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Abstract

In this paper, we study a split common fixed-point problem for demicontractive mappings and quasi-nonexpansive map-
pings, and propose some cyclic iterative schemes. Moreover we prove some strong convergence theorems. The results obtained
in this paper generalize and improve the recent ones announced by many others. (©2017 All rights reserved.
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1. Introduction

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H; and Hj, respectively, and
let A : Hy — Hj be a bounded linear operator. The split feasibility problem (SFP) originally introduced in
Censor and Elfving [1] is to find a point x* € C with the property:

x* € C and Ax* € Q. (1.1)

It serves as a model for many inverse problems where constraints are imposed on the solutions in the
domain of a linear operator as well as in these operator’s ranges. There are a number of significant
applications of the SFP in intensity-modulated radiation therapy, signal processing, image reconstruction
and so on. Recently the SFP has been widely studied by many authors (see, e.g., [3, 12, 13, 14]).

In the case where C and Q in the SFP (1.1) are the intersections of finitely many fixed-point sets of
nonlinear operators, the problem (1.1) is called by Censor and Segal [2] the split common fixed-point
problem (SCFP). More precisely, the SCFP requires to seek an element x* € H; satisfying

x* € NP_ Fix(U;) and Ax* € M1 Fix(T;), (1.2)
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where p,s > 1 are integers, Fix(U;) and Fix(Tj) denote the fixed point sets of two classes of nonlinear
operators U; : Hy — Hy i1 =1,2,---,p), Tj : Ho = Hy (j =1,2,---,5). In particular, if p = s = 1, the
problem (1.2) is reduced to find a point x* with the property:

x" € Fix(U) and Ax"™ € Fix(T), (1.3)

which is usually called the two-set SCFP. To solve the two-set SCFP (1.3), Censor and Segal [2] proposed
the following iterative method: for any initial guess x; € H;, define {x, } recursively by

Xn41 = U(xpn —AA(I—=T)Axn),

where U and T are directed operators. The further generalization of this algorithm was studied by
Moudafi [8] for demicontractive operators. Under suitable conditions he proved that the sequence {x,}
converges weakly to a point of the two-set SCFP (1.3).

Recently, Wang and Xu [10] proposed the following cyclic algorithm:

Xn+1 = U[n] (Xn — )\A* (I — T[n] )Axn),

where U; and T; are directed operators fori=1,2,---,p, [n] =n (mod p). They proved that the sequence
{xn} generated by this algorithm converges weakly to a solution of the problem (1.2) if p =s.

Since the existing algorithm for the SCFP (1.2) has only weak convergence in infinite-dimensional
spaces (see [8, 10]), Cui et al. [3] proposed a new iterative scheme as follows:

Xnt1 = (1= Bn)xn + BrUpm [(1T—on)(xn —AR A (I— T[n])AXn)]/

where U; and T; are directed operators for i =1,2,---,p. They proved that the sequence {x,} converges
strongly to a solution of the problem (1.2) if p =s.

Motivated by the above works, we propose two algorithms for solving the SCFP (1.2) in the more
general case of mappings which are demicontractive and quasi-nonexpansive, including nonexpansive
mappings and directed operators in infinite-dimensional spaces and establish some strong convergence
theorems.

2. Preliminaries

Throughout this paper, let N and R be the set of positive integers and real numbers, respectively. Let
H be a real Hilbert space with inner product (-, -), and norm || - ||. When {x,,} is a sequence in H, we denote
the strong convergence of {xn} to x € H by x, — x and the weak convergence by x,, — x. Let T be a
mapping of C into H. We denote by Fix(T) the set of fixed points of T.

In order to facilitate our investigation in this paper, we recall some definitions as follows.

