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Abstract

Gohberg-Semencul type inverse formula of conjugate-Toeplitz (CT) is obtained by constructing a kind of imaginary cyclic
displacement transform. The stability of decomposition formula of inverse is investigated, and its algorithm is also given.
Numerical example is provided to verify the feasibility of the inverse formula. How the analogue of our formula leads to a more
efficient way to solve the conjugate-Toeplitz linear system of equations is proposed. The corresponding inverse, stability, and
algorithm of conjugate-Hankel (CH) matrix are also considered. (©2017 All rights reserved.
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1. Introduction

Toeplitz matrix has become a satisfactory tool in restoration of signals and images [5, 26, 27]. In [4, 7],
the authors introduced a generalization of Toeplitz matrices, called conjugate-Toeplitz (CT) matrices, and
showed that certain properties of Toeplitz matrices could be extended to CT matrices. The explicit in-
verse of nonsingular conjugate-Toeplitz and conjugate-Hankel matrices are provided [12]. The inverses of
conjugate-Toeplitz (CT) and conjugate-Hankel (CH) matrices can be expressed by the Gohberg-Semencul
type formula [17]. Gover and Barnett [8] introduced a corresponding algorithm for any strongly non-
singular CT matrix (i.e., all of its leading principal minors are nonzero). Algorithms for inverting CT
matrices and solving CT systems of equations, using O(n?) flops for matrices of order n, were given. The
purpose of [9] is to show that some known properties of Toeplitz and CT matrices can be extended to rT
matrices. In [22], an expression of the inverse of a conjugate Toeplitz matrix is obtained. The necessary
conditions of applying the generalized Trench algorithm for CT matrices are discussed. It is shown that
there exist strongly invertible CT matrices to which the algorithm may not be applied.

Gohberg-Semencul type formula for inverses of conjugate-Toeplitz and conjugate-Hankel matrix only
mentioned in [4, 12, 17] have not been fully exploited.
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Let T = [tj_k]}l];lo be a real symmetric positive-definite Toeplitz matrix of order n. There are several

well-known O(n?) algorithms for solving the linear system of equations Tx = b, and more recently,
several O(nlogzn) algorithms have been developed. See, for example, [2, 3, 11, 29] and the references
contained therein. Algorithms from both of these classes often rely, either implicitly or explicitly, on
the Gohberg-Semencul formula [6], which provides a decomposition of T~! into the sum of products
of lower triangular and upper triangular Toeplitz matrices. Although we will consider T to be a real
positive-definite Toeplitz matrix, formula presented by Gohberg and Semencul apply to the inverse of
any invertible Toeplitz matrix.

In [18], the authors presented an innovative patterned matrix, RFPL-Toeplitz matrix, is neither the
extension of Toeplitz matrix nor its special case. The group inverse of this new patterned matrix can
be represented as the sum of products of lower and upper triangular Toeplitz matrices, then the explicit
expression and the decomposition of the group inverse is given. The inverses of CUPL-Toeplitz and
CUPL-Hankel matrices can be expressed by the Gohberg-Heinig type formula in [13]. Jiang and Hong
[15] derived the formulas on representation of the inverses of the CUPL Toeplitz matrices in the form of
sums of products of factor (1, 1)-circulants and (-1, -1)-circulants. The stability of the algorithms emerging
from Toeplitz matrix inversion formulas is considered in [10, 30]. Xie and Wei [31] presented a stability
analysis of Gohberg-Semencul-Trench type for Moore-Penrose and group inverses of Toeplitz matrices.
Toeplitz inversion formula involving circulant matrices have also been presented in [1, 23, 24].

As far as we know, there is no more efficient algorithms for solving the linear system of equations
Tex = b and Hex = b. We hope that this paper will help in changing this to provide an algorithm for the
effective application.

We remark that imaginary cyclic displacement structure plays a critical role in finding the inverse of
CT matrix. At present, the articles about imaginary circulant matrix are very few, some interrelated basic
knowledge is stated only in [14, 21, 25, 28].

We provide CT matrix inversion formula as a sum of two products of imaginary circulant matrix and
upper triangular matrices. It will be shown the number of real arithmetic operations is less than the
known results to solve the conjugate-Toeplitz and conjugate-Hankel linear system of equations.

In this paper, R denotes the set of real numbers and i = v/—1. Now allow us to introduce some basic
knowledges about CT and CH matrices, which are stated in [4, 7].

Definition 1.1. Let c(x) = % denote the complex conjugate of x. In particular note that c>™(x) = x, and
c?m~1(x) = %, for all positive integers m.

