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Abstract
In this paper, we give some strong and weak convergence algorithms to find a common element of the solution set of a

split equilibrium problem and the fixed point set of a relatively nonexpansive mapping in Banach spaces. Our algorithms only
involve the operator A itself and do not need any conditions of the adjoint operator A∗ of A and the norm ‖A‖ of A which are
different from the other results in the literature. By applying our main results, we show the existence of a solution of a split
feasibility problem in Banach spaces. Finally, we give an example to illustrate the main results of this paper. c©2017 All rights
reserved.
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1. Introduction and preliminaries

Throughout this paper, let R denote the set of all real numbers and N denote the set of all positive
integers. Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let F : C×C→ R

be a bifunction.
The equilibrium problem for F is to find z ∈ C such that

F(z,y) > 0, (1.1)

for all y ∈ C. The set of all solutions of the problem (1.1) is denoted by EP(F), i.e.,

EP(F) = {z ∈ C : F(z,y) > 0, ∀y ∈ C}.

Many problems in physics, optimization, economics and others can be reduced to find a solution of the
problem (1.1) and so the equilibrium problems have been investigated by many authors (see [5, 7, 8, 11–
14, 16, 18, 20, 22–27, 30, 32] and the reference therein).

Recently, Kazmi and Rizvi [17] considered a problem, which is called a split equilibrium problem.
Let H1, H2be two real Hilbert spaces and C, Q be nonempty closed and convex subsets of H1 and H2,
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respectively. Let F1 : C×C→ R, F2 : Q×Q→ R be two bifunctions and A : H1 → H2 be a bounded linear
operator. The split equilibrium problem is to find x∗ ∈ C such that

F1(x
∗, x) > 0, ∀ x ∈ C and y = Ax∗ ∈ Q such that F2(y

∗,y) > 0, ∀ y ∈ Q. (1.2)

Also, they introduced the following iterative algorithm to find a solution of the split equilibrium problem
(1.2): 

un = TF1
rn
(xn + γA∗(TF2

rn
− I)Axn),

yn = PC(un − λnDun),
xn+1 = αn +βn + γnSyn,

(1.3)

for each n > 1, where S : C→ C is a nonexpansive mapping, D : C→ H1 is a τ-inverse strongly monotone
mapping, A∗ is the adjoint of A, {αn}, {βn}, {γn} ⊂ (0, 1), {λn} ⊂ (0, 2τ), {rn} ⊂ (0,∞), γ ∈ (0, 1

L), where L
is the spectral radius of the operator A∗A. Under some suitable conditions on the control sequences, they
proved some strong convergence theorems of the algorithm (1.3).

In 2014, Bnouhachem [2] introduced the following iterative method to solve the split equilibrium
problem and hierarchical fixed point problem: un = TF1

rn(xn + γA∗(TF2
rn − I)Axn),

yn = βnSxn + (1 −βn)un,
xn+1 = PC[αnρUxn + (I−αnµF)Tyn],

(1.4)

for each n > 1, where S, T are two nonexpansive mappings and U is a Lipschitzian mapping and F is
a Lipschitz and strongly monotone mapping and A is a bounded linear operator and A∗ is the adjoint
mapping of A, and proved some strong convergence theorems of the algorithm (1.4) under some certain
conditions on the parameters.

In the algorithms (1.3) and (1.4), the bifunction F2 is required to be upper semi-continuous in the first
argument besides satisfying the conditions (A1)-(A4). In order to relax the restriction, Wang et al. [31]
introduced a new iterative algorithm to solve the split equilibrium problem as follows:

ui,n = TFrn(I− γA
∗
i (I− T

Fi
rn)Ai)xn, i = 1, · · · ,N1,

yn = PC
(
I− λn

(∑N2
i=1 γiBi

))( 1
N1

∑N1
i=1 ui,n

)
,

xn+1 = αnv+
∑n
i=1(αi−1 −αi)Siyn,

(1.5)

for each n > 1, where F : C×C → R, F1, · · · , FN1 : Q×Q → R are bifunctions, A1, · · · ,AN1 : H1 → H2
are linear bounded operators, B1, · · · ,BN2 : C → H1 are inverse strongly monotone mappings, for each
i > 1, Si : C → C is nonexpansive mapping. Under some suitable conditions on the control sequences
{rn}, {αn}, {λn}, they proved that the sequence {xn} generated by (1.5) converges strongly to an element
z = PΘv, where Θ = ∩∞i=1Fix(Si)∩ Γ ∩Ω, where

Γ = ∩N2
i=1VI(C,Bi), Ω = {z ∈ C : z ∈ EP(F),Aiz ∈ EP(Fi), i = 1, · · · ,N1}.

In fact, in the algorithm (1.5), the bifunctions F1, · · · , FN1 are not required to be upper semi-continuous in
the first argument.

Recently, split feasibility problems [3, 4, 6, 9, 29, 34, 35], split variational inequality problems [10, 21]
and split equilibrium problems [2, 17, 31] have been investigated by many authors. However, most of
the results on these kinds of these problems are investigated only in Hilbert spaces, only a few works
are considered in Banach spaces. So, in this paper, we consider some results on convergence analysis to
solutions of these kinds of problems in Banach spaces.

