by using the Volkenborn integral and the fermionic p-adic integral,
we also derive combinatorial sums associated with the Korobov-type polynomials, the Lah numbers, the Changhee numbers
and the Daehee numbers. Finally, we give a conclusion on our results. c©2017 All rights reserved.
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1. Introduction

The Korobov-type polynomials have been used in mechanical characteristics of molecular dynamics
model ([5, 15, 21]). Polynomials and their derivatives, integrals and algebraic properties are easily com-
puted. Because of these easily computational advantages, polynomials and their generating functions
have been used by many scientists. In this paper, we give various identities, formulas and relations re-
lated to the Korobov-type polynomials and the other special numbers and polynomials. Firstly, we glance
at the p-adic integrals and their properties. By using the bosonic and the fermionic p-adic integrals with
their integral equations, many families of generating functions for the special numbers and polynomials
have been constructed. We know that there are many valuable applications of the generating functions
and the p-adic integrals not only in mathematics, but also in other science ([8, 9, 25, 28]; see also the
references cited in each of these earlier works). Recently, Kim [8] constructed the p-adic q-Volkenborn
integral and their integral equations (see also [9, 11, 13]).

Some notations are given as follows:
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Zp, Qp, C, and Cp denote the ring of p-adic integers, the field of p-adic rational numbers, the complex
number field, and the completion of the algebraic closure of Qp, respectively. K ⊆ Cp, C1(Zp → K)
denotes a set of continuous derivative functions from Zp → K.

By using the p-adic q-Volkenborn integral, which was found by Kim [8], one can derive two kinds of
integrals which are so-called the p-adic bosonic integral or Volkenborn integral and the p-adic fermionic
integral. These are given, respectively, as follows:

I1(f(x)) =

∫
Zp

f (x)dµ1 (x) = lim
N→∞ 1

pN

pN−1∑
x=0

f (x) ,

where
µ1 (x) = µ1

(
x+ pNZp

)
=

1
pN

([25], see also [9, 11, 13]) and

I−1(f(x)) =

∫
Zp

f (x)dµ−1 (x) = lim
N→∞

pN−1∑
x=0

(−1)x f (x) ,

where ([9])

µ−1
(
x+ pNZp

)
=

(−1)x

pN
.

Especially, p-adic integrals are of many applications in almost all branches of mathematics, physics,
engineering and also other sciences. That is, these integrals appear in analytic number theory, in the
quantum groups, in cohomology groups, in q-deformed oscillator and also in p-adic models.

Secondly, in order to give main results of this paper, we also glance at the rising factorial polynomials,
the falling factorial polynomials, special numbers, and polynomials with their generating functions. The
rising factorial polynomials x(n) and the falling factorial polynomials x(n) are defined as ([1, 32])

x(n) =x(x+ 1)(x+ 2) . . . (x+n− 1)x(0) = 1,

and

x(n) = x(x− 1)(x− 2) . . . (x−n+ 1)x(0) = 1,

respectively.
The generating function for the Bernoulli polynomials is given by

FA(t, x) =
tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (1.1)

From the above equation, one has
Bn = Bn(0),

where denotes the Bernoulli numbers ([1–33]; see also the references cited in each of these earlier works).
The Euler polynomials are defined by

2etx

et + 1
=

∞∑
n=0

En(x)
tn

n!
.

Substituting x = 0 into the above equation, one has ([1–33])

En = En(0).
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Generating functions for the Stirling numbers of the first kind are given by

FS1(t,k) =
(log(1 + t))k

k!
=

∞∑
n=0

S1(n,k)
tn

n!
.

By using the above function, we have S1(0, 0) = 1, S1(0,k) = 0 if k > 0, S1(n, 0) = 0 if n > 0, and
S1(n,k) = 0 if k > n ([1–33]).

Generating functions for the Stirling numbers of the second kind are given by

FS(t,k) =

(
et − 1

)k
k!

=

∞∑
n=0

S2(n,k)
tn

n!
, (1.2)

where k is nonnegative integer. From this generating function, we have S2(n,n) = 1, S2(0,k) = 0 if k > 0,
S2(n, 0) = 0 if n > 0, and S2(n,k) = 0 if k > n ([1], [24, p. 116], [31, 32]).

