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Abstract

In this paper, we use the dynamical systems technique to suggest and investigate some inertial proximal methods for solving
mixed variational inequalities and related optimization problems. It is proved that the convergence analysis of the proposed
methods requires only the monotonicity. Some special cases are also considered. Our method of proof is very simple as
compared with other techniques. Ideas and techniques of this paper may be extended for other classes of variational inequalities
and equilibrium problems. c©2017 All rights reserved.
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1. Introduction and Preliminaries

Variational inequalities, which were introduced and investigated by Stampacchia [30]. Variational
inequalities can be viewed as significant and natural generalization of the variational principles, the
origin of which can be traced back to Euler, Lagrange, Newton and Bernoulli’s brothers. It is remarkable
and amazing that a wide class of unrelated problems, which in pure, applied and engineering sciences
can be studied in the general and unified framework of variational inequalities. The ideas and techniques
of this theory are being applied in a variety of diverse areas of pure and applied sciences and proved to
innovative, see [1–4, 6–11, 13, 15–17, 19, 20, 22, 24, 26–33].

Variational inequalities involving the nonlinear term is called the mixed variational inequality or vari-
ational inequality of the second kind. Mixed variational inequalities have applications in elasticity, struc-
tural engineering and electronic network, see [12] and the references therein. Due to the presence of the
nonlinear term, the projection method and its variant form can be used to establish the equivalence be-
tween the mixed variational inequalities and the fixed point problem. However, if the nonlinear term is a
proper, convex and lower-semi continuous, then one can show that the mixed variational inequalities are
equivalent to the fixed point problem using the resolvent operator technique. This alternative formulation
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has played an important part in studying the existence of solution and developing several numerical iter-
ative methods for solving variational inequalities and complementarity problems. One can again use the
fixed point formulation to suggest the explicit and implicit method for solving the variational inequalities.
To implement the implicit type method, one usually use the predictor-corrector technique. Consequently,
the implicit methods is equivalent to the extraresolvent method. The extraresolvent method can be viewed
as analogous to the extragradient method, which was suggested and investigated by Korpelevich [14]. It
is known that if the solution exists, then the convergence of the implicit method needs only that the
operator is monotone and Lipschitz continuous. In some cases, it is very difficult to find the Lipschitz
continuity constant. Noor [24] proved that the convergence of the extragradient method of Korpelevich
[14] only needs psuedomonotonicity, using the auxiliary principle technique. This can be viewed as a
significant and important refinement of the previously known results. Using the fixed point formulation,
Noor [24] and Noor et al. [25] suggested an inertial proximal method for solving mixed variational in-
equalities. Such type of the inertial proximal methods were suggested by Alvarez and Attouch [1] for
solving the variational inclusions involving the sum of the operator. It has been shown by Noor [24] that
the convergence of inertial proximal methods can be proved under the monotonicity of the operator.

Dynamical systems arise naturally in numerous applied and theoretical fields including celestial me-
chanics, financial forecasting, environmental applications, neuroscience and brain modeling. The fixed
point formulation of the variational inequalities has been used to suggest two type of dynamical systems.
The first one, is due to Friesz et al. [9] is designated as global projected dynamical systems, whereas the
second which is mainly due to Dupuis and Nagurney [8] is called the local dynamical system. We would
like to mention that novel and innovative features of these projected dynamical systems is that the set of
the stationary points of the dynamical systems correspond to the set of the solutions of the variational
inequalities. This shows that all the problems which can be studied in the general framework of vari-
ational inequalities can be studied in the framework of the dynamical systems. Consequently, various
numerical methods which have been developed for solving dynamical systems can be used to find the
approximate solution of the variational inequalities. For example, neural network techniques have been
used for solving the variational inequalities, see Xia and Wang [32]. For more details on the applications
of the dynamical systems, see [7–9, 11, 15, 16, 18, 20, 22, 24, 26–33].

In this paper, we use the dynamical systems approach for the construction of the inertial proximal
methods for solving the mixed variational inequalities. We use the fixed point formulation to suggest
a second-order resolvent dynamical system associated with the mixed variational inequalities. We use
the variant form of finite difference schemes to discretize the second derivative to suggest some inertial
proximal methods for solving the variational inequalities. We use the resolvent lemma to express the
inertial proximal methods as an auxiliary mixed variational inequality. This reformulation is used to
analyze the convergence criteria of the proposed inertial proximal method under the monotonicity of the
operator. In our analysis, we do not need any resolvent operator, which is a novel way to prove the
convergence of the inertial proximal methods for solving variational inequalities.

