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Bvd., No. 39, 100680 Ploieşti, Romania.
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Abstract
In this paper, we present the notion of generalized convex contraction mapping of type-2, which includes the generalized

convex contraction (resp. generalized convex contraction of order-2) of Miandaragh et al. [M. A. Miandaragh, M. Postolache,
S. Rezapour, Fixed Point Theory Appl., 2013 (2013), 8 pages] and the convex contraction mapping of type-2 of Istrăţescu [V. I.
Istrăţescu, I, Libertas Math., 1 (1981), 151–163]. Utilizing this class of mappings, we establish approximate fixed point and fixed
point theorems in the setting of b-metric and 2-metric spaces. c©2017 All rights reserved.
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1. Introduction and preliminaries

In 1981, Istrăţescu [17] introduced the class of convex contraction mappings in metric spaces and
generalized the well-known Banach’s contraction principle [4]. Recently, some works have appeared on
the generalization of such classes of mappings in the setting of metric, ordered metric, orthogonal metric
and cone metric spaces: Alghamdi et al. [1], Ghorbanian et al. [15], Latif et al. [22], Miandaragh et al.
[24], Miculescu and Mihail [26], Ramezani [27], and Sastry et al. [30].

Definition 1.1 ([3, 10]). Let X be a nonempty set and s > 1 a given real number. A function d : X× X →
[0,∞) is called a b-metric on X, if for all x,y, z ∈ X, it satisfies:

(i) d(x,y) = 0, if and only x = y;
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(ii) d(x,y) = d(y, x);

(iii) d(x,y) 6 s[d(x,y) + d(y, z)].

The pair (X,d) is called a b-metric space. It is clear that the b-metric space is an extension of the usual
metric space. If s = 1, then it reduces to usual metric space. Therefore, a b-metric space with coefficient
s > 1 need not be a metric space.

The following example of Aydi et al. [2] shows that a b-metric on X need not be a metric on X, for
more examples one may refer to: Berinde [5], Czerwik [11], Shatanawi et al. [31], Singh and Prasad [32].

Example 1.2. Let X = {0, 1, 2} and d(2, 0) = d(0, 2) = m > 2, d(0, 1) = d(1, 2) = d(0, 1) = d(2, 1) = 1 and
d(0, 0) = d(1, 1) = d(2, 2) = 0. Then, d(x,y) 6 m

2 [d(x, z)+d(z,y)], for all x,y, z ∈ X. If m > 2, the ordinary
triangle inequality does not hold.

For details about the notions of convergence, completeness and Cauchy sequence in the setting of
b-metric space, one may refer to Boriceanu et al. [7] and [8].

Definition 1.3 (Gähler [12]). Let X be a nonempty set. If for each x,y, z ∈ X, there exists a real-valued
function d(x,y, z) such that:

(i) to each pair of points x,y with x 6= y from X, there exists a point a ∈ X such that d(x,y,a) 6= 0;

(ii) d(x,y, z) = 0 , when at least two of the points are equal;

(iii) d(x,y, z) = d(y, z, x) = d(x, z,y);

(iv) d(x,y, z) 6 d(x,y,a) + d(x,a, z) + d(a,y, z),

then d is called a 2-metric on X and (X,d) is called a 2-metric space.

It is easily seen that d is non-negative. It has been shown by Gähler [12] that a 2-metric d is a
continuous function at any one of its three arguments but it need not be continuous in two arguments.
If it is continuous in two arguments, then it is continuous in all three arguments. A 2-metric d which is
continuous in all of its arguments will be called continuous.

Example 1.4 (Liu et al. [23]). Let X = R+ ×R+ and d : X× X× X → [0,∞) a function such that d(x,y, z)
is the area of a triangle with vertices x = (x1, x2), y = (y1,y2), z = (z1, z2), for all x,y, z ∈ X. Then d is a
2-metric and (X,d) is a 2-metric space.

Further, for the details about the notions of convergence, Cauchy sequence and completeness in 2-
metric space, we refer to Gähler [12–14]. Some recent work on fixed point theorems in the setting of
2-metric spaces have appeared in Iśeki [16], Khan [19], Kumar and Poonam [21].