Definition 2.1. A mapping T: H — H is said to be

(i) nonexpansive if
Mx =Tyl <lx—yl, VxyeH

(ii) quasi-nonexpansive if
[Tx—qll < [x—qll, ¥(x,q)€HxFix(T);

(iii) firmly nonexpansive if
[Tx —Ty|]> < (x—y, Tx—Ty), Vx,yeH;

(iv) directed if
ITx —ql* < [x—ql* = [[x = Tx|?, ¥ (x,q) € Hx Fix(T);
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(v) p-demicontractive if there exists a constant 1 € (—oo, 1) such that
ITx = qll* < [[x—ql* + rlx =Tx[?, ¥ (x,q) € Hx Fix(T),
which is equivalent to

1—p

5 Ix — TXHZ.

x—Tx,x—q) >

It is worth noting that the class of demicontractive mappings contains important mappings such as
quasi-nonexpansive mappings and directed operators.

Remark 2.2. Notice that 0-demicontractive is exactly quasi-nonexpansive. In particular, we say that it is
quasi-strictly pseudo-contractive [7], if 0 < u < 1. Moreover, if p < 0, every p-demicontractive mapping
becomes quasi-nonexpansive. So, it seems to be sufficient to only take u € (0,1) in (v) of Definition
2.1 in Hilbert spaces. However, as seen in (iv) of Definition 2.1, every directed operator is obvious (-1)-
demicontractive.

Recall that the metric (or nearest point) projection from H onto C is the mapping P : H — C which
assigns to each point x € H the unique point Pcx € C satisfying the property

[x = Pex|| = inf |x—yl|.
yeC

It is well-known that Pcx is characterized by the inequality
(x —Pcx,y—Pcx) <0, VyeC. 2.1)

Let us also recall that I — T is said to be demiclosed at origin, if for any sequence {xx} C H and x* € H,
we have
Xk — x*

(I*T)Xk —0

As a special case of the demicloseness principle on uniformly convex Banach spaces given by [4], we
know that if C is a nonempty closed convex subset of a Hilbert space H, and T : C — H is a nonexpansive
mapping. Then the mapping I — T is demiclosed on C. Now the following question is naturally raised:
If T: C — H is quasi-nonexpansive, is I — T still demiclosed on C? The answer is negative even at 0 as
follows.

}:>x* = Tx".

Example 2.3 (see [9, Example 2.11]). The mapping T : [0,1] — [0, 1] is defined by

el 5 x € [0, 3],
xsin7mx, X € (%, 1.

Then T is a quasi-nonexpansive mapping, but 1 — T is not demiclosed at 0.

—_ NI

Remark 2.4. Notice that a demicontractive mapping could enjoy the demiclosedness property at origin,
for example, let H = £, and let T : C — H be defined by Tx = —kx, for arbitrary x € {;, where k > 1
(see [9, Example 2.5]). Then T is not quasi-nonexpansive but p-demicontactive, where p = }Zﬁ However,
I —T is obviously demiclosed at 0. For, whenever {x,} is any sequence in {, such that x, — x € {; and

| Xxn — Txn|| = 0, we readily see that x =0 € F(T).

In what follows, we give some lemmas needed for the convergence analysis of our algorithms. Let H;
and Hj be two real Hilbert spaces.

Lemma 2.5 ([11]). Assume that {an} is a sequence of non-negative real numbers such that
an+1 < (1 —=vn)an +ynbn,

where {'yn} is a sequence in (0,1) and {br} is a sequence in R such that
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() Z;o:l Yn = 00
(ii) limsup, _, bn <0or Z¥_;ynlbnl < oco.
Then limyn o0 an, = 0.

Lemma 2.6 ([10]). Assume that A : Hy — Hy is a bounded linear operator and T : Hy — Hy is a demicontractive
operator. Let V), =1 —AA*(I1—T)A with A > 0. Then

Fix(Va) = A~ Y(Fix(T)),
whenever A~ (Fix(T)) = {x € H; : Ax € Fix(T)}.

