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Abstract
We present an efficient second-order finite difference scheme for solving the 2D sine-Gordon equation, which can inherit the

discrete energy conservation for the undamped model theoretically. Due to the semi-implicit treatment for the nonlinear term, it
leads to a sequence of nonlinear coupled equations. We use a linear iteration algorithm, which can solve them efficiently, and the
contraction mapping property is also proven. Based on truncation errors of the numerical scheme, the convergence analysis in
the discrete l2-norm is investigated in detail. Moreover, we carry out various numerical simulations, such as verifications of the
second order accuracy, tests of energy conservation and circular ring solitons, to demonstrate the efficiency and the robustness
of the proposed scheme. c©2017 All rights reserved.
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1. Introduction

In this paper, we consider the following 2D sine-Gordon equation,

utt +βut −α∆u = −φ(x,y) sinu+ F(x,y, t), (x,y) ∈ Ω, t > 0, (1.1)

with initial conditions

u(x,y, 0) = ϕ1(x,y), ut(x,y, 0) = ϕ2(x,y), (x,y) ∈ Ω, (1.2)

and the boundary condition

u|∂Ω = G(t), t > 0, (1.3)

where Ω = [0,L]2. This equation has attracted much attention due to the presence of soliton solutions
and has a great deal of applications in the propagation of fluxons in Josephson junctions between two
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superconductors [16], the motion of a rigid pendulum attached to a stretched wire [20], dislocations in
crystals and the stability of fluid motions. Nowadays, it has become one of paradigms of the nonlinear
dynamical system to describe many different physical phenomena [21]. In (1.1), φ(x,y) is a nonnegative
function with finite bound φ0 and may be interpreted as the Josephson current density, while ϕ1(x,y)
and ϕ2(x,y) represent wave modes or kinks and velocity, respectively. In particular, when β = 0, (1.1)
reduces to the undamped sine-Gordon equation,

utt −α∆u = −φ(x,y) sinu+ F(x,y, t). (1.4)

If F = 0 and G is periodic or homogeneous, one of the main properties of the undamped sine-Gordon
equation (1.4) has the conservation for the energy defined as follows [3, 4],

E(t) =
1
2

∫
Ω

[
|ut|

2 + |∇u|2 + 2φ(1 − cosu)
]
dxdy

=
1
2
(
‖ut‖2

L2(Ω) + ‖∇u‖
2
L2(Ω)

)
+

∫
Ω

φ(1 − cosu)dxdy,
(1.5)

which is not valid for the damped system (1.1).
Recently, various analytical and numerical methods have been proposed for the numerical solution of

partial differential equations, for example, the integral transform [22–24] and traveling-wave technologies
[25, 26]. Analytical solutions to the unperturbed sine-Gordon equation with zero damping have been
obtained by Lambs methods [27] and Bäcklund transformations. Many efforts have been attempted to
develop numerical methods, such as the finite difference method [3, 4, 9], the time-splitting pseudospectral
and spectral method [2], the finite element method [1], the mesh-free reproducing kernel particle Ritz
method [7], the local weak meshless method [10], the boundary element method [11], the differential
quadrature method [14] and the radial basis functions method [12] for the 2D sine-Gordon equation.
However, there exist few available error estimate results in the above-mentioned works for the 2D case.
The main reason is that the techniques used for 1D case can not be extended trivially to high dimensions
because of the difficulty in obtaining the a priori uniform estimate of the numerical solution.

Since the undamped sine-Gordon equation is a conservative system, it should be pointed out that a
conservative numerical scheme performs better than a nonconservative one. The key is that it can preserve
some invariant properties of the differential equation and capture physical procedures with more details
[15]. Moreover, there has been growing interest in conservative numerical methods for solving partial
differential equations. For example, Klein-Gordon equation [17], the high frequency wave phenomena
[6, 13, 18, 28], the phase field crystal model [19], and so forth. As for the sine-Gordon equation, to our
knowledge, only a few results considered this vital property. Although many verification results of the
discrete energy for various numerical methods are reported [2–4], the analysis at a theoretical level was
hardly shown.