Let E1, E2 be two Banach spaces and C,Q be nonempty closed convex subsets of E1 and E2, respectively.
Let A : E1 → E2 be a nonlinear operator. Let F : C×C→ R and H : Q×Q→ R be two bifunctions. Let Ω
denote the set of solutions of the split equilibrium problem on F and H, that is,

Ω = {z ∈ C : z ∈ EP(F), Az ∈ EP(H)}.
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In fact, it is difficult to compute the adjoint A∗ and the norm ‖A‖ of ‖A‖ if the operator A is complex,
which is a common topic to solve.

In this paper, we introduce some new strong and weak convergence algorithms to find an element
in Ω ∩ F(S), where F(S) is the set of fixed points of a relatively nonexpansive mapping in Banach space
E. Our algorithms involve only the operator A, but do not use the adjoint A∗ of the operator A and the
norm ‖A‖ of A and so our algorithms can be more convenient and effective to prove our main results. As
applications of our main results, we can solve some split feasibility problems in Banach spaces. Finally,
we give an example to illustrate the main results in this paper. Our results extend and improve the
corresponding results of others in the literature.

2. Preliminaries

Let H be a Hilbert space and C be a nonempty closed subset of H. For any x ∈ H, there exists a unique
nearest point of C, denoted by PCx, such that

‖x− PCx‖ 6 ‖x− y‖,

for all y ∈ C. Such a mapping PC is called the metric projection from H onto C. It is well-known that PC
is a firmly nonexpansive mapping from H onto C, i.e.,

‖PCx− PCy‖2 6 〈PCx− PCy, x− y〉,

for all x,y ∈ H. Further, for any x ∈ H and z ∈ C,

z = PCx ⇐⇒ 〈x− z, z− y〉 > 0,

for all y ∈ C.
Let E be a Banach space and E∗ be the topological dual space of E. For all x ∈ E and x∗ ∈ E∗, we

denote the value of x∗ at x by 〈x, x∗〉. It is known that the normalized duality mapping J on E is defined
by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2},

for each x ∈ E. Then J(x) is nonempty.
A Banach space E is said to be strictly convex, if ‖x+y‖2 < 1 for x,y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y.

It is said to be uniformly convex, if for each ε ∈ (0, 2], there exists δ > 0 such that ‖x+y‖2 6 1 − δ for all
x,y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ > ε. A Banach space E is said to be smooth, if the limit

lim
t→0

‖x+ ty‖− ‖x‖
t

,

exists for all x,y ∈ S(E), where S(E) = {z ∈ E : ‖z‖ = 1}. E is said to be uniformly smooth, if the limit
exists uniformly in x,y ∈ S(E). If E is smooth, strictly convex and reflexive, then the duality mapping J is
single-valued, one-to-one and onto.

Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty closed convex
subset of E. Let φ be the function on E× E defined by

φ(x,y) = ‖y‖2 − 2〈x, Jy〉+ ‖x‖2,

for all x,y ∈ E. The generalized projection ΠC [1] from E onto C is defined by

ΠC(x) = arg min
y∈C

φ(y, x),

for all x ∈ E. If E is a Hilbert space, then φ(y, x) = ‖y− x‖2 and ΠC is the metric projection P of H onto
C.
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Let S : C → C be a nonlinear mapping. We denote the set of fixed points of S by F(S). A point p ∈ C
is said to be an asymptotic fixed point of S, if there exists {xn} in C which converges weakly to p and
limn→∞ ‖xn− Sxn‖ = 0. Denote the set of all asymptotic fixed points of S by Ŝ(S). The mapping S is said
to be relatively nonexpansive [19], if the following conditions hold:

(1) F(S) is nonempty;

(2) φ(p,Sx) 6 φ(p, x) for all p ∈ F(S) and x ∈ C;

(3) F̂(S) = F(S).

If E is a smooth, strictly convex and reflexive Banach space, then the set F(S) of fixed points of the
relatively nonexpansive mapping S is closed and convex [19].

Next, the following lemmas are used in the next section:

Lemma 2.1 ([28]). Let C be a nonempty closed convex subset of a uniformly smooth, strictly convex and reflexive
Banach space E. Suppose that F : C×C→ R satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F(x,y) + F(y, x) 6 0 for all x,y ∈ C;

(A3) for each x,y, z ∈ C, limt↓0 F(tz+ (1 − t)x,y) 6 F(x,y);

(A4) for each x ∈ C, y 7→ F(x,y) is convex and lower semi-continuous.

For any x ∈ E and r > 0, define a mapping TFr : E→ C by

TFr (x) = {z ∈ C : F(z,y) +
1
r
〈y− z, Jz− Jx〉 > 0, ∀y ∈ C}.

Then TFr is well-defined and the followings hold:

(1) TFr is single-valued;

(2) TFr is firmly nonexpansive, i.e., for any x,y ∈ E,

〈TFr x− TFr y, JTFr x− JT
F
r y〉 6 〈TFr x− TFr y, Jx− Jy〉;

(3) Fix(TFr ) = EP(F);

(4) EP(F) is closed and convex.

Lemma 2.2 ([1, 15]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E. Then

φ(x, ΠCy) +φ(ΠCy,y) 6 φ(x,y),

for all x ∈ C and y ∈ E.

Lemma 2.3 ([1, 15]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E. Then, for any x ∈ E and z ∈ C we have

z = ΠCx⇔ 〈y− z, Jx− Jz〉 6 0,

for all y ∈ C.