Lemma 2.7 ([8]). Assume that A : Hy — Hy is a bounded linear operator and T : Hy — Hy is a u-demicontractive
operator. Let V) = I—AA*(I-T)A, A € (0, (1 — p)/p) with p being the spectral radius of the operator A*A. Then

Y [Vax—z|? < [[x—z[> = A1 —u—pA) [(I-T)AX|%, ¥z e A7!(Fix(T)),
consequently,
(i)
[Vax —z|| < [[x—z|, Vze& A (Fix(T)).
Lemma 2.8 ([5]). For any x,y € Hand A € R, the following hold:
) A%+ (1 =Ayl? = Nx[I? + (1= N)[ly[> = A1 = N)[[x —y|%
(b) [Pe+yll? < XM + 20y, x +y).

Lemma 2.9 ([7, Proposition 2.1]). Assume C is a closed convex subset of a Hilbert space H. Let T : C — C be
a self-mapping of C. If T is a u-demicontractive mapping (which is also called u-quasi-strict pseudo-contraction in
[71), then the fixed point set F(T) is closed and convex.

3. Main results

In this section, let H; and H, be two real Hilbert spaces. We consider the SCFP (1.2) with p = s to find
an element x* € H; satisfying

x* € NP_Fix(U;) and Ax* € NP_;Fix(Ty), (3.1)
where p is a positive integer. Denote the solution set of the SCFP (3.1) by Q, i.e.,

Q = (NP_;Fix(Uy)) (A (NP Fix(T:)).

Note that the problem (3.1) is a special case of the problem (1.2). However, this is not restrictive.
Because following an idea in [10], one can easily extend the results to the general case.
For fixed positive integer p and each n > 1, the p-mod function [n] is defined by

[ p, ifr=0,
[n]_{r, if0<r<p,

whenever n = kp + r for some k > 0.

Lemma 3.1. Let {uy} be a bounded sequence of a Hilbert space H. Let p be a positive integer and 1 ={1,2,--- ,p}.
If limy o0 ||U1 — u|| = 0 and x* € w (uy), then for any i € 1, there exists a subsequence {uy, } of {uy} such
that (k] =1 and wy,, — x*.
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Proof. Obviously, wy, (u) # 0 from boundedness of {u}. Now for any i € I, since limy_, o0 |[Ux+1 —ux|| =
0, we have

lur i —wie]l < i — Wiegiot || 4 [[ukgio1 —Wiepi2f| + - + w1 —ukl| = 0.

It follows from x* € wy,(uy) that there exists a subsequence {u¢, } of {ux} such that u¢, — x*. So
due to ||ux4i —ux|| — 0 we obtain u¢, 41 — x* for all i € L. For any i € I, there exists t; +1; €
{t1 +1,t14+2,---,t1 + p} such that [t; +1;] = 1. We choose k; = t; +1;. And there exists t; + 1, €
{t2+1,tp+2,---,t2 + p} such that [ty + 1] =1i. If tp + 1, > k1, we choose ky = tp + 1p; if tp + 1 < kg, we
skip it and go to the t3. Repeating this process continuously, we can choose a subsequence {k,} such that
[km] =1iforall m > 1 and uy,, — x* too. O

Theorem 3.2. Let U; be quasi-nonexpansive and Ty be wi-demicontractive such that 1 — Ui and 1 —T; are demi-
closed at origin for everyi=1,2,--- ,p. Let A : Hy — Hy be a bounded linear operator. Assume that QO # () and p
is as in Lemma 2.7. For any x; € Hy, define the sequence {xn} by

Xn+1 = (1= Bn)xn + BrUnl(l—on)(xn —AnA"(I—Tr)Axn)], (3.2)
where Uy, = Upy, T = Ty and {oen} € (0,1), {Bn} C [0,1], {An} C [0, +00) satisfying the following conditions:
(i) 0 <liminfy o Bn <limsup, ,  Bn <1;

(11) hmn—)oo an =0, Z?f:l Xn = OO,

(iii) 0 < liminfy, 400 An <limsup, ,  An < - B u = max {u}.
P 1<i<p

Then the sequence {xn} converges strongly to P (0).