Definition 1.2. An n x n matrix Tc = (tji) is conjugate-Toeplitz (CT) if tj 141 = c(tji) for all j, k, that
is,

to ta to R S G
c(t1) c(to) c(t1) o celtomo2)

Te=| @) A ) Rt |- a
It 1) M Utns) ¢ tns) o (k)

Definition 1.3. Ann x n matrix Hc = (h;y) is conjugate-Hankel (CH) if hj ;1 = c(hjx41) for allj, k, that
is,

h0 h1 T han hnfl
c(hy) c(hy) - c(hn_1) c(hn)
He = c?(hy) c(hg) .7 c?(hn) c?(hn1)

" Hhno) ™ Hha) oo ™ (hanos) ¢ H(hano)
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2. Conjugate-Toeplitz inversion formula

Constructing a kind of imaginary cyclic displacement, we propose inversion formula for CT matrix as
a sum of two products of imaginary circulant and upper triangular matrices.

Lemma 2.1. Let Tc = (tjx) be an n x n conjugate-Toeplitz matrix defined in equation (1.1) with Tc invertible and
tjx € iR. Then Tc satisfies the formula

MTe + TeM=ve! —ev'], (2.1)
where

0 0 1 (_1)0

m- |1 0 7o (—1)!
10 (=1
0

1 0 .

0 _ At n —ity)
el = . , €n = : ’ V=

. 0 n—-3 .

"2t —itn_1)
We do not give a detail proof for Lemma 2.1, its technical skill can be calculated directly.

Theorem 2.2. Let Tc = (tji) be an n x n conjugate-Toeplitz matrix defined with Tc invertible and t;. € iR. If
each of the systems of equations Tcx =v, Tcy = ej are solvable,

T T
x=(x1 x2 - xn ), y=(y1 Y2 -+ Yn ) ,
then T¢ is invertible and
Te! =T +15 Uy, 2.2)
where
‘yl ’yz PR yn Xl XZ P XTL
I, = i‘s.'n Y1 : , I, i??n X1 ’
: Yo o T x
iy, -+ iyn Y1 ixg -+ ixn X1
(=10 (—D)lxn - (=1)"xo 0 (-1’yn (~D’yn-a - (=D"y2
(—1)! (=)™ xs 0 1Py, :
U, = , U= 0 (—D)"yn—1 |~
(=)™ R G DLl TP
(71)71—1 0

and 1y, I are both imaginary circulant matrices [14, 16, 19-21, 25].

Proof. From equation (2.1) and Tcx =v, Tcy = e, we have

MTe = —TcM+vel —epv'] = Te(—TT+xel —yv')).
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Then
TWTe =M e (=M +xel —yv']) = Te(—TT +xel, —yv '),
Therefore,
ey, =TPTey = Te(—TT+xel —yv' )y,
Let
b= (—T+xel —yv' Yy and Te= (1w w2 - mBn ).
Then

TC 28 :T(j(—ﬂ + xe,Tl —yVTT)jily = ﬂjilel =€,
TcTe=Tc(m w2 - wn)=(e e - en)=I,,
where I, denotes the n x n identity matrix. So matrix Tc is invertible, and T~ Lis Te. Ttis easy to get
wm=y, K= (—n—{—xe;‘; _va])}’Lj—l(j = 1/2/' e /n)/
w=Tcley, Jey=(—1en jir, JTcJ =T, T = (=)™
Then, forj > 1,
i =TTy 1 +xef 1 —yv' Juj
= —TTy; 4 —i—xelTElej_1 —va]Tglej_l

= TTjo1 +xel ] T tejn — g T T ey

. . (2.3)
= M1+ xel (Te )T (~Den—j2 —yv (Te) T (-1 en o2
= —TTpj_1 + (—1)xy T en_jro — (—1)yxTen_j 1o
= —TTj—1 + (=D yn—jrox + (=1 xnj 0.
According to u; =y and equation (2.3), we have
Teol=(m w2 -~ pn)
=(y (-Dy - (D™ imly )+ (x (DX - (=D X)W,
=(y Ty - My )D¥+(x Tix -+ T"Ix ) DY,
=(y My - My ) U+ (x Tx - T Ix)U
Y1 WYn Y2 X1 Wn 12.%)
ylz Y1 U + X'z X1 U,
' iyn X
Yn - Y2 Y1 Xn 0 X2 Xq
=1 Uy +1] Uy,
where
0 (—D*yn (—1)Pyn— (—=1)™y2
1 (Dl o (D) k o
1 0 (_1) Yn
1‘}./1 = 1 /\yz - 0 (_1)3Un—1 ’
(_1) Xn )
1 (_1) Yn
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O
We remark that the formulas in the theorem are expressed by solving the systems of equations Tcx =
v, Tcy = e; . This provides an algorithm to compute the inverse of Tc.
3. Conjugate-Hankel inversion formula

In this section we provide inversion formula for CH matrix as a sum of two products of left imaginary
circulant matrix and upper triangular matrices.