Let (X,d) be a metric space and T : X → X be a mapping. With ε > 0 be given, then x0 ∈ X is said
to be an ε-fixed point of T on X, whenever d(x0, Tx0) < ε. Note that every fixed point is an ε-fixed point
but the converse need not be true. We denote the set of all ε-fixed points of T for a given ε > 0 by
Fε(T) = {x ∈ X|d(Tx, x) < ε} and Fix (T), the set of all fixed points of T . We say that T has the approximate
fixed point property (AFPP) if for all ε > 0, there exists an ε-fixed point of T , i.e., for all ε, Fε(T) 6= ∅,
or equivalently, infx∈X d(Tx, x) = 0, for details, please see: Berinde [6], Kohlenbach and Leuştean [20],
Miandaragh et al. [25], Reich and Zaslavski [28], Tijs et al. [33].

Example 1.5. On X = [0,∞), consider the mapping T : X → X given by the formula Tx = x+ 1
2x+1 for all

x ∈ X. Setting 0 < ε < 1
2 and taking x0 ∈ X such that x0 >

1−ε
2ε , we obtain,

d(Tx0, x0) = |Tx0 − x0| =
∣∣∣ 1
2x0 + 1

∣∣∣ < ε.
This shows that T has an ε-fixed point, so Fε(T) 6= ∅. Note that T has no fixed point in X.
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Let T : X → X be a self-mapping on a non-empty set X and α : X× X → [0,∞) be a mapping. We say
that T is an α-admissible if x,y ∈ X, α(x,y) > 1 implies that α(Tx, Ty) > 1; refer to Samet et al. [29]. Also,
let T : X → X be a self-mapping on a non-empty set X and α : X× X× X → [0,∞) be a mapping, we say
that T is an α-admissible if x,y,a ∈ X, α(x,y,a) > 1 implies that α(Tx, Ty,a) > 1; refer to Kumar and
Poonam [21].

We say that X has the property (H) if for each x,y ∈ Fix (T), there exists z ∈ X such that α(x, z) > 1
and α(y, z) > 1; refer to Karapinar [18].

In 2013, Miandaragh et al. [24] introduced the concept of generalized convex contraction (resp. gen-
eralized convex contraction of order-2) in the setting of a metric space. A self-mapping T on X is called a
generalized convex contraction whenever there exist a mapping α : X×X→ [0,∞) and α1,α2 ∈ [0, 1) with
α1 +α2 < 1 such that

α(x,y)d(T 2x, T 2y) 6 α1d(x,y) +α2d(Tx, Ty),

for all x,y ∈ X, where α is the based mapping. Also, a self-mapping T on X is called a generalized convex
contraction of order-2 whenever there exists a mapping α : X× X → [0,∞) and βi,γi ∈ [0, 1), (i = 1, 2),
with β1 +β2 + γ1 + γ2 < 1 such that

α(x,y)d(T 2x, T 2y) 6 β1d(x, Tx) +β2d(Tx, T 2x) + γ1d(y, Ty) + γ2d(Ty, T 2y),

for all x,y ∈ X, where α is the based mapping.
A self-mapping T on a metric space (X,d) is said to be asymptotically regular [9] at a point x ∈ X if

d(Tnx, Tn+1x)→ 0 as n→∞.

Lemma 1.6 ([6]). Let (X,d) be a metric space and T is an asymptotically regular self-mapping on X, i.e.,
d(Tmx, Tm+1x)→ 0, for all x ∈ X, then T has the AFPP.

The following lemma is a direct consequence of Lemma 1.6.

Lemma 1.7 ([22]). Let (X,d) be a metric space and T is an asymptotically regular self-mapping at a point x0 ∈ X,
i.e., d(Tmx0, Tm+1x0)→ 0, then T has the AFPP.

Recall that a self-mapping T on a 2-metric space (X,d) is said to be asymptotically regular at a point
x ∈ X, if d(Tnx, Tn+1x,a)→ 0 as n→∞, for all a ∈ X.

By analogy to Lemma 1.7, we have the following result.

Lemma 1.8. Let (X,d) be a 2-metric space and T be an asymptotically regular self-mapping at a point x0 ∈ X, i.e.,
d(Tmx0, Tm+1x0,a)→ 0, for all a ∈ X, then T has the AFPP.

Proof. For any integer n > 0, we obtain

inf
x∈X

d(x, Tx,a) 6 d(Tnx0, Tn+1x0,a), ∀a ∈ X.

Since T is asymptotically regular at x0 ∈ X, then d(Tnx0, Tn+1x0,a) → ∞ as n → ∞ which in turn gives
infx∈X d(x, Tx,a) = 0. That is T has the AFPP.