The main purpose of this paper is to present a second-order semi-implicit finite difference scheme for
numerical solutions of the 2D sine-Gordon equation (1.1)-(1.3). There are three main features to this work.
The first is that the proposed scheme can admit the discrete energy conversation for the undamped case
(1.4) at a theoretical level, which has not yet been reported in the existing literatures. The second feature
of this work is the linear iteration algorithm introduced [18] to solve efficiently the nonlinear system at
each time step due to the implicit treatment of the nonlinear term. Meanwhile, a careful analysis shows
a contraction mapping property of this iteration under the given constrain for the time step. Finally, we
provided a detailed convergence analysis for the second-order scheme in the l2-norm.

The remainder of the paper is organized as follows. In Section 2, the second-order finite difference
scheme is proposed and the energy conservation property for the undamped system is proven. The linear
iteration algorithm and the corresponding theoretical analysis of the contraction mapping are given in
Section 3. Truncation errors and the convergence analysis are discussed in Section 4. Some numerical
simulation results are given to demonstrate the efficiency of the linear iteration solver and the convergence
of the scheme in Section 5. Finally, some conclusions are made in Section 6.
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2. Numerical scheme and energy conservation

2.1. Second order finite difference scheme
Let v = ut. (1.1) can be rewritten as,

vt +βut −α∆u = −φ(x,y) sinu+ F(x,y, t), (2.1)
v = ut. (2.2)

Then, for the given 2D domain Ω, define the uniform numerical grid (xi,yj) with ∆x = ∆y = h for
simplicity of presentation. LetMx =My =M andM ·h = L such that xi = ih, i = 0, 1, · · · ,M,yj = jh, j =
0, 1, · · · ,M. For a fixed time T , let ∆t be the step size for temporal direction, tn = n∆t, n = 0, 1, 2, · · · ,N,
N = [ T∆t ], u

n
i,j ≈ u(xi,yj, tn). Denote ∆h = Dxx +Dyy as the standard second order difference operator

with

Dxu =
ui+1,j − ui,j

h
, Dyu =

ui,j+1 − ui,j
h

,

Dxxu =
ui+1,j − 2ui,j + ui−1,j

h2 , Dyyu =
ui,j+1 − 2ui,j + ui,j−1

h2 .

The second order finite difference scheme is presented at a point-wise level as follows,

vn+1 − vn

∆t
+β

un+1 − un

∆t
−
α

2
∆h(u

n+1 + un) = φ
cos(un+1) − cos(un)

un+1 − un
+ Fn+

1
2 , (2.3)

un+1 − un

∆t
=
vn+1 + vn

2
, (2.4)

with discrete initial conditions

u0
i,j = ϕ1(xi,yj), v0

i,j = ϕ2(xi,yj),

and the boundary condition

uni,j|∂Ω = G(xi,yj, tn), (xi,yj) ∈ ∂Ω,

where Fn+
1
2 = F(xi,yj, tn+

1
2 ). Obviously, (2.4) can be reformulated as

vn+1 =
2(un+1 − un)

∆t
− vn. (2.5)

Substituting (2.5) into (2.3) yields that

2un+1

∆t2
+
β

∆t
un+1 −

α

2
∆hu

n+1 = φ
cos(un+1) − cos(un)

un+1 − un
+
β

∆t
un +

α

2
∆hu

n + κ(un, vn) + Fn+
1
2 , (2.6)

where κ(un, vn) =
2un
∆t +2vn

∆t . (2.6) is nonlinear and can be solved implicitly by a linear iteration algorithm
introduced in the next section. Following un+1 is solved, vn+1 can be computed explicitly by (2.5).

Remark 2.1. The main idea to deal with the sine nonlinearity was first introduced by Strauss and Vázquez
[17] to compute numerical solutions of a nonlinear Klein-Gordon equation in which a polynomial non-
linear term is involved. In fact, this subtle technique can achieve perfect numerical solutions for the
conservative model and has been extensively studied for some nonlinear problems, such as the Cahn-
Hilliard type equation [5, 8].