2. Preliminaries and basic results

Let H be a real Hilbert space, whose norm and inner product are denoted by ‖ · ‖ and 〈·, ·〉 respectively.
For a given operator G : H → H and a proper, convex and lower-semi continuous function f : H −→
R∪ {∞}, consider a problem of finding u ∈ H, such that

〈G(u), v− u〉+ f(v) − f(u) > 0, ∀v ∈ H, (2.1)

which is called mixed variational inequality problem. For the applications, formulation and other aspects
of the mixed variational inequalities, see [4, 6–11, 13, 15, 16, 18, 20, 22, 24–33] and the references therein.
We note that if f is the indicator function of a closed convex set K in H, then problem (2.1) reduces to
finding u ∈ K, such that

〈G(u), v− u〉 > 0, ∀v ∈ K,
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which is known as the variational inequality, introduced and studied by Stampacchia [30]. For the recent
applications, formulation numerical methods and other aspects of variational inequalities, see [4, 6–11,
13, 15, 16, 18, 20, 22, 24–33].

Now we define the following concepts.

Definition 2.1. The nonlinear operator G : H→ H is called

(i) Strongly monotone, if there exists a constant α > 0, such that

〈G(u) −G(v),u− v〉 > α‖u− v‖2, ∀u, v ∈ H.

(ii) Monotone, if
〈G(u) −G(v),u− v〉 > 0, ∀u, v ∈ H.

Remark 2.2. It is known that strongly monotonicity implies monotonicity but the converse is not true. This
means that monotonicity is a weaker condition than strongly monotonicity.

Definition 2.3. If G is a maximal monotone operator onH, then for a constant ρ > 0, the resolvent operator
denoted by JG(.) is defined as

JG(u) = (I+ ρG)−1(u), ∀u ∈ H,

where I is the identity operator.

It is known that a monotone operator G is maximal, if and only if its resolvent operator JG is defined
everywhere. Also, the resolvent operator JG is nonexpansive, that is

‖JG(u) − JG(v)‖ 6 ‖u− v‖, ∀u, v ∈ H.

Remark 2.4. It is known that the subdifferential ∂f of a proper, convex and lower semi-continuous function
f is a maximal monotone operator. Thus, we define by

Jf(u) = (I+ ρ∂f)−1(u), ∀u ∈ H,

the resolvent operator associated with ∂f and ρ > 0 is a constant.

We also need the well-known result, which is known as the resolvent lemma. This result plays crucial
role in the convergence analysis of the proposed inertial proximal methods.

Lemma 2.5. Let f be a proper, convex and lower semicontinuous function. For a given z ∈ H, u ∈ K satisfies

〈u− z,u− v〉+ ρf(v) − ρf(u) > 0, ∀v ∈ H,

if and only if
u = Jf(z),

where JG is the resolvent operator associated with the proper, convex and lower semi-continuous function and ρ > 0
is a constant.

Using Lemma 2.5 one can show that the mixed variational inequality (2.1) is equivalent to the fixed
point problem.

Theorem 2.6 ([13]). The element u ∈ K satisfies

〈G(u), v− u〉+ f(v) − f(u) > 0, ∀v ∈ H,

if and only if
u = Jf[u− ρG(u)], (2.2)

where Jf is the resolvent operator and ρ > 0 is a constant.
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From Theorem 2.6, we see that mixed variational inequalities (2.1) are equivalent to the fixed point
problem (2.2). This alternate formulation is used to study the existence of a solution of the variational
inequalities and to suggest several explicit and implicit methods.

Theorem 2.6 was used to introduce the resolvent dynamical system associated with the mixed varia-
tional inequalities (2.1). In fact, we consider the problem of finding u ∈ H such that

du

dt
= λ{Jf[u− ρG(u)] − u}, u(t0) = uo ∈ H. (2.3)

Such type of the dynamical systems were introduced and investigated by Noor [21]. Form the definition, it
is clear that solution of the resolvent dynamical system always exists. This implies that qualitative results
such as the existence, uniqueness and continuous dependence of the solution of (2.3) can be studied. For
more details, see Noor [21, 23].

3. Main results

In this section, we use the fixed point formulation to suggest and consider a new second order resol-
vent dynamical system associated with mixed variational inequalities (2.1). We use this dynamical system
to suggest and investigate some inertial proximal methods for solving the variational inequalities (2.1).
These inertial implicit methods are constructed using the central finite difference schemes and its variant
forms.