Lemma 3.1. Let Hc = (hjx) be an n x n conjugate-Hankel matrix with Hc invertible and hj, € iR. Then Hc
satisfies

TMHc 4+ HelT' =9ef —e9'D,
where T1, ID, and ey are defined above and

0
cO(hg —ihn)

D= ct(hy —ihny1)

¢ 2(hn—p — ithon_o)

Theorem 3.2. Let Hc = (hyy) be a conjugate-Hankel matrix with Hc invertible and hj € iR. If each of the

systems of equations Hc& =9, Hen = ey are solvable, & = (&1 & -+ &n )T, n=(m m - " )T,
then Hc is invertible and

He! =L@ + L@y, (3.1)
where
M M2 M3 -+  MNn & & & - &
M M3 - Mn im &L & - &n 14
Ly=| m oo ime | I,=| & coG W |
Mn iT]l iﬂz iT]n—l E»n :Lal iE»Z :LE»n—l
(10 (D& - (D)ME 0 (=1 (-1Pn2 -+ (=)™
(=Dt e (DM 0 (~1Pm o (~D™ma
(Dlz s (DZZ 0 ’
(—1)n g o (=D)™m
(71)n—1 0

and 1Ly, 1L, are both left imaginary circulant matrices [21].

Proof. The proof is similar to Theorem 2.2. O
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4. Stability analysis of decomposition formulas (2.2) and (3.1)

In this section, we will analyze the stability of the inversion formulas given in Theorems 2.2 and 3.2.
Now we show the error analysis of the explicit inversion formulas for CT matrices and CH matrices in
terms of the 1-norm, co-norm, and 2-norm, respectively. Denote

T
'/an‘l/XTL) 7

x = (x1,%2

Y= (Y1, Y2---,Yn-1,Yn) ',
E=(&, 8. En1,En)T,
n=MmLm. .. Mn1,mn),

. . . T
X ..., ix3,1%2) ",
. . . T
u:Jn---leS,le) 7
. . . T
161 cecy l‘ian/ lan—l) 7

inl o /inn—ZI iT]n—l)T~

Theorem 4.1. Let Tc be an n x n conjugate-Toeplitz matrix and well conditioned. Let o > 0 and let £,7,%,9 be
the corresponding numerical least squares solutions of the linear systems for deriving the formula (2.2). Denote by

! the inverse of Tc. If 4 Z=xlh & 10—

ulh ¢ o X% o 1T

9”1 < o, then,

[Ix[l1 |\y||1
T =T < 2+ 0)o

Proof. Rewrite the inverse formula for T¢ as

Te' = (Ly +Rg)RY D —

where
Y1
Y2 Y1
Ly = . . ’
yn o« . y2 yl
X1
X2 X1
Ly = ,
1 %Xn -+ X
R = 1 ,
Xn
1
Thus
Tt =Tt < JLyRY Y+ IRgREY —R

= T1 + T2 + T3 + T4.
For the first term 71, we have,
Ly R
ILy R
Ly R

T1

NN N

[R3[

(Lx + Rx)RY'D,

0 iyn

Ry = 0
0 ixn

Ry = 0
0 Yn Yn-1

0 Yn
Rg)) _ .

A

RyRL [l + LRy
(1)”
x 1
”+t R“J—tyﬁ,&”nl

A

S+ I RE - LR

Vo 2lyllalxll + lgllalixll + XMyl + oyl + 1gll)-

Yo
iyn
0
in
ixXn
0
Y2
Yn—1
Yn
0

— LR [l + [ReRY —

(4.1)

5 p(0
ReRy 1
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P 1 2 1 5(1
Ly — Lyl IR + 1y [ IR =R

Y =9l (X +[x[[1) + (1 + o)y llrol[x]lx
olfyll (1 +[[xl[1) + (1 + o) [yl oljx]}x
2+0)olyllalxll + oyl

INCINCIN N

Then Ty, 13, T4 can be derived similarly, which are
T2 < (2+ o)ol[yllilx]l1 + ollyll1, w3 < (2+0)ollyllalx, Ty < (24 0)ollylh X[
We obtain the designed result by summing the above four inequalities. O

Remark 4.2. Under the assumptions and notations of Theorem 4.1, it can be obtained the same upper
bound of || Tc! — T¢!||o with the 1-norm in a similar way,

Tt =T oo < 2+ @Yo 2lyllllxll + Gl + 1%l lyll) + oyl + 15]1). (4.2)
So we are in a position to present the upper bound with respect to the 2-norm, since
ITe! =T 2 < Tt =T hlTe = Te oo,
and we have from (4.1) and (4.2) that

ITet =T 2 < 2+ o)ov/nm—D)([Glallxll2 + [%l2llyll2)
+2(2+ o)on|yll2lxll2 + ovnlll2 + llyll2),

as [|x[ly < vnlixllz, [Xlr < v =1[x[l2, [lyll: < vnllyllz, and [[ylli < vn—1][[yll2. Therefore, the formula

presented in Theorem 2.2 is forward stable.