Generating function for the Bernoulli polynomials of the second kind is given by ([24, pp. 113-117])

Fb2(t, x) =
t(1 + t)x

log(1 + t)
=

∞∑
n=0

bn(x)
tn

n!
. (1.3)

Substituting x = 0 into (1.3), we get the second kind Bernoulli numbers (the Cauchy numbers of the first
kind), which are defined as follows ([24, p. 116]; see also the references cited in each of these earlier
works)

Fb2(t) =
t

log(1 + t)
=

∞∑
n=0

bn(0)
tn

n!
.

The Lah numbers are defined by means of the following generating function ([1, 23, 28]; and see also
the references cited in each of these earlier works)(

−
t

1 + t

)k
=

∞∑
n=0

k!L(n,k)
tn

n!
.

By using the above equation, we have

L(n,k) = (−1)n
n!
k!

(
n− 1
k− 1

)
and the unsigned Lah numbers are given by

|L(n,k)| =
n!
k!

(
n− 1
k− 1

)
.

A relation between the Lah numbers and the first and the second kind Stirling numbers is given as follows
([23, p. 44])

L(n,k) =
n∑
j=0

(−1)js1(n, j)S2(j,k).

Relations between the Lah numbers, the falling, and rising factorial polynomials are given by

(−x)(n) =

n∑
k=0

L(n,k)x(k),

x(n) =

n∑
k=0

L(n,k) (−x)(k) ,
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and

x(n) =

n∑
k=1

|L(n,k)| x(k).

( cf. [1], [23, p. 43]).
The first and the second kinds of the Daehee numbers are given respectively as ([14])

FD(t) =
log(1 + t)

t
=

∞∑
n=0

Dn
tn

n!

and
(1 + t) log(1 + t)

t
=

∞∑
n=0

D̂n
tn

n!
.

The generating functions for the Daehee polynomials of the first kind are given by the following
formula ([14])

FD(x, t) = FD(t)(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
. (1.4)

The first kind Daehee numbers are given by the formula ([4, 14], [23, p. 45]; see also the references cited
in each of these earlier works)

Dn =

n∑
k=0

S1(n,k)Bk = (−1)n
n!
n+ 1

.

Generating function for the Apostol-type Daehee polynomials is given by ([26, p 560, Eq-(9)]; see also
the references cited in each of these earlier works)

FAD(x, t; λ) =
log(1 + λt)

tλx+1 (1 + t)x =

∞∑
n=0

Dn(x; λ)
tn

n!
. (1.5)

Setting x = 0 in (1.5), we have the Apostol-type Daehee numbers ([26]; see also the references cited in
each of these earlier works)

Dn(λ) = Dn(0; λ).

The first and the second kinds of the Changhee numbers are given respectively as ([18])

2
t+ 2

=

∞∑
n=0

Chn
tn

n!

and
2(1 + t)

t+ 2
=

∞∑
n=0

Ĉhn
tn

n!
.

The Changhee numbers are given by the following formula ([18]; see also the references cited in each of
these earlier works)

Chn =

n∑
k=0

S1(n,k)Ek = (−1)n
n!
2n

.

The Korobov-type polynomials of the first kind have been studied in mathematics and in other sciences
such as analytic number theory and algebra especially in mechanical characteristics of molecular dynam-
ics model. These polynomials are defined by means of the following generating functions ([5, 15, 21, 22];
and see also the references cited in each of these earlier works)

FK1(x, t; λ) =
λt(1 + t)x

(1 + t)λ − 1
=

∞∑
n=0

Kn(x; λ)
tn

n!
. (1.6)
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In [15], Kim et al. defined the Korobov polynomials of the third and fourth kinds, respectively, as

FK3(x, t; λ) =
log (1 + λt)

λ log (1 + t)
(1 + t)x =

∞∑
n=0

Kn,3(x; λ)
tn

n!
(1.7)

and

FK4(x, t; λ) =
log (1 + λt)

(1 + t)λ − 1
(1 + t)x =

∞∑
n=0

Kn,4(x; λ)
tn

n!
. (1.8)

Observe that substituting x = 0 into (1.7) and (1.8), one has the Korobov numbers of the third and
fourth kinds, respectively as

Kn,3(λ) = Kn,3(0; λ) and Kn,4(λ) = Kn,4(0; λ).