2.2. Discrete energy conservation for the undamped equation
As above mentioned, the undamped sine-Gordon equation with certain boundary conditions admits

the property of energy conservation. Here, as the special case of the numerical scheme (2.3) and (2.4), the
difference scheme for the undamped equation is conservative for the discrete energy.
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Letting F(x,y, t) = 0 and G(t) = 0, from (1.4), we have

utt −α∆u = −φ(x,y) sinu,

which satisfies the conservative law (1.5). And also, the corresponding numerical finite difference scheme
is simplified as follows,

vn+1 − vn

∆t
−
α

2
∆h(u

n+1 + un) = φ
cos(un+1) − cos(un)

un+1 − un
, (2.7)

un+1 − un

∆t
=
vn+1 + vn

2
. (2.8)

Next, we introduce the l2-norm and the l2 inner product. For any two homogeneous (or periodic) grid
functions f and g, define the discrete l2 inner product and the discrete l2-norm, respectively, as

〈f,g〉 = h2
M∑
i,j=0

fi,jgi,j, ‖f‖2 =
√
〈f, f〉

and the following summation by parts is also straightforward,

〈∆hf,g〉 = −〈∇hf,∇hg〉,

with

‖∇hf‖2
2 = ‖Dxf‖2

2 + ‖Dyf‖2
2,

‖Dxf‖2
2 = h2

M∑
i,j=0

(fi+1,j − fi,j)
2/h2, ‖Dyf‖2

2 = h2
M∑
i,j=0

(fi,j+1 − fi,j)
2/h2.

Theorem 2.2. The scheme (2.7)-(2.8) is conservative for the discrete energy, namely,

En =
1
2
‖vn‖2

2 +
α

2
‖∇hun‖2

2 + h
2
M∑
i,j=0

(φ(1 − cos(un)))ij = E0 (2.9)

for n = 1, 2, · · · ,N.

Remark 2.3. The main purpose of taking this discrete energy form is to be in accordance with its continuous
definition (1.3). Alternatively, if we delete the constant in the term φ(1− cos(un)), the new discrete energy
is also conservative.

Remark 2.4. In [2], the authors have simulated the discrete energy which looks to likely be conservative.
However, it might be caused by the high accuracy of the proposed pseudospectral method. As we know,
the explicit numerical scheme could not ensure the conversation generally.

Proof. Taking the inner product of (2.7) with un+1 − un yields

〈v
n+1 − vn

∆t
,un+1 − un〉− α

2
〈∆h(un+1 + un),un+1 − un〉

− 〈φcos(un+1) − cos(un)
un+1 − un

,un+1 − un〉 = 0.
(2.10)

For the first term, we have

〈v
n+1 − vn

∆t
,un+1 − un〉 = 〈vn+1 − vn,

un+1 − un

∆t
〉 = 1

2
〈vn+1 − vn, vn+1 + vn〉

=
1
2
(‖vn+1‖2

2 − ‖vn‖2
2),

(2.11)



X. Kang, W. Feng, K. Cheng, C. Guo, J. Nonlinear Sci. Appl., 10 (2017), 2998–3012 3002

where (2.8) is applied in the second step. According to (2.7), the second term can be analyzed as

−
α

2
〈∆h(un+1 + un),un+1 − un〉 = α

2
(‖∇hun+1‖2

2 − ‖∇hun‖2
2). (2.12)

Moreover, for the nonlinear term, we obtain the following result,

−〈φcos(un+1) − cos(un)
un+1 − un

,un+1 − un〉 = h2
n∑
i,j=0

φi,j((1 − cosun+1) − (1 − cosun))i,j. (2.13)

By the definition of En, (2.9) is obtained from (2.10)-(2.13).

3. Linear iteration algorithm

Since the nonlinear term cos(un+1) is treated implicitly in (2.6), it leads to a sequence of nonlinear
coupled equations. In order to solve the nonlinear system (2.6) arising from the implicit treatment, we
propose the following linear iteration algorithm:

2un+1,(m+1)

∆t2
+
β

∆t
un+1,(m+1) −

α

2
∆hu

n+1,(m+1)

= φ
cos(un+1,(m)) − cos(un)

un+1,(m) − un
+
β

∆t
un +

α

2
∆hu

n + κ(un, vn) + Fn+
1
2 ,

(3.1)

where un+1,(m) denotes the approximation solution at the m-th iteration.