Proof. From Lemma 2.9, for every i € {1,2,---,p}, we notice that Fix(T;) and Fix(U;) are closed and
convex. Thus (P_, Fix(T;) and (}_; F(U;) are also closed and convex. Since A is bounded and linear,
A1 (ﬂleFix(Ti)) is closed and convex. Therefore, Q) is closed and convex.

Let Wy, = I = AZA*(I=Th)A, Yn = (1 — xn)Wnxn. Let z = P (0). Noting that for every i(1 < i <
P), wi < 1, so from Lemma 2.7 and the condition (iii) we have

[Wnxn — ZHZ < lxn — 2”2 —An(1—p—Anqp)[[(I—- Tn)AXnHZ 3.3)
< xn —2z| (3.4)
It follows from (3.4) that
||Un - ZH = H(l - O(n)(wnxn - Z) - O‘nZ’H

< (1= o) [Waxn — z|| + otn | 2|
< (1—an)||xn —z| + anllz|,

then
[Xn1—zl| < (1= Bn)lxn —z| + BnlUnyn —z||
< (1—=Bn)lxn —z[| + Bnllyn — 2|
< (IT=Bn)lxn =zl + Bnl(l — an)|Xn —z|| + xnlz||]
(

1— O‘nﬁn)HXn - ZH + OCTLBTLHZH
< max{||x1 —zl|, ||z]|}
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Thus {xn} is bounded and so are {y,} and {Wnxn}. From (3.3), the quasi-nonexpansivity of U, and
Lemma 2.8 (b), we obtain
Unyn — 2| < llyn — 2
=||(1 = otn) (Wnxn —z) — anz||?
< (1= o) |[Waxn — z||* + 200 (2,2 — yn)
< (1—an)||xn —z|> + 260 (z, 2 — yn)
= An(l = am) (1= = Anp) [ (T =T ) Axcn . (3.5)

It follows from (3.2), (3.5) and Lemma 2.8 (a) that

1= 2] = (1= Bn) (xn — 2) + B (Unyn —2)]?
=(1-Bn) ”Xn_z||2+ BrlUnyn —2z) Hz Bn(l—PBn) Hunyn_XnHZ
< (1—-Bn) ”Xn_ZHz_Bn(l_Bn ”unyn_xn”z
+ Bnl(1— on)Ixn — z||* + 20tn (z, 2 —Yn)
—An (1= o) (1= k= Anp) (1= Tn)Axn ]
=(1—anPn) ”Xn_z||2+20‘nf5n<zr2_yn>
— (1= Bn)[Unyn —xn[? = AnBn(l = on) (1 —p—Anp)|[(I = Tn)Axn |,

i.e., we have the following inequality

(1_“nﬁn)5n +2anﬁn<zrz_yn> —Cn (3.6)
(1—anPBn)sn +20€nﬁn<zrz_yn>r (3.7)

where s, = ||xn —z||? and

Cn =AnPn(l—an)(l—p— }\nP)H(I - Tn)AXnHZ +Bn(l— Bn)”unyn - XnHZ'

It follows from (3.6) that
n < MotnBn +Sn—Sny1, (3.8)

where M = 2sup, - {|lz[ - [[z—yn ||}
Finally we will prove s,, — 0. To see this, let us consider two possible cases on such a sequence and
employ an idea developed by Mainge [6].