2. Identities and relations for Korobov-type polynomials

In this section, by using generating functions for the Korobov-type polynomials, we derive vari-
ous identities and relations including the Korobov-type polynomials of the third and fourth kinds, the
Bernoulli numbers, the Cauchy numbers, the Stirling numbers, the Apostol-type Daehee numbers, and
also combinatorial sums.

By using (1.7), we get

(1 + t)x log (1 + λt) = λ log (1 + t)

∞∑
n=0

Kn,3(x; λ)
tn

n!
.

By using the Taylor series of the function log (1 + t) and combining with the Cauchy product rule in the
above equation, we obtain

(1 + t)x log (1 + λt) =

∞∑
n=0

λn−1∑
j=0

n!(−1)j

(j+ 1) (n− j− 1)!
Kn−j−1,3(x; λ)

 tn

n!
. (2.1)

By using (1.8), we get

(1 + t)x log (1 + λt) =

∞∑
n=0

(
λ

n

)
tn

∞∑
n=0

Kn,4(x; λ)
tn

n!
−

∞∑
n=0

Kn,4(x; λ)
tn

n!
.

By using the Cauchy product rule in the above equation, we obtain

(1 + t)x log (1 + λt) =

∞∑
n=0

 n∑
j=0

(
n

j

)
λ(j)Kn−j,4(x; λ) −Kn,4(x; λ)

 tn

n!
. (2.2)

Combining (2.1) with (2.2), after some elementary calculations, we get

∞∑
n=0

 n∑
j=0

(
n

j

)
λ(j)Kn−j,4(x; λ) −Kn,4(x; λ)

 tn

n!
=

∞∑
n=0

λn−1∑
j=0

n!(−1)j

(j+ 1) (n− j− 1)!
Kn−j−1,3(x; λ)

 tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at the following theorem.

Theorem 2.1. Let n be a positive integer. Then we have

λ

n−1∑
j=0

n!(−1)j

(j+ 1) (n− j− 1)!
Kn−j−1,3(x; λ) =

n∑
j=0

(
n

j

)
λ(j)Kn−j,4(x; λ) −Kn,4(x; λ).
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By combining (1.4) and (1.3) with (1.6), we get the following functional equation

Fb2(t, x)FD(x, t)FK1(x, t; λ) = FK1(3x, t; λ).

By using the above functional equation, we have
∞∑
n=0

Kn(3x; λ)
tn

n!
=

( ∞∑
n=0

bn(x)
tn

n!

∞∑
n=0

Dn(x)
tn

n!

)( ∞∑
n=0

Kn(x; λ)
tn

n!

)
.

Therefore ∞∑
n=0

Kn(3x; λ)
tn

n!
=

∞∑
n=0

n∑
m=0

m∑
j=0

(
n

m

)(
m

j

)
bj(x)Dm−j(x)Kn−m(x; λ)

tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at the following theorem.

Theorem 2.2.

Kn(3x; λ) =
n∑
m=0

m∑
j=0

(
n

m

)(
m

j

)
bj(x)Dm−j(x)Kn−m(x; λ).

Substituting t = et − 1 into (1.8), combining with (1.1) and (1.5), we get the following functional
equations

λtFK4(x, et − 1; λ) = log
(
1 + λ

(
et − 1

))
FA

(
λt,
x

λ

)
(2.3)

FK4(x, et − 1; λ) = FAD(0, et − 1; λ)FA
(
λt,
x

λ

)
. (2.4)

Using (2.3), we get

λt

∞∑
n=0

Kn,4(x; λ)

(
et − 1

)n
n!

=

∞∑
n=0

Bn

(x
λ

) (λt)n

n!

∞∑
n=1

(−1)n−1λ
n
(
et − 1

)n
n

.

Combining the above equation with (1.2), we obtain

λ

∞∑
m=0

m

m−1∑
n=0

Kn,4(x; λ)S2(m− 1,n)
tm

m!
=

∞∑
m=0

m∑
j=0

j∑
n=0

(−1)n
(
m

j

)
n!λn+m−jS2(j,n+ 1)Bm−j

(x
λ

) tm
m!

.

Comparing the coefficients of t
m

m! on both sides of the above equation, we arrive at the following theorem.