In this paper, we present the notion of generalized convex contraction mapping of type-2, which
includes the generalized convex contraction (resp. generalized convex contraction of order-2) of Mian-
daragh et al. [24]. Utilizing this class of mapping, we establish approximate fixed point and fixed point
theorems in the setting of b-metric and 2-metric spaces.

2. Main results

In this section, we extend the notion of convex contraction mapping of type-2 [17] and prove some
approximate fixed point and fixed point theorems in the setting of b-metric and 2-metric spaces.
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Definition 2.1. Let (X,d) be a b-metric space with s > 1. A self-mapping T on X is said to be a gener-
alized convex contraction of type-2, if there exist a mapping α : X× X → [0,∞) and αi,βi,γi > 0 with∑
i=1,2(αi +βi + γi) < 1/s2 such that

α(x,y)d(T 2x, T 2y) 6α1d(x,y) +α2d(Tx, Ty) +β1d(x, Tx) +β2d(Tx, T 2x)

+ γ1d(y, Ty) + γ2d(Ty, T 2y),
(2.1)

for all x,y ∈ X.

Theorem 2.2. Let (X,d) be a b-metric space with coefficient s > 1 and T : X → X be a generalized convex
contraction of type-2. Suppose that T is α-admissible and there exists x0 ∈ X such that α(Tx0, x0) > 1. Then T has
an approximate fixed point. Further, T has a fixed point if T is continuous and (X,d) is a complete b-metric space.
Moreover, if for all x,y ∈ Fix (T) we have α(x,y) > 1, then T has a unique fixed point in X.

Proof. Let x0 ∈ X be such that α(Tx0, x0) > 1. Now, we define a sequence {xn} by xn+1 = Tn+1x0, for
all n > 0. If xn = xn+1, i.e., Tnx0 = T(Tnx0) for some n, then the conclusion of the theorem follows
immediately.

Without loss of generality, we assume xn 6= xn+1, for all n > 0. Since T is α-admissible, α(Tx0, x0) > 1
implies α(T 2x0, Tx0) > 1. Therefore, we can obtain inductively that α(Tn+1x0, Tnx0) > 1, for all n > 0.

We put v = max{d(x0, Tx0),d(Tx0, T 2x0)}, λ =
∑
i=1,2(αi + βi + γi) − γ2 and µ = 1 − γ2. Now, using

(2.1), taking x = x0 and y = Tx0, we obtain

d(T 2x0, T 3x0) 6α(x0, Tx0)d(T
2x0, T 3x0)

6α1d(x0, Tx0) +α2d(Tx0, T 2x0)

+β1d(x0, Tx0) +β2d(Tx0, T 2x0)

+ γ1d(Tx0, T 2x0) + γ2d(T
2x0, T 3x0)

=(α1 +β1)d(x0, Tx0) + (α2 +β2 + γ1)d(Tx0, T 2x0) + γ2d(T
2
0 , T 3x0)

6(α1 +α2 +β1 +β2 + γ1)v+ γ2d(T
2x0, T 3x0)

= λv+ γ2d(T
2x0, T 3x0).

Therefore, we get (1− γ2)d(T
3x0, T 2x0) 6 λv, that is d(T 2x0, T 3x0) 6

(
λ
µ

)
v, where

(
λ
µ

)
< 1 as

∑
i=1,2(αi +

βi + γi) < 1/s2.
Again, using (2.1), taking x = Tx0 and y = T 2x0, we obtain

d(T 3x0, T 4x0) 6α(Tx0, T 2x0)d(T
3x0, T 4x0)

6α1d(Tx0, T 2x0) +α2d(T
2x0, T 3x0)

+β1d(Tx0, T 2x0) +β2d(T
2x0, T 3x0)

+ γ1d(T
2x0, T 3x0) + γ2d(T

3x0, T 4x0)

=(α1 +β1)d(Tx0, T 2x0) + (α2 +β2 + γ1)d(T
2x0, T 3x0)

+ γ2d(T
3
0 , T 4x0)

6(α1 +β1)v+ (α2 +β2 + γ1)(
λ

µ
)v+ γ2d(T

3
0 , T 4x0)

6(α1 +α2 +β1 +β2 + γ1)v+ γ2d(T
3x0, T 4x0).