B. H. Guo, P. Ping, H. Q. Zhao, Y. J. Cho, J. Nonlinear Sci. Appl., 10 (2017), 2886–2901 2890

Lemma 2.4 ([15]). Let E be a smooth and uniformly convex Banach space. Suppose that {xn} and {yn} are the
sequences in E such that either {xn} or {yn} is bounded. If limn→∞φ(xn,yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.5 ([33]). Let E be a uniformly convex Banach space and let r > 0. Then there exists a strictly increasing,
continuous and convex function g : [0, 2r]→ R such that g(0) = 0 and

‖tx+ (1 − t)y‖2 6 t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)g(‖x− y‖),

for all x,y ∈ Br and t ∈ [0, 1], where Br = {z ∈ E : ‖z‖ 6 r}.

Lemma 2.6 ([15]). Let E be a smooth and uniformly convex Banach space and let r > 0. Then there exists a strictly
increasing, continuous and convex function g : [0, 2r]→ R such that g(0) = 0 and

g(‖x− y‖) 6 φ(x,y),

for all x,y ∈ Br, where Br = {z ∈ E : ‖z‖ 6 r}.

Lemma 2.7 ([28]). Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space E, F
be a bifunction from C× C → R satisfying the conditions (A1)-(A4) and let r > 0. Then, for any x ∈ E and
q ∈ Fix(TFr ),

φ(q, TFr x) +φ(T
F
r x, x) 6 φ(q, x).

3. Strong convergence theorems

Theorem 3.1. Let E1 be a uniformly smooth and uniformly convex Banach space and E2 be a uniformly smooth,
strictly convex and reflexive Banach space. Let A : E1 → E2 be a linear and continuous operator. Let C and Q be
nonempty closed convex subsets of E1 and E2, respectively. Let S : C → C be a relatively nonexpansive mapping
and F : C×C → R, H : Q×Q → R be two bifunctions satisfying the conditions (A1)-(A4) with Ω ∩ F(S) 6= ∅.
Define an iterative scheme {xn} by the following manner:

take x1 = x ∈ E1, find v ∈ E1 such that Av ∈ Q,
Vn = {x ∈ E1 : ‖x− v‖ 6 n},
Un = {x ∈ Vn : Ax ∈ Q},

F(un,y) +
1
rn
〈y− un, Jun − Jxn〉 > 0, ∀y ∈ C,

H(Azn,Ay) +
1
sn
〈y− zn, Jzn − Jun〉 > 0, ∀y ∈ Un,

yn = J−1(αnJun + (1 −αn)JSΠCzn),
Cn = {z ∈ C : φ(z,yn) 6 φ(z, xn)},
Dn = ∩ni=1Ci,
xn+1 = ΠDnx,

(3.1)

for each n > 1, where {rn} ⊂ [r,∞) with r > 0, {sn} ⊂ [s,∞) with s > 0. Then the sequence {xn} defined by (3.1)
converges strongly to a point ΠΩ∩Fix(S)x, where ΠΩ∩F(S) is the generalized projection of E1 onto Ω∩ Fix(S).

Proof. First, we see that, for each n > 1, the sets Vn and Un are nonempty closed and convex. Now, we
show that, for each n > 1, Dn is closed and convex. Since

φ(z,yn) 6 φ(z, xn) ⇐⇒ ‖yn‖2 − ‖xn‖2 − 2〈z, Jyn − Jxn〉 6 0,

each Cn is closed and convex and so each Dn is also closed and convex.
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Let G(x,y) = H(Ax,Ay) for all x,y ∈ Un. Then each G is a bifunction from Un×Un into R satisfying
(A1)-(A4), since A is linear and continuous. We rewrite

H(Azn,Ay) +
1
sn
〈y− zn, Jzn − Jun〉 > 0,

as
G(zn,y) +

1
sn
〈y− zn, Jzn − Jun〉 > 0,

for all y ∈ Un. Let p ∈ Ω∩ Fix(S). It follows that p = TFrnp and H(Ap, z) > 0 for all z ∈ Q. Since Un ⊂ Q
and Az ∈ Q for all z ∈ Un, one has H(Ap,Az) > 0 for all z ∈ Un. It follows that G(p, z) > 0 for all z ∈ Un
and so p = TGsnp. Note that p ∈ C, un = TFrnxn and zn = TGsnun. By Lemma 2.2 and Lemma 2.7, we have
φ(p,un) 6 φ(p, xn) and

φ(p,SΠCzn) 6 φ(p, ΠCzn) 6 φ(p, zn) = φ(p, TGsnun) 6 φ(p,un) 6 φ(p, xn). (3.2)

Thus, by (3.1) and (3.2), we have

φ(p,yn) = φ(p, J−1(αnJun + (1 −αn)JSΠCzn))

= ‖p‖2 − 2〈p,αnJun + (1 −αn)JSΠCzn〉+ ‖αnJun + (1 −αn)JSΠCzn‖2

6 ‖p‖2 − 2αn〈p, Jun〉− 2(1 −αn)〈p, JSΠCzn〉+αn‖un‖2 + (1 −αn)‖SΠCzn‖2

= αnφ(p,un) + (1 −αn)φ(p,SΠCzn)

6 αnφ(p, xn) + (1 −αn)φ(p, xn)
= φ(p, xn).