Case I. Assume that there exists an integer N; such that s;, > s, 1 for all n > Nj. In this case {s } must be
convergent. So due to (3.8) and the conditions (i)-(iii), we have both {||(I — Tn)Axn ||} and {[|Unyn —xn ]|}
converge to zero. Then we obtain

Xni1—xn| = BnllUnyn —xn|| = 0, (3.9)
and
”yn_XnH = || 1_0(n)( —A A*(I_Tn)AXn)_XnH
= (1 — atn JAA™ (I = T ) Axny + O Xn ||
< (1T — o )An||A"]] - 1 (T—T) Axn || + atn||Xn || — O. (3.10)
Therefore
[Unyn —Ynl < [[Unyn —xn ||+ [Xn —ynl =0,
lYn+1 _UHH < Yynt1 = Xna1 | + [[Xn+1 = xnll + | Xn —yn| — 0.
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Take a subsequence {yn, } of {yn} such that

limsup(Z,Z—yn> = lim <Z,Z_ynk>-
n—o0 k—ro0

Without loss of generality, we assume that {yn, } converges weakly to an element y*, then by (3.10) we
have y* € wy(xn). Letanindexi € {1,2,---,p} be fixed. Noting that the pool of indices is finite and (3.9),
by Lemma 3.1 we can find a subsequence {xm, } C {xn} such that x,,, = y* and [my] =1forall k > 1. So
from (3.10) we obtain Yy, — y*. Since

||uiymk _ymkH = Humkymk _ymkH -0,

and U; — I is demiclosed at origin, we obtain y* € Fix(Uj). It follows from (3.10) and the weak continuity
of A that Ax;,, — Ay*. Furthermore, since I —T; is demiclosed at origin and ||(I — T;)Axm, || — 0, we
have Ay* € Fix(T;). Since the index i is arbitrary, we have y* € Q. Thus by (2.1) and z = P (0), we obtain

limsup(z,z—yn) = (z,z—y") < 0. (3.11)

n—oo
Now since all the hypotheses of Lemma 2.5 are fulfilled, we conclude that s,, — 0.

Case II. Assume that there exists a subsequence {sy, } of {sn} such that sy, < sm, 41 for all k > 1.
Employing [6, Lemma 3.1] in Maingé, we can take a nondecreasing sequence {t(n)}n>n, of integers
satisfying the following properties:

St(n) < St(n)+1 and s, < St(n)+1s

for all n > ny. Then from (3.8) and «,, — 0 we have

Cr(n) < St(n) = St(n)+1 + %) Br(n)yM < & (n)Brm)M — 0.

So it follows from the conditions (i)-(iii) that both {||(I— T(n)) A% (n) ||} and {|[Ur(n)Ye(n) — Xe(n) ||} con-
verge to zero. Being similar to the proof of (3.9) and (3.11) in Case I, we have

nlgr;o HXT(TL) _XT(TL}—HH =0,

limsup(z,z—y(n)) <0. (3.12)

n—o0
From (3.7) and st(n) < St(n)+1, We have
St(n) < 2<Z/Z_UT(11)>'
Hence from (3.12) we have limsup,, _,  st(n) < 0, which implies that s.(;,) — 0. Furthermore,
St(n)+1 < ‘ST(TL)-FI - ST(TI)| + St(n)
< xem)+1 = Xy HUxe )y 11 = 2l + [Xe(n) = 2[D) + 8z (n) = 0.
Therefore, it follows from s, < st(n)41 that s — 0. O

Remark 3.3. Compared with [3, Theorem 1], Theorem 3.2 relaxes the conditions on {T;} from directed map-
pings to demicontractive mappings and {U,,} from directed mappings to quasi-nonexpansive mappings.

Theorem 3.4. Let U; be quasi-nonexpansive and T be wi-demicontractive such that 1 — Uy and 1 —T; are demi-
closed at origin for everyi=1,2,--- ,p. Let A : Hy — Hy be a bounded linear operator. Assume that Q # () and p
is as in Lemma 2.7. For any x1 € Hy, define the sequence {xn} by

Xni1 = (1 = Bn)Wnxn + BnUnl(1— otn )Wnxnl, (3.13)

where U,, = u[n]z Th = T[n]l Wixn = Xn _}\nA*(I_Tn)AXn and {an} - (O/ 1), {Bn} c [0,1], {An} -
[0, +00) satisfying the following conditions:
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(i) 0 <liminfy o Bn <limsup, . Bn <1
(i) limp e n =0, Y04 an = 00;

1—
(iii)) 0 < liminfy, ;00 An < limsup,, , An < TH n= 1r<nla<xp{u1}

Then the sequence {xn} converges strongly to P (0).