Therefore,

d(T 3x0, T 4x0) 6
(λ
µ

)
v,
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and

d(T 4x0, T 5x0) 6α(T
2x0, T 3x0)d(T

4x0, T 5x0)

6α1d(T
2x0, T 3x0) +α2d(T

3x0, T 4x0)

+β1d(T
2x0, T 3x0) +β2d(T

3x0, T 4x0)

+ γ1d(T
3x0, T 4x0) + γ2d(T

4x0, T 5x0)

6(α1 +β1)
(λ
µ

)
v+ (α2 +β2 + γ1)

(λ
µ

)
v+ γ2d(T

4x0, T 5x0)

=(α1 +α2 +β1 +β2 + γ1)
(λ
µ

)
v+ γ2d(T

4x0, T 5x0).

It follows

d(T 4x0, T 5x0) 6
(α1 +α2 +β1 +β2 + γ1)

(1 − λ2)

(λ
µ

)
v

=
(λ
µ

)2
v.

Also, we obtain

d(T 5x0, T 6x0) 6α(T
3x0, T 4x0)d(T

5x0, T 6x0)

6α1d(T
3x0, T 4x0) +α2d(T

4x0, T 5x0)

+β1d(T
3x0, T 4x0) +β2d(T

4x0, T 5x0)

+ γ1d(T
4x0, T 5x0) + γ2d(T

5x0, T 6x0)

6(α1 +β1)d(T
3x0, T 4x0) + (α2 +β2 + γ1)d(T

4x0, T 5x0)

+ γ2d(T
5x0, T 6x0)

6(α1 +β1)
(λ
µ

)
v+ (α2 +β2 + γ1)

(λ
µ

)
v+ γ2d(T

5
0 , T 6x0),

that is,

d(T 5x0, T 6x0) 6
(α1 +α2 +β1 +β2 + γ1)

(1 − γ2)

(λ
µ

)
v

=
(λ
µ

)2
v.

We continue this process, following the similar argument as in [1] and [24], and get d(Tmx0, Tm+1x0) 6(
λ
µ

)l
v, whenever m = 2l or m = 2l+ 1, for l > 1 or d(Tmx0, Tm+1x0) 6

(
λ
µ

)l−1
v, whenever m = 2l or

m = 2l− 1, for l > 2. Therefore, d(Tmx0, Tm+1x0) → 0 as m → ∞, i.e., T is asymptotically regular at x0.
By Lemma 1.7, it follows that T has an approximate fixed point.

Now, suppose that T is continuous and (X,d) is a complete b-metric space. In order to show that
{xn} is a Cauchy sequence in X, we choose m,n as non-zero positive integers such that m < n with the
following cases.

Case (i). For m = 2l with l,q > 1, then

d(Tmx0, Tm+qx0) =d(T
2lx0, T 2l+qx0)

6sd(T 2lx0, T 2l+1x0) + s
2d(T 2l+1x0, T 2l+2x0)

+ s3d(T 2l+2x0, T 2l+3x0) + s
4d(T 2l+3x0, T 2l+4x0) + · · ·
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6s
(λ
µ

)l
v+ s2

(λ
µ

)l
v+ s3

(λ
µ

)l+1
v+ s4

(λ
µ

)l+1
v+ · · ·

6s
(λ
µ

)l{
1 + s2

(λ
µ

)
+ · · ·

}
v+ s2

(λ
µ

)l{
1 + s2

(λ
µ

)
+ · · ·

}
v

=(s+ s2)
(λ
µ

)l{
1 + s2

(λ
µ

)
+ · · ·

}
v

6(s+ s2)
(λ
µ

)l 1

1 − s2
(
λ
µ

)v.
Similarly, Case (ii). For m = 2l+ 1 with l,q > 1, we obtain

d(Tmx0, Tm+qx0) =d(T
2l+1x0, T 2l+q+1x0)

6sd(T 2l+1x0, T 2l+2x0) + s
2d(T 2l+2x0, T 2l+3x0)