Thus p ∈ Cn and further p ∈ Dn, for each n > 1. It follows that Ω ∩ F(S) ⊂ Dn for each n > 1. Hence
{xn} is well-defined. By the definitions of xn+1 and ΠDn , we have

φ(xn+1, x) 6 φ(z, x),

for all z ∈ Dn. Since x∗ = ΠΩ∩F(s)x ∈ Ω∩ F(S) ⊂ Dn, one has

φ(xn+1, x) 6 φ(x∗, x),

and so {φ(xn, x)} is bounded. Thus {xn} is bounded and so are {un} and {zn}. Since xn+2 = ΠDn+1x ∈
Dn+1 ⊂ Dn, we have

φ(xn+1, x) 6 φ(xn+2, x).

Thus the limit of {φ(xn, x)} exists, since {φ(xn, x)} is bounded. For each m > 1, since xn+m ∈ Dn+m−1 ⊂
Dn−1, by Lemma 2.2, we have

φ(xn+m, xn) = φ(xn+m, ΠDn−1x)

6 φ(xn+m, x) −φ(xn, x).

Since the limit of {φ(xn, x)} exists, it follows that

lim
n→∞φ(xn+m, xn) = 0, (3.3)

for each m > 1. From Lemma 2.4, it follows that

lim
n→∞ ‖xn − xn+m‖ = 0, (3.4)
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for each m > 1. Thus the sequence {xn} is a Cauchy sequence. Therefore, there exists a point q ∈ C such
that xn → q as n→∞. From (3.3), we have

lim
n→∞φ(xn+1, xn) = 0. (3.5)

On the other hand, from (3.1), it follows that

φ(xn+1, zn) +φ(xn+1,un) 6 2φ(xn+1, xn),

which, with (3.5), implies that

lim
n→∞φ(zn, xn+1) = lim

n→∞φ(xn+1,un) = 0.

By Lemma 2.4, we have
lim
n→∞ ‖zn − xn+1‖ = lim

n→∞ ‖un − xn+1‖ = 0. (3.6)

Combining (3.4) with xm = xn+1 and (3.6), we have

lim
n→∞ ‖zn − xn‖ = lim

n→∞ ‖un − xn‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖Jzn − Jxn‖ = lim

n→∞ ‖Jun − Jxn‖ = 0.

Therefore, we have
un → q, zn → q, as n→∞.

Now, we prove that q = ΠΩ∩F(S)x. Since xn+1 = ΠDnx and Ω∩ F(S) ⊂ Dn, by Lemma 2.3, we have

〈y− xn+1, Jx− Jxn+1〉 6 0, (3.7)

for all y ∈ Ω∩ F(S). Letting n→∞ in (3.7) and noting that xn → q, we have

〈y− q, Jx− Jq〉 6 0,

for all y ∈ Ω∩ F(S), which from Lemma 2.3, implies that

q = ΠΩ∩F(S)x.

This completes the proof.

If E1 = E2, C = Q and A = I (the identity mapping) in Theorem 3.1, by the similar proof, we have the
following:

Corollary 3.2. Let E be a uniformly smooth and uniformly convex Banach spaces and C be a nonempty closed
convex subset of E. Let S : C→ C be a relatively nonexpansive mapping and F,H : C×C→ R be two bifunctions
satisfying the conditions (A1)-(A4) with EP(F) ∩ EP(H) ∩ F(S) 6= ∅. Define an iterative scheme {xn} by the
following manner: 

x1 = x ∈ E1,

F(un,y) +
1
rn
〈y− un, Jun − Jxn〉 > 0, ∀y ∈ C,

H(zn,y) +
1
sn
〈y− zn, Jzn − Jun〉 > 0, ∀y ∈ C,

yn = J−1(αnun + (1 −αn)JSzn),
Cn = {v ∈ C : φ(v,yn) 6 φ(v, xn)},
Dn = ∩ni=1Ci,
xn+1 = PDnx,

(3.8)

for each n > 1, where {rn} ⊂ [r,∞) with r > 0 and {sn} ⊂ [s,∞) with s > 0. Then the sequence {xn} defined by
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(3.8) converges strongly to the point ΠEP(F)∩EP(H)∩F(S)x.

Corollary 3.3. Let E be a uniformly smooth and uniformly convex Banach space and C be a nonempty closed convex
subset of E. Let S : C→ C be a relatively nonexpansive mapping and F : C×C→ R be a bifunction satisfying the
conditions (A1)-(A4) with EP(F)∩ F(S) 6= ∅. Define an iterative scheme {xn} by the following manner:

x1 = x ∈ E1,

F(un,y) +
1
rn
〈y− un, Jun − Jxn〉 > 0, ∀y ∈ C,

yn = J−1(αnun + (1 −αn)JSun),
Cn = {v ∈ C : φ(v,yn) 6 φ(v, xn)},
Dn = ∩ni=1Ci,
xn+1 = PDnx,

(3.9)

for each n > 1, where {rn} ⊂ [r,∞) with r > 0 and {sn} ⊂ [s,∞) with s > 0. Then the sequence {xn} defined by
(3.9) converges strongly to the point ΠEP(F)∩F(S)x.

Remark 3.4. In [28, Theorem 3.1], the sequence {αn} is required to satisfy the condition lim infn→∞ αn(1−
αn) > 0. In Corollary 3.3, there is no any restrictions on {αn} and so Corollary 3.3 improves [28, Theorem
3.1]. The proof of Theorem 3.1 is also simpler than the one of [28, Theorem 3.1].