Proof. Let yn = (1 — &n)Wnxn and z = P (0). It follows from (3.4) and (3.13) that

[xn+1—2z[| < (1= Bn)[Wnxn —z[| + Bn[[Unl(1 — oatn)Wnxn] — 2]
< (1= Bn)[Waxn —z[[ + Bn (1 — atn)Wnxn —z||
< (1= Bn)[[Waxn —z|| + Bn(1 — an) [[Wnxn — z|| + on Bn||z]|
< (1 —onBn)lfxn —z[| + on Bzl
< max{||x1 —zl|, [|z]l},

which implies that {x,,} is bounded, further, {Wnxy} is bounded too. Since

lyn —z|| < (1= atn)[[Wnxn —z|| + on ||z]]

<
< (= an)lxn =zl + anllz]l,

{yn} is also bounded. It follows from (3.4), (3.5), (3.13) and Lemma 2.8 (a) that
[Xn 1 _ZHZ = [[(1=Bn)(Wnxn —2) + Bn(Unyn —z) Hz

=(1-pn) ”ann—z”z‘i‘BnHun‘Jn_Z HZ Brn(l—Bn)|Unyn — WanHz
<(1=Bn)|xn —z|? + Bnl(l— xn ||xn —z||2+20(n(z,z—yn>

—An(1T—on)(1T—p—Anp)/(I Aan (1_Bn)||unyn_wnxn||2
= (1= otnPn)llxn _Z||2 + 20cn[5n<z,z—yn) - Bn( — Bn)lUnyn — ann”z
— Bl — o) An (1= p—=Anp) (1= Tn)Axn|?,
ie.,
Snt+1 < (1—anPn)sn +2anBn(z,z2—yYyn) —Cn, (3.14)
where

cn=Pn(l— Bn)”unyn _WanHZ +Bn(l—on)An(l—p— )\np)H (I— Tn)AXnHZI

and sy = ||xn — z|%. First, in a similar way to the proof of Case I in Theorem 3.2, we have both {||(I —
n)AXn ||} and {||Unyn — Wnxn||} converge to zero. Since

[Wixn —xn|| < An[[AT[] - [[(I=Th)Axn[ = 0, (3.15)
we have
[Unyn —Xnll < [[Unyn — Waxnll + [[Wnxn —xnl| = 0, (3.16)
lyn = xn |l < (1= otn ) Wnxn —Xn ||
< |[Wnxn —xn|| + an [[Wnxn| — 0. (3.17)

It follows from (3.13), (3.15) and (3.16) that

[Xn1 = Xn| < (1= Bn)[Wnxn —xn ||+ Bn[[Unyn —xn || = 0. (3.18)
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From (3.16), (3.17), (3.18) we have

[Unyn —Xnll + [[xn —ynl = 0, (3.19)
[Ynt1 = Xngall + [Xner =xnll + X0 =ynll = 0. (3.20)

[UnYn —Ynl

| <
Y1 —ynl <|

By virtue of (3.14), (3.18), (3.19), (3.20), and ||(I — T )Axn || — 0, mimicking the proof of Case I and Case II
in Theorem 3.2, we conclude that the sequence {xn} defined by (3.13) converges strongly to z = P (0). O

Now we shall give an example which satisfies all the conditions of the solution set () of the SCFP (3.1),
the mappings {Lll}1 1, and {Ti}]{’:1 in Theorems 3.2 and 3.4.