Theorem 4.3. Let Hc be an n x n conjugate-Hankel matrix and well conditioned. Let ¢ > 0 and let ?,,ﬁ,g,ﬁ be
the corresponding numerical least squares solutions of the linear systems for deriving the formula (3.1). Denote by

<! the inverse of Fle. If L4t < o, 0l < ”iauaul < o, L=l < o, fhen

IHe = Al < @+ )o@l el + Al gl + IEll il + ol + ). (4.3)

Proof. Rewrite the inverse formula for Hc as

He!' = (Ly +Rp)RYD — (Lg +Rp)RY'D,

where
M M2 M3 - Mn 0
n2 Mo M 0 im
Mn 0 ing imp -+ inn
& & & - &n 0
& & 0 &n 0 &
La = 513 . ' P RE = O ial iE»Z ,
&En 0 & & -+ 1&n
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0O m m -+ Mna
1 & - & . )
E . 0 m
(1) ’ : (0) .
Re ' = ’ Ry’ = o - m
&1 )
1 - L
0

We obtain
IH' =AM < ILaRe = LaRE  + [RRe —RaRE Iy + LRy — LeRe [l +[|RgRy — ReRy
2 K+ Ko + K3 + Ky
For the first term k;, we have,
K1 < (2+ 0)o|n[l1][&]lr + oln]s.
Then k», k3, k4 can be derived similarly, which are
K2 < (2+ o)olmlf1[|&llr + ol K3 < (2+ o)olnl1[l&]l1, ks < (24 o)olm|l1]|E]1-

We obtain the desired result by summing the above four inequalities. O

Remark 4.4. Under the assumptions and notations of Theorem 4.3, it can be obtained the similar upper
bound for [[H! — At oo

IHE" = At leo < 2+ @)o2lnlla )&l + [TllallEl: + IEll i) + ol + [nf). (44)
So we are in a position to give the upper bound with respect to the 2-norm, since
IHe! = Hc'lz < IHE' = M hlHE' — Hel oo,
and we have from (4.3) and (4.4) that

IHe! = H 2 < 2+ o)oy/nin—D)([[fll2l|E]l2 + [E]l2]n]l2)
+2(2+ o)on||l2[|E]l2 + ovnll@ll2 + [ll2),

as [|E]r < vallEll2, IElr < vn—T[[E]l2, Inll < vnlll, and |7l < v —T1|All2. Therefore, the formula
presented in Theorem 3.2 is forward stable.

5. Two algorithms on finding Tc" and H!
In this section, two algorithms on finding T~ I and HEl are given.
Algorithm 5.1. Using Theorem 2.2, we proceed with
Step 1. Compute v = (0 ®(t;_n —it;) -+ " 3(t_p—itn_2) ™ 2(t 1 —itn 1))".
Step 2. Compute x = (X1 X2 ... Xn)' andy = (y; Y2 ... yn)' by solving the systems of equations
Tex=v and Tcy =ey.
Step 3. Compute Tc! via formula (2.2).

Algorithm 5.2. Using Theorem 3.2, we proceed with
Step 1. Compute ¥ = (0 c?(hg—ihn) c(hy —ihniq) - ¢ 2(hn_p —ihon )T,

Step 2. Compute & = (& & -+ &n )T andn = (m m -+ Nn )T by solving the systems of
equations
Hcé =9 and Hen =e;.

Step 3. Compute Hg! via formula (3.1).
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6. Numerical example

In this section we give two examples to demonstrate our main results.