4. Weak convergence theorems

Lemma 4.1. Let E1 be a uniformly smooth and uniformly convex Banach space and E2 be a uniformly smooth,
strictly convex and reflexive Banach space. Let A : E1 → E2 be a linear and continuous operator and C, Q be
nonempty closed convex subsets of E1 and E2, respectively. Let S : C → C be a relatively nonexpansive mapping
and F : C×C → R, H : Q×Q → R be two bifunctions satisfying the conditions (A1)-(A4) with Ω ∩ F(S) 6= ∅.
Define an iterative scheme {xn} by the following manner:

take x1 = x ∈ E1, find v ∈ E1 such that Av ∈ Q,
Vn = {x ∈ E1 : ‖x− v‖ 6 n}, Un = {x ∈ Vn : Ax ∈ Q},

F(un,y) +
1
rn
〈y− un, Jun − Jxn〉 > 0, ∀y ∈ C,

H(Azn,Ay) +
1
sn
〈y− zn, Jzn − Jun〉 > 0, ∀y ∈ Un,

xn+1 = J−1(αnJun + (1 −αn)JSΠCzn),

(4.1)

for each n > 1, where {rn} ⊂ [r,∞) with r > 0, {sn} ⊂ [s,∞) with s > 0 and {αn} ⊂ (0, 1). Then the sequence
{ΠΩ∩F(S)xn} converges strongly to a point x∗ ∈ Ω∩ F(S), where ΠΩ∩F(S) is the generalized projection of E1 onto
Ω∩ F(S).

Proof. For each p ∈ Ω∩ F(S), we have

φ(p, xn+1) = φ(p, J−1(αnJun + (1 −αn)JSΠCzn))

= ‖p‖2 − 2〈p,αnJun + (1 −αn)JSΠCzn〉+ ‖αnJun + (1 −αn)JSΠCzn‖2

6 ‖p‖2 − 2〈p,αnJun + (1 −αn)JSΠCzn〉+αn‖un‖2 + (1 −αn)‖SΠCzn‖2

= αnφ(p,un) + (1 −αn)φ(p,SΠCzn)

6 αnφ(p,un) + (1 −αn)φ(p, ΠCzn)

6 αnφ(p,un) + (1 −αn)φ(p, zn)
6 φ(p,un) 6 φ(p, xn).

(4.2)
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It follows that {φ(p, xn)} is convergent and so it is bounded, which implies that {xn} is bounded. Further,
{un}, {zn} and {SΠCzn} are bounded. Let yn = ΠΩ∩F(S)xn. Then {yn} is bounded. Since yn ∈ Ω ∩ F(S),
by (4.2), we have

φ(yn, xn+1) 6 φ(yn, xn). (4.3)

By Lemma 2.2, we have
φ(yn+1, xn+1) = φ(ΠΩ∩Fix(S)xn+1, xn+1)

6 φ(yn, xn+1) −φ(yn,yn+1)

6 φ(yn, xn+1),

which with (4.3), implies that
φ(yn+1, xn+1) 6 φ(yn, xn),

and so the limit of {φ(yn, xn)} exists.
On the other hand, by (4.3), it follows that, for each m > 1,

φ(yn, xn+m) 6 φ(yn, xn+m−1) 6 · · · 6 φ(yn, xn+1) 6 φ(yn, xn).

By Lemma 2.2, we have

φ(yn,yn+m) +φ(yn+m, xn+m) 6 φ(yn, xn+m) 6 φ(yn, xn),

and so
φ(yn,yn+m) 6 φ(yn, xn) −φ(yn+m, xn+m),

for each m > 1. Since the limit of {φ(yn, xn)} exists, we have

lim
n→∞φ(yn,yn+m) = 0,

for each m > 1. From Lemma 2.4, it follows that

lim
n→∞ ‖yn − yn+m‖ = 0,

for each m > 1. It follows that {yn} is a Cauchy sequence and hence there exists x∗ ∈ Ω∩ Fix(S) such that
{yn} converges strongly to x∗. This completes the proof.

Theorem 4.2. Let E1 be a uniformly smooth and uniformly convex Banach space and E2 be a uniformly smooth,
strictly convex and reflexive Banach space. Let C, Q be nonempty closed convex subsets of E1, E2, respectively. Let
A : E1 → E2 be a linear and continuous operator withQ ⊂ A(E1), S : C→ C be a relatively nonexpansive mapping
and F : C×C → R, H : Q×Q → R be two bifunctions satisfying the conditions (A1)-(A4) with Ω ∩ F(S) 6= ∅.
Define an iterative scheme {xn} by (4.1). If lim infn→∞ αn(1 − αn) > 0 and J is weakly sequentially continuous,
then the sequence {xn} converges weakly to the point x∗ ∈ Ω∩ F(S), where x∗ = limn→∞ ΠΩ∩F(S)xn.

Proof. By Lemma 4.1, {un} and {SΠCzn} are bounded. Set

a = max{sup
n>1
‖un‖, sup

n>1
‖SΠCzn‖}.