Example 3.5. Let H = Hp = H3 = {. Foreachi € {1,2,--- ,p}, let Uy, T; : {o — {5 be defined by

/—}R
uiX: (O/ : /OIXIIXZI"' )/

and Tix = —(i+1)x forall x = (x1,%g,- -+ ) € {a. Then
Q = (NP_;Fix(Us)) (A (NP Fix(T:)) = {0},

I-u;

Furthermore, for each i € {1,2,--- ,p}, Uy is quasi-nonexpansive, T; is p-demicontractive with n = ﬁ,

and 1 — Ty are demiclosed at 0.

In fact, since NY_; Fix(U;) = {0} = NY_, Fix(T;), it results that QO = {0}. Now we show the demicloseness

property of [ —U; at 0 (i =1,2,---p). To this end, for any i € {1,2,---p}, let x,, = zand (I—U;j)xn, — 0,

where x,, = (xin) xén), ---)€lpand z = (z1,2,- - -) € {o. The weak convergence of {x,,} to z implies that

( L z; for each j > 1. Since

(I = Wi)xn | = Z|Xk >+ Z =P =0,

k=i+1
it follows that for each fixed 1 < k < i, X1(< — 0 = z. Hence

z1=2p=---=2; =0. (3.21)

Also, fork >i+1, X](Jl)i — x]&n) — 0 = zx—i — z. Using (3.21) we see

Zit1 = Ziqp = - = 223 = 0. (3.22)

Using (3.22) again, we have zy{ 1 = zpi42 = - - - = z3; = 0. Continuing this process, we get all z; = 0 for all
j > 1, which implies z = (0,0, --) =0 € Fix(U;). Hence I — U; is demiclosed at 0.

Furthermore, it is obvious that each T; is p-demicontactive, where pu = ; see [9, Example 2.5]. How-
ever, for eachi €{1,2,---p}, I —Tj is obviously demiclosed at 0 by Remark 2.4.

fUi=U T,=T,1=1,2,---,p in Theorem 3.2, we obtain the following conclusion.

Corollary 3.6. Let U be quasi-nonexpansive and T be p-demicontractive such that I —U and [ —T are demiclosed
at origin. Let A : Hy — Hy be a bounded linear operator. Assume that Q = Fix(U) (A~L(Fix(T)) # 0. Let p be
as in Lemma 2.7. For any x; € Hy, define the sequence {xn} by

Xn+1 = (1 - Bn)xn + Bnu[(l - (xn)(xn - }\TLA*(I - T)Axn)]/

where {otn} C (0,1), {Bn} C [0,1], {An} C [0, +00) satisfying the following conditions:
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(i) 0 <liminfy o Bn <limsup, . Bn <1
(i) limp 00 xn =0, 21010:1 Kn = 00,

1—
(i) 0 < liminfy o0 An < limsup, __ An < T”

Then the sequence {xn} converges strongly to Pr(0), where T is the solution set of the two-set SCFP (1.3).
fFUi=UT,=T,1=12,---,p in Theorem 3.4, we obtain the following conclusion.

Corollary 3.7. Let U be quasi-nonexpansive and T be u-demicontractive such that I — U and 1 — T are demiclosed
at origin. Let A : Hy — Hy be a bounded linear operator. Assume that Q # () and p is as in Lemma 2.7. For any
x1 € Hy, define the sequence {xn} by

Xn41 = (1= Bn)Wnxn + BrnU[(1 — an )Wnxnl,

where Wnxn =xn —AgA*(I—T)Axq and {xn} C (0,1), {Bn} C [0,1], {An} C [0, +00) satisfying the following
conditions:

(i) 0 <liminfy o Bn <limsup, ,  Bn <1

(i) limp e n =0, Y 04 &n = 00;

1—p

5

Then the sequence {xn} converges strongly to Pr(0), where T is the solution set of the two-set SCFP (1.3).

(iii)) 0 < liminfy, ;00 An < limsup,, _, An <
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