To be more precise, we consider the problem of finding u ∈ H such that

γü+ u̇+ u = Jf[u− ρG(u)], u(t0) = α, u̇(t0) = β, (3.1)

where γ > 0 and ρ > 0 are constants. Problem (3.1) is called second order dynamical system. If γ = 0,
then dynamical system (3.1) is exactly the dynamical system (2.3), which was studied extensively.

We discretize the second-order dynamical systems (3.1) using central finite difference and backward
difference schemes to have

γ
un+1 − 2un + un−1

h2 +
un − un−1

h
+ un+1 = Jf[un − ρG(un+1)],

where h is the step size.
Using this discrete form, we suggest the following new iterative method for solving the variational

inequalities (2.1).

Algorithm 3.1. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = Jf[un − ρG(un+1) −
(γ)un+1 − (2γ− h)un + (γ− h)un−1

h2 ], n = 0, 1, 2, · · · .

Algorithm 3.1 is called the inertial proximal method for solving the mixed variational inequalities and
related optimization problems. This is a new proposed method.

We note that for γ = 0, Algorithm 3.1 reduces to the following iterative method for solving the mixed
variational inequalities (2.1).

Algorithm 3.2. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = Jf[un − ρG(un+1) −
un − un−1

h
], n = 0, 1, 2, · · · .

Using Lemma 2.5, Algorithm 3.1 can be rewritten in the equivalent form as:
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Algorithm 3.3. For a given u0 ∈ H, compute un+1 by the iterative scheme

〈ρG(un+1) +
(γ+ h2)un+1 − (2γ− h+ h2)un + (γ− h)un−1

h2 , v− un+1〉

+ ρf(v) − ρf(un+1) > 0, ∀v ∈ H.
(3.2)

We again discretize the dynamical system (3.1) using the finite difference schemes to have:

γ
un+1 − un−1

2h
+
un − un−1

h
+ un+1 = PK[un − ρG(un+1)],

where h is a step size. This formulation is used to suggest the following iterative method for solving the
mixed variational inequalities (2.1) as:

Algorithm 3.4. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = Jf[un − ρG(un+1) −
γun+1 + 2un − (2 + γ)un−1

2h
], n = 0, 1, 2, · · · .

This is also called the inertial proximal method for solving the variational inequalities and appears to
be a new one.
If γ = 0, then Algorithm 3.4 reduces to Algorithm 3.2 for solving the mixed variational inequalities (2.1).

We again discretize the second-order dynamical systems (3.1) using central difference scheme and
forward difference scheme to suggest the following inertial proximal method for solving (2.1).

Algorithm 3.5. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = Jf[un − ρG(un+1) −
(γ+ h)un+1 − (2γ+ h)un + γun−1

h2 ], n = 0, 1, 2, · · · .

Algorithm 3.5 is quite different from other inertial proximal methods for solving the variational in-
equalities.
If γ = 0, then Algorithm 3.5 collapses to:

Algorithm 3.6. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = Jf[un − ρG(un+1) −
un+1 − un

h
], n = 0, 1, 2, · · · .

Algorithm 3.6 is a proximal method for solving the mixed variational inequalities. Such type of
proximal methods were suggested by Noor [25] using the fixed point problems.
In brief, by suitable descritization of the second-order dynamical systems (3.1), one can construct a wide
class of explicit and implicit method for solving inequalities.

We now consider the convergence criteria of Algorithm 3.1 using the technique of Alvarez and Attouch
[1] and Noor et al. [25].

Theorem 3.7. Let u ∈ H be the solution of variational inequality (2.1). Let un+1 be the approximate solution
obtained from (3.2). If G is monotone, then

(h+ h2)‖u− un+1‖2 6 (γ+ h2)‖u− un‖2 − (γ+ h2)‖un+1 − un‖2 + (γ− h)‖un−1 − un‖2. (3.3)

Proof. Let u ∈ H be the solution of variational inequality (2.1). Then

〈ρG(v), v− u〉+ ρf(v) − ρf(u) > 0, ∀v ∈ H, (3.4)

since G is monotone operator.
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Setting v = un+1 in (3.4), we have

〈ρG(un+1),un+1 − u〉+ ρf(un+1) − ρf(u) > 0. (3.5)

Taking v = u in(3.2), we have

〈ρG(un+1) +
(γ+ h2)un+1 − (2γ− h+ h2)un + (γ− h)un−1

h2 ,u− un+1〉+ ρf(u) − ρf(un+1) > 0. (3.6)

From (3.5) and (3.6), we obtain

〈(γ+ h2)un+1 − (2γ− h+ h2)un + (γ− h)un−1,u− un+1〉 > 0.