For all x,y ∈ Ba = {x ∈ E1 : ‖x‖2 6 a}, by Lemma 2.5, there exists a continuous, strictly increasing and
convex function g with g(0) = 0 such that

‖tx+ (1 − t)y‖2 6 t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)g(‖x− y‖),

for all x,y ∈ Ba and t ∈ [0, 1].
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For any p ∈ Ω∩ F(S), from

φ(p, xn+1) = φ(p, J−1(αnJun + (1 −αn)JSΠCzn))

= ‖p‖2 − 2〈p,αnJun + (1 −αn)JSΠCzn〉+ ‖αnJun + (1 −αn)JSΠCzn‖2

6 ‖p‖2 − 2〈p,αnJun + (1 −αn)JSΠCzn〉+αn‖un‖2 + (1 −αn)‖SΠCzn‖2

−αn(1 −αn)g(‖Jun − JSΠCzn‖)
= αnφ(p,un) + (1 −αn)φ(p,SΠCzn) −αn(1 −αn)g(‖Jun − JSΠCzn‖)
6 αnφ(p,un) + (1 −αn)φ(p, zn) −αn(1 −αn)g(‖Jun − JSΠCzn‖)
6 αnφ(p, xn) + (1 −αn)φ(p, xn) −αn(1 −αn)g(‖Jun − JSΠCzn‖)
= φ(p, xn) −αn(1 −αn)g(‖Jun − JSΠCzn‖)
6 φ(p, xn),

it follows that
αn(1 −αn)g(‖Jun − JSΠCzn‖) 6 φ(p, xn) −φ(p, xn+1)→ 0.

Since lim infn→∞ αn(1 −αn) > 0, we have

lim
n→∞g(‖Jun − JSΠCzn‖) = 0.

From the property of g, we have
lim
n→∞ ‖Jun − JSΠCzn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖un − SΠCzn‖ = 0. (4.4)

From Lemma 2.6, there exists a continuous, strictly increasing and convex function g1 with g1(0) = 0
such that

g1(‖x− y‖) 6 φ(x,y),

for all x,y ∈ Bb, where

b = max{sup
n>1
‖xn‖, sup

n>1
‖un‖, sup

n>1
‖zn‖, sup

n>1
‖ΠCzn‖}.

From (4.2), we have
φ(p, xn+1) 6 φ(p,un) 6 φ(p, xn).

Since the limit of {φ(p, xn)} exists, the limit of {φ(p,un)} also exists and

lim
n→∞φ(p,un) = lim

n→∞φ(p, xn).

From Lemma 2.7, it follows that

g1(‖un − xn‖) 6 φ(un, xn)
6 φ(p, xn) −φ(p,un)
6 φ(p,un−1) −φ(p,un)
→ 0, as n→∞,

and so
lim
n→∞g1(‖un − xn‖) = 0.
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From the property of g1 we have
lim
n→∞ ‖un − xn‖ = 0. (4.5)

From (4.2), we see

φ(p, xn+1) −φ(p, xn) 6 αn(φ(p,un) −φ(p, xn)) + (1 −αn)(φ(p, zn) −φ(p, xn)) 6 0.

Since lim infn→∞ αn(1 −αn) > 0 implies that lim supn→∞ αn < 1, by using

lim
n→∞φ(p,un) = lim

n→∞φ(p, xn),

we have
lim
n→∞φ(p, zn) = lim

n→∞φ(p, xn). (4.6)

Similarly, we can obtain

lim
n→∞φ(p,SΠCzn) = lim

n→∞φ(p, ΠCzn) = lim
n→∞φ(p, xn). (4.7)

By Lemma 2.2, we have
φ(ΠCzn, zn) 6 φ(p, zn) −φ(p, ΠCzn).

By (4.6) and (4.7), we have
lim
n→∞φ(ΠCzn, zn) = 0.

From Lemma 2.4, it follows that
lim
n→∞ ‖zn − ΠCzn‖ = 0. (4.8)

By Lemma 2.7 and (4.6), we have

g1(‖zn − un‖) 6 φ(zn,un)
6 φ(p,un) −φ(p, zn)
6 φ(p, xn) −φ(p, zn)→ 0, as n→∞.

From the property of g1, we have
lim
n→∞ ‖zn − un‖ = 0. (4.9)

From (4.4), (4.8), (4.9) and

‖SΠCzn − ΠCzn‖ 6 ‖SΠCzn − un‖+ ‖un − zn‖+ ‖zn − ΠCzn‖,

it follows that
lim
n→∞ ‖SΠCzn − ΠCzn‖ = 0. (4.10)

Since J is uniformly norm-to-norm continuous on bounded sets, it follows from (3.6) and (4.9) that

lim
n→∞ ‖Jun − Jxn‖ = lim

n→∞ ‖Jzn − Jun‖ = 0.

From rn > r > 0 and sn > s > 0, we have

lim
n→∞ ‖Jun − Jxn‖

rn
= lim
n→∞ ‖Jzn − Jun‖

sn
= 0. (4.11)

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that {xnk} converges weakly to x ′ ∈ C.
From (4.5), it follows that {unk} converges weakly x ′. By putting un = TFrnxn, we have

F(un,y) +
1
rn
〈y− un, Jun − Jxn〉 > 0,



B. H. Guo, P. Ping, H. Q. Zhao, Y. J. Cho, J. Nonlinear Sci. Appl., 10 (2017), 2886–2901 2897

for all y ∈ C. Replacing n with nk, it follows from (A2) that

1
rnk
〈y− unk , Junk − Jxnk〉 > −F(unk ,y) > F(y,unk),

for all y ∈ C. Letting k→∞, it follows from (4.11) and (A4) that

F(y, x ′) 6 0,

for all y ∈ C. For any t with 0 < t 6 1 and y ∈ C, let yt = ty+ (1 − t)x ′. Since y ∈ C and x ′ ∈ C, one has
yt ∈ C and so F(yt, x ′) 6 0. Then, by (A1) and (A4), we obtain

0 = F(yt,yt)
6 tF(yt,y) + (1 − t)F(yt, x ′)
6 tF(yt,y).