+ s3d(T 2l+3x0, T 2l+4x0) + s
4d(T 2l+4x0, T 2l+5x0) + · · ·

6s
(λ
µ

)l
v+ s2

(λ
µ

)l+1
v+ s3

(λ
µ

)l+1
v+ s4

(λ
µ

)l+2
v+ · · ·

6s
(λ
µ

)l{
1 + s2

(λ
µ

)
+ · · ·

}
v+ s2

(λ
µ

)l{
1 + s2

(λ
µ

)
+ · · ·

}
v

=(s+ s2)
(λ
µ

)l{
1 + s2

(λ
µ

)
+ · · ·

}
v

6(s+ s2)
(λ
µ

)l 1

1 − s2
(
λ
µ

)v.
Taking l→∞ in all cases, since s2

(
λ
µ

)
< 1, we obtain d(Tmx0, Tnx0)→ 0. Therefore, {xn} is a Cauchy

sequence in X. Since, X is complete, there exists a point z ∈ X such that xn = Tnx0 → z ∈ X as n→∞. By
the continuity of T , we obtain z = limn→∞ T(Tnx0) = Tz. This shows that z is a fixed point of T .

Now, we show that T has a unique fixed point in X.
In this respect, assume that z, z∗ ∈ Fix (T) such that z 6= z∗. By the hypothesis α(z, z∗) > 1 and from

(2.1) taking x = z and y = z∗, we obtain

d(z, z∗) =d(T 2z, T 2z∗)

6α(z, z∗)d(T 2z, T 2z∗)

6α1d(z, z∗) +α2d(Tz, Tz∗) +β1d(z, Tz) +β2d(Tz, T 2z)

+ γ1d(z
∗, Tz∗) + γ2d(Tz

∗, T 2z∗)

6(α1 +α2)d(z, z∗).

It follows that (1 − α1 − α2)d(z, z∗) 6 0, which in turn gives d(z, z∗) = 0, a contradiction. Hence T has a
unique fixed point in X.

Taking
∑
i=1,2(βi + γi) = 0 (resp.

∑
i=1,2 αi = 0) with s = 1 in the inequality (2.1), it reduces to the

generalized convex contraction (resp. generalized convex contraction of order-2) of Miandaragh et al.
[24].

Corollary 2.3. Let (X,d) be a b-metric space with coefficient s > 1 and T : X → X be a generalized convex
contraction. Suppose that T is an α-admissible and there exists x0 ∈ X such that α(Tx0, x0) > 1. Then T has an
approximate fixed point. Further, T has a fixed point if T is continuous and (X,d) is a complete b-metric space.
Moreover, if for all x,y ∈ Fix (T), we have α(x,y) > 1, then T has a unique fixed point in X.
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Proof. Since T : X→ X is a generalized convex contraction, we obtain

α(x,y)d(T 2x, T 2y) 6α1d(x,y) +α2d(Tx, Ty)
6α1d(x,y) +α2d(Tx, Ty)

+β1d(x, Tx) +β2d(Tx, T 2x)

+ γ1d(y, Ty) + γ2d(Ty, T 2y).

This shows that T is generalized convex contraction of type-2. Thus, all the conditions of Theorem 2.2 are
satisfied, therefore the conclusion follows.

Corollary 2.4. Let (X,d) be a b-metric space with coefficient s > 1 and T : X → X be a generalized convex
contraction of order-2. Suppose that T is an α-admissible and there exists x0 ∈ X such that α(Tx0, x0) > 1. Then
T has an approximate fixed point. Further, T has a fixed point if T is continuous and (X,d) is a complete b-metric
space. Moreover, if for all x,y ∈ Fix (T) , we have α(x,y) > 1, then T has a unique fixed point in X.

Proof. Since T : X→ X is generalized convex contraction of order-2, so we have

α(x,y)d(T 2x, T 2y) 6β1d(x, Tx) +β2d(Tx, T 2x)

+ γ1d(y, Ty) + γ2d(Ty, T 2y)

6α1d(x,y) +α2d(Tx, Ty)

+β1d(x, Tx) +β2d(Tx, T 2x)

+ γ1d(y, Ty) + γ2d(Ty, T 2y).

It shows that T is generalized convex contraction of type-2. Thus, all the conditions of Theorem 2.2 are
satisfied, therefore the conclusion follows.