Thus

0 6 (γ+ h2)〈un+1 − un,u− un+1〉+ (γ− h)〈un−1 − un,u− un+1〉
6 (γ+ h2)‖u− un‖2 − (γ+ h2)‖un+1 − un‖2 − (γ+ h2)‖u− un+1‖2

+ (γ− h)‖un−1 − un‖2 + (γ− h)‖u− un+1‖2 (3.7)

= (γ+ h2)‖u− un‖2 − (γ+ h2)‖un+1 − un‖2 + (γ− h)‖un−1 − un‖2

− h(1 + h)‖u− un+1‖2,

where we have used the following inequalities

2〈u, v〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2,

and
2〈u, v〉 6 ‖u‖2 − ‖v‖2.

From (3.7), we have

(h+ h2)‖u− un+1‖2 6 (γ+ h2)‖u− un‖2 − (γ+ h2)‖un+1 − un‖2 + (γ− h)‖un−1 − un‖2,

the required (3.3).

Theorem 3.8. Let u ∈ H be the solution of variational inequality (2.1). Let un+1 be the approximate solution
obtained from (3.2). If G is monotone operator, then un+1 converges to u ∈ H satisfying (2.1).

Proof. Let u ∈ H be a solution of (2.1). From (3.3), it follows that the sequence {‖u−ui‖} is non-increasing
and consequently, {un} is bounded. Also from (3.3), we have∞∑

i=1

‖un − un+1‖2 6 ‖u− u1‖2 +
γ− h

γ+ h2 ‖u0 − u1‖2,

which implies that
lim
n→∞ ‖un+1 − un‖2 = 0.

Since sequence {ui}
∞
i=1 is bounded, so there exists a cluster point û to which the subsequence {uik}

∞
k=i

converges. Replacing un by uni in (3.2) and taking the limit as nj −→∞, we have

〈G(û), v− û〉+ ρf(û) − ρf(u) > 0, ∀v ∈ H,

which implies that û solves (2.1) and

‖un+1 − u‖2 6
γ+ h2

h+ h2 ‖u− un‖2 +
γ− h

h+ h2 ‖un − un−1‖2 6 ‖u− un‖2.

Using this inequality, one can show that the cluster point û is unique and

lim
n→∞un+1 = û.
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4. Extensions and future work

We would like to mention that the results obtained in this paper may be extended for strongly mixed
variational inequalities, which were introduced and studied by Bin-Mohsin et al. [5]. More precisely, we
consider the problem of finding u ∈ H such that

〈G(u), v− u〉+ f(v) − f(u) > µ‖v− u‖2, ∀v ∈ H, (4.1)

which is called the strongly mixed variational inequality. It has been shown that the minimum of the sum
of differentiable convex function and non-differentiable strongly convex function can be characterized
by the strongly mixed variational inequalities. Since the subdifferential ∂f(.) associated with the proper,
strongly convex and semi-lower semi-continuous function f is strongly maximal monotone, one can define
the resolvent operator Jsf as:

Jsf(u) = (I+ ρµ∂f)−1(u), ∀u ∈ H.

Using this resolvent operator, one can establish the equivalence between the strongly mixed variational
inequalities and the fixed point problem, that is,

Lemma 4.1. u ∈ H is a solution of the strongly mixed variational inequality (4.1), if and only if, u ∈ H satisfies
the equation

u = Jsf[u− ρTu],

where Jsf(.) = (I+ ρµ∂f)−1(.) is the resolvent operator.

It has been proved that the resolvent operator Jsf is Lipschitz constant with constant 1
1+ρµ , where

µ > 0 is the constant of the strongly convex function f.
Using this equivalent formulation, one can consider the second-order dynamical systems as:
Find u ∈ H such as:

γü+ u̇+ u = Jsf[u− ρG(u)], u(t0) = α, u̇(t0) = β,

where γ > 0 and ρ > 0 are constants.
We would like to point out that all the results obtained in this paper continue to hold for the strongly

mixed variational inequalities and dynamical systems. For more details, see Bin-Mohsin et al. [5].

Conclusion

In this paper, we have used a second-order resolvent dynamical systems to suggest some inertial
proximal methods for solving mixed variational inequalities. The convergence analysis of these methods
have been considered under some weaker conditions. Our method of convergence is very simple as
compared with other techniques. Comparison and implementation of these new methods need further
efforts. We have only discussed that the dynamical systems can be used to suggest some iterative for
finding the approximate solutions of the variational inequalities. The ideas and techniques presented
in this paper may be starting point for further developments. Much work is needed to implement this
technique.
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