Theorem 2.3.

m

m−1∑
n=0

Kn,4(x; λ)S2(m− 1,n) =
m∑
j=0

j∑
n=0

(−1)n
(
m

j

)
n!λn+m−j−1 × S2(j,n+ 1)Bm−j

(x
λ

)
.

By using (2.4), we obtain∞∑
n=0

Kn,4(x; λ)

(
et − 1

)n
n!

=

∞∑
n=0

Bn

(x
λ

) (λt)n

n!

∞∑
n=0

Dn(λ)

(
et − 1

)n
n!

.

Hence ∞∑
m=0

m∑
n=0

Kn,4(x; λ)S2(m,n)
tm

m!
=

∞∑
m=0

m∑
j=0

j∑
n=0

(
m

j

)
λm−jBm−j

(x
λ

)
S2(j,n)Dn(λ)

tm

m!
.

Comparing the coefficients of t
m

m! on both sides of the above equation, we arrive at the following theorem.

Theorem 2.4.
m∑
n=0

Kn,4(x; λ)S2(m,n) =
m∑
j=0

j∑
n=0

(
m

j

)
λm−jBm−j

(x
λ

)
S2(j,n)Dn(λ).
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2.1. Applications of the p-adic integrals to the Korobov-type polynomials
In this section, by applying the bosonic and the fermionic p-adic integrals on p-adic integers, we derive

some formulas and identities associated with the Bernoulli numbers, the Euler numbers, the Korobov-
type polynomials, and combinatorial sums.

In order to give the results of this section, we need the following formulae.
The p-adic bosonic integral representation of Bernoulli numbers and polynomials are respectively

given by ([8, 9, 25]) ∫
Zp

xndµ1 (x) = Bn

and ∫
Zp

(z+ x)n dµ1 (x) = Bn(z).

Theorem 2.5. ∫
Zp

(
x

j

)
dµ1 (x) =

(−1)j

j+ 1
(2.5)

([14, 18, 25]).

The p-adic fermionic integral representation of Euler numbers and polynomials are respectively given
by ([6, 9]; see also the references cited in each of these earlier works)∫

Zp

xndµ−1 (x) = En

and ∫
Zp

(z+ x)n dµ−1 (x) = En(z).

The p-adic bosonic integral representation for the Daehee numbers of the second kind was given by
Kim et al. [14] as

D̂n =

∫
Zp

t(n)dµ1 (t) . (2.6)

Kim et al. [18] gave the p-adic fermionic integral representation of the second kind Changhee numbers as

Ĉhn =

∫
Zp

x(n)dµ−1 (x) . (2.7)

Theorem 2.6. ∫
Zp

(
x

j

)
dµ−1 (x) =

(−1)j

2j
. (2.8)

Proof of this theorem was given by Kim et al. [18].
A p-adic bosonic integral representation for the polynomials Kn,3(x; 1) is given by the following theo-

rem.

Theorem 2.7. ∫
Zp

Kn,3(x; 1)dµ1 (x) =
(−1)n

n+ 1
n!. (2.9)
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Proof. Substituting λ = 1 into (1.7), we get

(1 + t)x =

∞∑
n=0

Kn,3(x; 1)
tn

n!
.

From the above equation, we have

∞∑
n=0

x(n)
tn

n!
=

∞∑
n=0

Kn,3(x; 1)
tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, and applying the bosonic integral
with (2.5), we arrive at the desired result.

A p-adic fermionic integral representation for the polynomials Kn,3(x; 1) is given by the following
theorem.

Theorem 2.8. ∫
Zp

Kn,3(x; 1)dµ−1 (x) = (−1)n
n!
2n

. (2.10)

By using (2.8) and using the same method in proof of (2.10), we easily get the proof of (2.9). So we
omit it.

Remark 2.9. ∫
Zp

x(n)dµ1 (x) =
(−1)n

n+ 1
n!. (2.11)

Proof of the above integral was given by Kim et al. [14]. This integral value is also known as the
Daehee numbers of the first kind ([4, 14], [23, p. 117], [28, 29]). Consequently, the bosonic integral of the
polynomials Kn,3(x; 1) is related to the Daehee numbers.