Example 2.5. Let X = [0, 1] be endowed with d(x,y) = |x− y|2. Then, it follows that d is a b-metric on X
with coefficient s = 4. As in [1], we define T : X→ X by the formula Tx = x2

2 + 1
4 . Taking α(x,y) = 1, then

α(Tx, Ty) = 1, for all x,y ∈ X. Therefore, T is continuous and an α-admissible map.
Now, we have

α(x,y)d(T 2x, T 2y) =|T 2x− T 2y|2

=

∣∣∣∣∣x4 + x2 + 9
4

8
−
y4 + y2 + 9

4
8

∣∣∣∣∣
2

=
1
64

∣∣(x4 − y4) + (x2 − y2)
∣∣2

6
1
16
{
|x4 − y4|2 + |x2 − y2|2

}
6

1
8
{
|x2 − y2|2 + |x− y|2

}
6

1
2

∣∣∣∣x2 − y2

2

∣∣∣∣2 + 1
8
|x− y|2

6
1
2
d(Tx, Ty) +

1
8
d(x,y).

It follows that the mapping T is a generalized convex contraction with α1 = 1
8 , and α2 = 1

2 .
We define a sequence {xn} by xn = n

n+1 −
1√
2 , then xn → 1 − 1√

2 , as n→∞. Therefore, xn+1 = Txn =[
1
2

(
n
n+1 − 1√

2

)2
+ 1

4

]
→ (1 − 1√

2), as n → ∞. Thus, all the conditions of Corollary 2.3 are satisfied and

x = 1 − 1√
2 is the unique fixed point of T in X.
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Now, we introduce the generalized contraction mapping of type-2 in the setting of 2-metric space and
prove the following theorem.

Definition 2.6. Let (X,d) be a 2-metric space and T : X → X be a self-mapping on X. Then T is said
to be a generalized convex contraction of type-2, if there exist a mapping α : X× X× X → [0,∞) and
αi,βi,γi ∈ [0, 1) with

∑
i=1,2(αi +βi + γi) < 1 such that

α(x,y,a)d(T 2x, T 2y,a) 6α1d(x,y,a) +α2d(Tx, Ty,a)

+β1d(x, Tx,a) +β2d(Tx, T 2x,a) (2.2)

+ γ1d(y, Ty,a) + γ2d(Ty, T 2y,a),

for all x,y,a ∈ X.

Theorem 2.7. Let (X,d) be a 2-metric space and T : X→ X be a generalized convex contraction of type-2. Suppose
that T is α-admissible and there exists x0 ∈ X such that α(Tx0, x0,a) > 1 for all a ∈ X. Then, T has an approximate
fixed point. Further, T has a fixed point if T is continuous and (X,d) is a complete 2-metric space. Moreover, if
x,y ∈ Fix(T), we have α(x,y,a) > 1 for all a ∈ X, then T has a unique fixed point in X.

Proof. Let x0 ∈ X be such that α(Tx0, x0,a) > 1, for all a ∈ X. As in Theorem 2.2, we define a sequence
{xn} by xn+1 = Tn+1x0, for all n > 0. If xn = xn+1, i.e., Tnx0 = T(Tnx0) for some n, then the conclusion
follows immediately.

Assume that xn 6= xn+1, for all n > 0. Since T is α-admissible, α(Tx0, x0,a) > 1, for all a ∈ X implies
that α(T 2x0, Tx0,a) > 1. Therefore, we obtain inductively that α(Tn+1x0, Tnx0,a) > 1, for all n > 0.

Denote v = max{d(Tx0, T 2x0,a),d(x0, Tx0,a)}, for all a ∈ X, λ =
∑
i=1,2(αi + βi + γi) − γ2 and µ =

1 − γ2.
Now, from (2.2) taking with x = x0 and y = Tx0, we obtain

d(T 2x0, T 3x0,a) 6α(x0, Tx0,a)d(T 2x0, T 3x0,a)

6α1d(x0, Tx0,a) +α2d(Tx0, T 2x0,a)

+β1d(x0, Tx0,a) +β2d(Tx0, T 2x0,a)

+ γ1d(Tx0, T 2x0,a) + γ2d(T
2x0, T 3x0,a)

=(α1 +β1)d(x0, Tx0,a) + (α2 +β2 + γ1)d(Tx0, T 2x0,a)

+ γ2d(T
2
0 , T 3x0,a)

6(α1 +α2 +β1 +β1 + γ1)v+ γ2d(T
2x0, T 3x0,a).

Therefore, d(T 3x0, T 2x0,a) 6
(
λ
µ

)
v. Similarly, we obtain

d(T 3x0, T 4x0,a) 6
(λ
µ

)
v,

and
d(T 4x0, T 5x0,a) 6

(λ
µ

)2
v.

Also,

d(T 5x0, T 6x0,a) 6
(λ
µ

)2
v.