It follows that
F(yt,y) > 0,

for all y ∈ C. Letting t ↓ 0, from (A3), we have

F(x ′,y) > 0,

for all y ∈ C. Therefore, x ′ ∈ EP(F). By (4.1), we have

H(Azn,Ay) +
1
sn
〈y− zn, Jzn − Jun〉 > 0, (4.12)

for all y ∈ Un. Since V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · and limn→∞ Vn = ∪∞n=1Vn = E1, one has U1 ⊂ U2 · · · ⊂
Un ⊂ · · · and limn→∞Un = ∪∞n=1Un = {x ∈ E1 : Ax ∈ Q}. Replacing n with nk in (4.12) , from (A2), we
have

1
snk
〈y− znk , Jznk − Junk〉 > −H(Aznk ,Ay) > H(Ay,Aunk), (4.13)

for all y ∈ Unk . Letting k→∞, by (4.13) and (A4), we obtain

0 > H(Ay,Ax ′),

for all y ∈ {x ∈ E1 : Ax ∈ Q}. Since Q ⊂ A(E1), we have

0 > H(y,Ax ′),

for all y ∈ Q. By the similar process with x ′ ∈ EP(F), we can prove that Ax ′ ∈ EP(H). Therefore, x ′ ∈ Ω.
Now, we show that x ′ ∈ F(S). From (4.5), (4.8) and (4.9), we see that ΠCzn weakly converges to x ′.

From (4.10), it follows that x ′ ∈ F̂(S) = F(S). Let yn = ΠΩ∩F(S)xn. From Lemma 2.3 and x ′ ∈ Ω ∩ F(S),
we have

〈ynk − x
′, Jxnk − Jynk〉 > 0. (4.14)

By Lemma 4.1, it follows that {yn} converges strongly to x∗ ∈ Ω ∩ F(S). Since J is weakly sequentially
continuous, by letting k→∞ in (4.14), we have

〈x∗ − x ′, Jx ′ − Jx∗〉 > 0.

On the other hand, since J is monotone, we have

〈x∗ − x ′, Jx ′ − Jx∗〉 6 0,

and so it follows that
〈x∗ − x ′, Jx ′ − Jx∗〉 = 0.

Since E1 is strictly convex, one has x∗ = x ′. Therefore, the sequence {xn} converges weakly to x∗ ∈
Ω∩ F(S), where x∗ = limn→∞ ΠΩ∩F(S)xn. This completes the proof.
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Corollary 4.3. Let E be a uniformly smooth and uniformly convex Banach spaces and C be a nonempty closed and
convex subset of E. Let F,H : C×C → R be two bifunctions satisfying the conditions (A1)-(A4) and S : C → C

be a relatively nonexpansive mapping with EP(F) ∩ EP(H) ∩ F(S) 6= ∅. Define an iterative scheme {xn} by the
following manner: 

x1 = x ∈ C,

F(un,y) +
1
rn
〈y− un, Jun − Jxn〉 > 0, ∀y ∈ C,

H(zn,y) +
1
sn
〈y− zn, Jzn − Jun〉 > 0, ∀y ∈ C,

xn+1 = J−1(αnJun + (1 −αn)JSzn),

(4.15)

for all n > 1, where {rn} ⊂ [r,∞) with r > 0, {sn} ⊂ [s,∞) with s > 0 and {αn} ⊂ (0, 1). If lim infn→∞ αn(1 −
αn) > 0 and J is weakly sequentially continuous, then the sequence {xn} generated by (4.15) converges weakly to a
point x∗ ∈ EP(F)∩ EP(H)∩ F(S), where x∗ = limn→∞ ΠEP(F)∩EP(H)∩F(S)xn.

Remark 4.4. Theorem 3.1 and Theorem 4.2 extend the results of Takahashi and Zembayashi [28] from
equilibrium problems to split equilibrium problems. In Theorem 3.1 of Takahashi and Zembayashi [28],
the sequence {αn} is required to satisfy the condition lim infn→∞ αn(1 − αn) > 0. In our Theorem 3.1,
there is no any restrictions on the control condition {αn} and so Theorem 3.1 improves the result of
Takahashi and Zembayashi [28]. The proof method of our Theorem 3.1 is also simpler than the one of
Takahashi and Zembayashi [28].