Remark 2.10. ∫
Zp

x(n)dµ−1 (x) = (−1)n
n!
2n

. (2.12)

Proof of the above integral was given by Kim et al. [18]. This integral value is also known as the Changhee
numbers of the first kind ([14, 18, 28, 29]). Consequently, the fermionic integral of the polynomials
Kn,3(x; 1) is related to the Changhee numbers.

In [15, Eq-(2.57)], Kim et al. gave the following identity:

Kn,3(x; λ) =
n∑
m=0

Cn,m(x, λ)x(m),

where

Cn,j(x, λ) =
n−m∑
l=0

n−m−l∑
k=0

(−1)l
(
m+ l− 1

l

)(
n

m+ l

)(
m+ l
m

)
×
(
n−m− l

k

)
l!λkbn−m−l−k(0)Dk.

By applying the p-adic bosonic integral and the fermionic integral to the above equation, we obtain∫
Zp

Kn,3(x; λ)dµ1 (x) =

n∑
m=0

Cn,m(x, λ)
∫

Zp

x(m)dµ1 (x)
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and ∫
Zp

Kn,3(x; λ)dµ−1 (x) =

n∑
m=0

Cn,m(x, λ)
∫

Zp

x(m)dµ−1 (x) .

Combining the above equations with (2.6) and (2.7), we get the following integral formulas for the poly-
nomials Kn,3(x; λ).

Theorem 2.11.∫
Zp

Kn,3(x; λ)dµ1 (x) =

n∑
m=0

Cn,m(x, λ)D̂m and
∫

Zp

Kn,3(x; λ)dµ−1 (x) =

n∑
m=0

Cn,m(x, λ)Ĉhm.

Simsek [28] also gave some p-adic fermionic integral formulas including the rising factorials, combi-
natorial sums, and special numbers.

Theorem 2.12 ([28]).

y2(n : E) =

n∑
k=1

(−1)k |L(n,k)|k!2−k. (2.13)

We give another formula for the numbers Y2(n : B) by the following theorem.

Theorem 2.13.

Y2(n : B) =

n∑
k=0

C(n,k)Bk, (2.14)

where C(n,k) = |s1(n,k)| and Bk denotes the Bernoulli numbers.

For detail proofs of (2.13) and (2.14) see [14, 18, 28].
By using the p-adic integral formulas including the rising factorials, Simsek [28] gave the following

relations
Y2(m : B) = D̂m and y2(m : E) = Ĉhm.

Combining the above relations with Theorem 2.11, we arrive at the following corollary.

Corollary 2.14.
n∑
m=0

Cn,m(x, λ)D̂m =

n∑
m=0

m∑
k=0

Cn,m(x, λ)C(m,k)Bk

and
n∑
m=0

Cn,m(x, λ)Ĉhm =

n∑
m=0

m∑
k=1

(−1)kCn,m(x, λ) |L(m,k)|k!2−k.

In [15, Eq-(2.23)], Kim gave the following identity

Kn,4(x; λ) =
n∑
j=0

(
n

j

)
Kn−j,4(λ)x(j).

By applying the p-adic bosonic and fermionic integral to the above equation, and combining with (2.11)
and (2.12), we get the following integral formulas for the polynomials Kn,4(x; λ).

Theorem 2.15. ∫
Zp

Kn,4(x; λ)dµ1 (x) =

n∑
j=0

(−1)j
(
n

j

)
Kn−j,4(λ)

j!
j+ 1

and ∫
Zp

Kn,4(x; λ)dµ−1 (x) =

n∑
j=0

(−1)j
(
n

j

)
Kn−j,4(λ)

j!
2j

.
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3. Conclusion

In this paper, we combine various generating functions and their functional equations of the Bernoulli
numbers, the Stirling numbers, the Lah numbers, the Daehee numbers, the Changhee numbers, and the
Korobov-type polynomials. By using these numbers and polynomials with their generating functions, we
give various identities, relations and combinatorial sums. Our results are applicable to many areas such
as almost all branches of mathematics, mathematical physics, engineering problems including modelling,
and also the others. On the other hand, it is well-known that the p-adic integrals can be used to construct
generating functions for the new families of the special numbers and polynomials. These are also used
in problems of the quantum mechanics and p-adic analysis problems. For these reasons, by applying
the bosonic and the fermionic p-adic integrals to the Korobov-type polynomials, we obtain some novel
integral formulas including aforementioned numbers, polynomials, and combinatorial sums.
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