Example 6.1. Give a 4 x 4 CT matrix

5t — 21 —3i

It is obvious that Tc is invertible. By Algorithm 5.1, we have
Step 1. Compute v by Lemma 2.1:

0
—5+4i
—1-31
—3+2i

Step 2. Compute x,y by the systems of equations Tcx =v, Tcy = ey:

6462487681 _ 12294
L 10

X = 301097 s Y= %2
sl T

10000 10000

Step 3. Compute Tc! by using the equation (2.2):

_a20. 1850 17 951
10000 10 70000 100
(el wm g om
-1 _ 70000 10000 1 70000
Tc = 177 899 i ?gggi 1850
10000 70000 10000 10
_ 1850 i 177 & _ 85? i = 1888 i
10000* 10000 10000 10000
1 4603-+1851i 30741774  —3685+3236i
10000 10000 . 10000__.
0 ] 4603118511 _ 307-+177i
% 10000 10000. .
0 0 1 4603+18511
10000
0 0 0 —1
6462487681  —4603i+1851  307i—177 3685143236
10000 10000 . 10000 10000
3685-32361 6462487681  —46031+1851  307i—177
4 10000_ 10000, . 10000 . 10000
307+177i 3685—32361  6462+87681  —46031+1851
10000 _ . 10000_. 10000 10000 .
— 460318511 307+177i 3685-32361  6462+5768i
10000 10000 10000 10000
0 _1850: _ 177 _ 951 ;
10000 o000 7000
o0 0 10000 * 1010805001
0 0 0  —is0
0 0 0 0
_1229; _d76l; 152 i 63
10000 10000 70000 10000
_ 91 i = 229 i 1635 i 152 i
_ 70000 70000° Q000 10000
177 976 229 . 1762
10000 10000 10000 10000
1850 - 177 951 : 1229

10000 T T0000% 10000 7T0000‘
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Example 6.2. Give a 4 x 4 CH matrix

i i 2t 3i
-1 =21 =31 —4i
2t 31 41 51

=31 —41 51 -2i

Hc =

It is obvious that Hc is invertible. By Algorithm 5.2, we have

Step 1. Compute ¥ by Lemma 3.1:

0
4+1i
—5—-1
2+2i

<>
Il

Step 2. Compute &,1 by the systems of equations Hc& =9, Hen = eg:

1-3i —i
3 . .
—3 +61 2i

— 4 —
= L [T
i+i 0

Step 3. Compute H¢! by using the equation (3.1):

—i 2t -1 0 1 —143i —3+61 5+3i
el | 2 -0 1 0o -1 1-3i  2—6i
c - 0 1 -2 0 0 1 —1+3i
0 1 -2 1 0 0 0 ~1
1-31 —3460 —1-31 1+i 0 —i —21 —i
| 3tel —5—31 +i 3+i 0 0 i 2
—1-3i I+i 3+i —6-3i 00 0 —i
34 1 00 0 0

1 3: 1

_ 21 —311 —zl —111
PR

0 —11 —zl 11

7. Implications of application for decomposition formulas (2.2) and (3.1)

We now propose how the analogue of formulas (2.2) and (3.1) lead to a more efficient way to calculate
To'b and HE'b.

Ammar and Gader [1] proposed that the circulant-vector product z = C,y is equal to the cyclic
convolution of the vectors x and y, which we denote by x *y. Moreover, z = x *y if and only if Frz =

(Fnx) - (Fry), where x -y denotes the componentwise product of x and y, nF,, = [w;jk]}};:lo and w, =

e2™/M denotes the principal nth root of unity. Consequently, z = W, ((Fnx) - (Fry)), where W,, = F;;! =
[wilk]{)‘*l = nF,. So z can be computed in t(n)+ O(n) arithmetic operations, where t(n) denotes the
amount of computation required to perform one real FFT of order n.

According to computational implications of Ammar and Gader [1], we know that the computation of
x=Tc p using our formula (2.2) requires at most 9t(n) + O(n) computations, as well as the computation

of x = Hglb using our formula (3.1) requires at most 9t(n) + O(n) computations, too.
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In Table 1, we list the number of real arithmetic operations (additions and multiplications) required by
the algorithms of Gohberg-Semencul formula-like [12] and the Gohberg-Semencul formula [17] for T~ b
and HElb, as well as operation counts for the implementations of formula (2.2), (3.1) described above.

The value of our formulas (2.2), (3.1) increase dramatically in situations in which T~ by and HElbk are
to be obtained for several different vectors by. Instances of this situation are in the iterative improvement
of solutions.

Table 1: Operation counts.

Algorithm Number of real arithmetic operations
1. The Gohberg-Semencul formula-like for T¢ 42nlog,n [12]
2. The Gohberg-Semencul formula-like for H¢ 42nlog,n [12]
3. The Gohberg-Semencul formula for Tc 28nlog,n [17]
4. The Gohberg-Semencul formula for H¢ 28nlog,n [17]
5. The imaginary circulant GS formula (2.2) for T¢ 18nlog,n
6. The imaginary left circulant GS formula (3.1) for Hc 18nlog,n
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