5. Applications

Let E1, E2 be two Banach spaces and C, Q be nonempty closed convex subsets of E1, E2, respectively.
Let A : E1 → E2 be an operator. The split feasibility problem is to find x∗ ∈ C such that

Ax∗ ∈ Q. (5.1)

For more results on split feasibility problems, the readers refer to [3, 4, 6, 9, 29, 34, 35].
Now, by Theorem 3.1 and Theorem 4.2, we give the following results on split feasibility problems in

Banach spaces:

Theorem 5.1. Let E1 be a smooth and uniformly convex Banach space and E2 be a smooth, strictly convex and
reflexive Banach space. Let C and Q be nonempty closed convex subsets of E1 and E2, respectively. Let A : E1 → E2
be a linear and continuous operator. Suppose that Ω 6= ∅, where Ω denotes the solution set of the problem (5.1).
Define an iterative scheme {xn} by the following manner:

take x1 = x ∈ C, find v ∈ E1 such that Av ∈ Q,
Vn = {x ∈ E1 : ‖x− v‖ 6 n},
Un = {x ∈ Vn : Ax ∈ Q},
zn = ΠUnxn,

yn = J−1(αnJxn + (1 −αn)JΠCzn),
Cn = {z ∈ C : φ(z,yn) 6 φ(z, xn)},
Dn = ∩ni=1Ci,
xn+1 = ΠDnx,

(5.2)

for each n > 1. Then the sequence {xn} defined by (5.2) converges strongly to a point ΠΩx, where ΠΩ is the
generalized projection of E1 onto Ω.
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Proof. In Theorem 3.1, let F(x,y) = 0 for all x,y ∈ C and H(x,y) = 0 for all x,y ∈ Q. By Lemma 2.3,
we have un = ΠCxn and zn = ΠUnun. Since xn ∈ C for each n > 1, we have un = xn and hence the
algorithm (3.1) is deduced to (5.2) by setting S = I in Theorem 3.1. Therefore, by Theorem 3.1, we can
obtain the desired result. This completes the proof.

Theorem 5.2. Let E1 be a smooth and uniformly convex Banach space and E2 be a smooth, strictly convex and
reflexive Banach space. Let C and Q be the nonempty closed and convex subsets of E1 and E2, respectively. Let
A : E1 → E2 be a linear and continuous operator with Q ⊂ A(E1). Suppose that Ω 6= ∅. Define an iterative scheme
{xn} by the following manner: 

take x1 = x ∈ C, find v ∈ E1 such that Av ∈ Q,
Vn = {x ∈ E1 : ‖x− v‖ 6 n},
Un = {x ∈ Vn : Ax ∈ Q},
zn = ΠUnxn,

xn+1 = J−1(αnJxn + (1 −αn)JΠCzn),

(5.3)

for each n > 1. If lim infn→∞ αn(1 − αn) > 0 and J is weakly sequentially continuous, then the sequence {xn}

defined by (5.3) converges weakly to a point x∗ ∈ Ω, where x∗ = limn→∞ ΠΩxn.

Finally, for the sake of simplicity, we give an example in finite dimension Euclidean spaces to illustrate
Theorem 3.1 as follows:

Example 5.3. Let E1 = R and E2 = R2. Let A : E1 → E2 be a mapping defined by Ax = (x, x/2) for
all x ∈ E1. Let C = [0, 10] and Q = [10,+∞) × [5,+∞). Let F(x,y) = x − y for any x,y ∈ C and
H(x,y) = y1 + y2 − x1 − x2 for any x = (x1, x2),y = (y1,y2) ∈ Q. It is obvious that F and H satisfy the
conditions (A1)-(A4) and Ω = {10}. Take x1 = x = 2, v = 12 and for simplicity, set αn = 1

2 and rn = sn = 1
for each n > 1.

For any xn ∈ C, we need to find un ∈ C such that

F(un,y) + 〈y− un,un − xn〉 = un − y+ (y− un)(un − xn)

= (un − xn − 1)y+ un(1 − un + xn)

> 0,

for all y ∈ C. Hence un = 1 + xn if xn 6 9 and un = 10 if xn > 9.
For each un, we need to find zn ∈ Un such that

H(Azn,Ay) + 〈y− zn, zn − un〉 =
3y
2

−
3zn

2
+ (y− zn)(zn − un)

= (zn − un +
3
2
)y− zn(zn − un +

3
2
)

> 0,

for all y ∈ Un.
If un − 3

2 6 LUn (zn − un + 3
2 > 0 for all zn ∈ Un), where LUn = minx∈Un x, then zn = LUn since

(zn−un+ 3
2)y− zn(zn−un+ 3

2) > 0 for all y ∈ Un implies that zn 6 y for all y ∈ Un. Then yn = un+zn
2 .

By the simple computation, we obtain some results on Vn,Un,Dn,yn, zn,un and xn as follows:

n Vn Un Dn yn zn un xn
1 [11,13] [11,13] [4.5,10] 7 11 3 2
2 [10,14] [10,14] [6.125,10] 7.75 10 5.5 4.5
3 [9,15] [10,15] [7.34375,10] 8.5625 10 7.125 6.125
4 [8,16] [10,16] [8.2579125,10] 9.171875 10 8.34375 7.34375
...

...
...

...
...

...
...

...

Therefore, by Theorem 3.1, the sequence {xn} converges to an element x∗ ∈ Ω, i.e., x∗ = 10.
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6. Conclusions

In this paper, we introduce some new strong and weak convergence algorithms to solve split equilib-
rium problems and fixed point problems for relatively nonexpansive mappings in Banach spaces. In our
algorithms, we first construct two sets Vn, Un and transform the bifunction H on Q×Q to the bifunction
HA on the set Un. The algorithms of this paper only involve the operator A itself and do not use any
restrictions on the adjoint A∗ and the norm ‖A‖ of A and so our algorithms can be implemented more
effectively.
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