By continuing this process, we obtain d(Tmx0, Tm+1x0,a) 6
(
λ
µ

)l
v, whenever m = 2l or m = 2l + 1,

for l > 1 or d(Tmx0, Tm+1x0,a) 6
(
λ
µ

)l−1
v, whenever m = 2l or m = 2l − 1, for l > 2. Therefore,
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d(Tmx0, Tm+1x0,a)→ 0 as m→∞, i.e., T is asymptotically regular self-mapping at x0 ∈ X, for all a ∈ X.
By Lemma 1.8, T has an approximate fixed point.

Now, suppose that T is continuous and (X,d) is a complete 2-metric space.
In order to show that {xn} is a Cauchy sequence in X, we choose m,n as non-zero positive integers

such that m < n with the following cases.

Case (i). For m = 2l with l > 1, then

d(Tmx0, Tm+1x0,a) = d(T 2lx0, T 2l+1x0,a) 6
(λ
µ

)l
v.

Now, we have

d(Tmx0, Tm+2x0,a) =d(T 2lx0, T 2l+2x0,a)

6d(T 2lx0, T 2l+2x0, T 2l+1x0) + d(T
2lx0, T 2l+1,a)

+ d(T 2l+1x0, T 2l+2x0,a).

Therefore, we obtain

d(Tmx0, Tm+2x0,a) 6d(T 2lx0, T 2l+2x0, T 2l+1x0)

+

r=1∑
r=0

d(T 2l+rx0, T 2l+r+1x0,a). (2.3)

Also, from (2.2), we obtain

d(T 2lx0, T 2l+2x0, T 2l+1x0) =d(T
2(T 2l−1)x0, T 2(T 2l)x0, T 2lx0)

6α(T 2l−1x0, T 2lx0, T 2lx0)

d(T 2l+1x0, T 2l+2x0, T 2lx0)

6α1d(T
2l−1x0, T 2lx0, T 2lx0)

+α2d(T
2lx0, T 2l+1x0, T 2lx0)

+β1d(T
2l−1x0, T 2lx0, T 2lx0)

+β2d(T
2lx0, T 2l+1x0, T 2lx0)

+ γ1d(T
2lx0, T 2l+1x0, T 2lx0)

+ γ2d(T
2l+1x0, T 2l+2x0, T 2lx0).

Therefore, (1 − γ2)d(T
2lx0, T 2l+2x0, T 2l+1x0) 6 0, which in turn gives d(T 2lx0, T 2l+2x0, T 2l+1x0) = 0. So,

inequality (2.3) reduces to

d(Tmx0, Tm+2x0,a) 6
r=1∑
r=0

d(T 2l+rx0, T 2l+r+1,a).

Again, we have

d(Tmx0, Tm+3x0,a) =d(T 2lx0, T 2l+3x0,a)

6d(T 2lx0, T 2l+3x0, T 2l+2x0)

+ d(T 2lx0, T 2l+2x0,a) + d(T 2l+2x0, T 2l+3x0,a)

=d(T 2lx0, T 2l+2x0, T 2l+3x0)

+ d(T 2lx0, T 2l+2x0,a) + d(T 2l+2x0, T 2l+3x0,a),
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which implies that

d(Tmx0, Tm+3x0,a) 6 d(T 2lx0, T 2l+2x0, T 2l+3x0) +

r=2∑
r=0

d(T 2l+rx0, T 2l+r+1x0,a).

One can show that d(T 2lx0, T 2l+2, T 2l+3) = 0. Similarly, we obtain

d(Tmx0, Tm+4x0,a) 6
r=3∑
r=0

d(T 2l+rx0, T 2l+r+1x0,a).

By continuing this process, we obtain

d(Tmx0, Tm+qx0,a) 6
r=q−1∑
r=0

d(T 2l+rx0, T 2l+r+1x0,a)

=d(T 2lx0, T 2l+1x0,a) + d(T 2l+1x0, T 2l+2x0,a)

+ d(T 2l+2x0, T 2l+3x0,a) + · · ·
+ d(T 2l+q−1x0, T 2l+qx0,a)

6
(λ
µ

)l
v+

(λ
µ

)l
v+

(λ
µ

)l+1
v+

(λ
µ

)l+1
v+ · · ·

62
(λ
µ

)l 1

1 −
(
λ
µ

)v.
Case (ii). For m = 2l+ 1, where l > 1, then

d(Tmx0, Tm+1x0,a) = d(T 2l+1x0, T 2l+3x0,a) 6
(λ
µ

)l
v.

Similarly as in Case (i), we obtain

d(Tmx0, Tm+3x0,a) 6
r=2∑
r=0

d(T 2l+r+1x0, T 2l+r+2x0,a),

when d(T 2l+1x0, T 2l+3x0, T 2l+4x0) = 0. By continuing this process as in Case (i), we obtain

d(Tmx0, Tm+qx0,a) 6
r=q−1∑
r=0

d(T 2l+rx0, T 2l+r+1x0,a)

62
(λ
µ

)l 1

1 −
(
λ
µ

)v.
Taking l → ∞ in all cases,

(
λ
µ

)
< 1, we obtain d(Tmx0, Tnx0,a) → 0. Therefore, {xn} is a Cauchy

sequence in X. Since X is a complete 2-metric space, then there exists a point z ∈ X such that xn = Tnx0 →
z ∈ X as n→∞. By the continuity of T , we obtain z = limn→∞ T(Tnx0) = Tz. This shows that z is a fixed
point of T .

Now, we show that T has a unique fixed point in X. For this purpose, assume that z, z∗ ∈ Fix (T) such
that z 6= z∗. By the hypothesis α(z, z∗,u) > 1, for all u ∈ X and from (2.2) taking with x = z and y = z∗,
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we obtain

d(z, z∗,u) =d(T 2z, T 2z∗,u)

6α(z, z∗,u)d(T 2z, T 2z∗,u)

6α1d(z, z∗,u) +α2d(Tz, Tz∗,u) +β1d(z, Tz,u) +β2d(Tz, T 2z,u)

+ γ1d(z
∗, Tz∗,u) + γ2d(Tz

∗, T 2z∗,u)
6(α1 +α2)d(z, z∗,u),

implying that (1 − α1 − α2)d(z, z∗,u) 6 0, which in turn gives d(z, z∗,u) = 0, a contradiction. Therefore,
T has a unique fixed point in X.

Taking
∑
i=1,2 αi < 1, where

∑
i=1,2(βi + γi) = 0, then inequality (2.2) becomes

α(x,y,a)d(T 2x, T 2y,a) 6α1d(x,y,a) +α2d(Tx, Ty,a). (2.4)

Again, taking
∑
i=1,2(βi + γi) < 1, where

∑
i=1,2 αi = 0, then inequality (2.2) becomes

α(x,y,a)d(T 2x, T 2y,a) 6β1d(x, Tx,a) +β2d(Tx, T 2x,a) (2.5)

+ γ1d(y, Ty,a) + γ2d(Ty, T 2y,a).

Note that inequality (2.4) (resp. (2.5)) gives a generalized convex contraction (resp. generalized convex
contraction of order-2) in the setting of 2-metric space.

Corollary 2.8. Let (X,d) be a 2-metric space and T : X → X be a generalized convex contraction. Suppose that T
is α-admissible and there exists x0 ∈ X such that α(Tx0, x0,a) > 1, for all x ∈ X. Then, T has an approximate
fixed point. Further, T has a fixed point if T is continuous and (X,d) is a complete 2-metric space. Moreover, if
x,y ∈ Fix (T), we have α(x,y,a) > 1 for all a ∈ X, then T has a unique fixed point in X.

Corollary 2.9. Let (X,d) be a 2-metric space and T : X→ X be a generalized convex contraction of order-2. Suppose
that T is α-admissible and there exists x0 ∈ X such that α(Tx0, x0,a) > 1, for all x ∈ X. Then, T has an approximate
fixed point. Further, T has a fixed point if T is continuous and (X,d) is a complete 2-metric space. Moreover, if
x,y ∈ Fix (T), we have α(x,y,a) > 1 for all a ∈ X, then T has a unique fixed point in X.

3. Conclusion

We introduced the notion of generalized convex contraction mapping of type-2, which includes the
generalized convex contraction (resp. generalized convex contraction of order-2) of Miandaragh et al.
[24] and the convex contraction mapping of type-2 of Istrăţescu [17]. Utilizing this class of mappings,
we established approximate fixed point and fixed point theorems in the setting of b-metric and 2-metric
spaces.
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(1922), 133–181. 1

[5] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, ”Babeş-Bolyai” Univ.,
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[7] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. Univ. Babeş-
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