Theorem 3.1. The linear iteration scheme (3.1) is a contraction mapping, provided that ∆t < β+
√
β2+8φ0

2φ0
.

Proof. Define the iteration error of each stage via

e(m) = un+1,(m) − un+1,

where un+1,(m) is the m-th iteration result generated by the linear iteration scheme (3.1). Subtracting (3.1)
from (2.6) leads to

(
2
∆t2

+
β

∆t
−
α

2
∆h)e

(m+1) = φ
(cos(un+1,(m)) − cos(un)

un+1,(m) − un
−

cos(un+1) − cos(un)
un+1 − un

)
. (3.2)

Taking the inner product of (3.2) with e(m+1), we have

〈( 2
∆t2

+
β

∆t
−
α

2
∆h)e

(m+1), e(m+1)〉

= (
2
∆t2

+
β

∆t
)‖e(m+1)‖2

2 +
α

2
‖∇he(m+1)‖2

2

= 〈φ
(cos(un+1,(m)) − cos(un)

un+1,(m) − un
−

cos(un+1) − cos(un)
un+1 − un

)
, e(m+1)〉.

(3.3)

Now, we analyze the right-hand side of (3.3) in detail. For convenience, let

h(x) =
cos x− cosa

x− a
.

Using the Lagrange theorem, we obtain h(x) = − sin ξ, where ξ is between x and a. We also compute the
derivative of h(x),

h ′(x) =
−(x− a) sin x− (cos x− cosa)

(x− a)2 =
− sin x− (cosx−cosa)

x−a

x− a
=

− sin x+ sin ξ
x− a

. (3.4)
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Applying the Lagrange theorem again for (− sin x+ sin ξ) yields

|h ′(x)| = | cos ξ1| ·
|x− ξ|

|x− a|
< 1,

where ξ1 is between x and ξ, and the fact that |x− ξ| < |x− a| is used.
Going back to (3.3) and setting a = un, we have

|
cos(un+1,(m)) − cos(un)

un+1,(m) − un
−

cos(un+1) − cos(un)
un+1 − un

| = |h(un+1,(m)) − h(un+1)|

= |h ′(ξ2)| · |un+1,(m) − un+1| < |e(m)|,

with ξ2 between un+1,(m) and un+1. In turn, one can get

〈φ
(cos(un+1,(m)) − cos(un)

un+1,(m) − un
−

cos(un+1) − cos(un)
un+1 − un

)
, e(m+1)〉 6 φ0|〈e(m), e(m+1)〉|

6
φ0

2
(‖e(m+1)‖2

2 + ‖e(m)‖2
2),

(3.5)

in which φ0 is the upper bound of φ.
As a result, it follows from the combination of (3.3) and (3.5) that

(
2
∆t2

+
β

∆t
−
φ0

2
)‖e(m+1)‖2

2 +
1
2
‖∇he(m+1)‖2

2 6
φ0

2
‖e(m)‖2

2.

Therefore, the contraction mapping property can be assured if

(
2
∆t2

+
β

∆t
−
φ0

2
) >

φ0

2
,

which shows that the result is proven.

Remark 3.2. For a high dimensional problem, either the ADI scheme or the predictor-corrector scheme is
often used to implement the implicit finite difference scheme. Both schemes belong to two-step method
or multi-step one for reducing the dimension complexity. For 2D sine-Gordon equation, see [3, 4, 9].
Without any decompositions for 2D sine-Gordon equation, the implicit scheme can be solved efficiently
by the linear iteration. Certainly, this iteration method is also applied in many numerical methods, but
the contraction condition for iterations is seldom investigated. On the other hand, we also can present the
high-order finite difference scheme if more complicated operators are involved, and can solve it by the
iteration method.

4. Truncation errors and the convergence analysis

4.1. Truncation errors
Let ue and ve = ∂tue be exact solutions of the problem (1.1)-(1.3), then truncation errors of the scheme

(2.1) are obtained at discrete grid points as follows,

vk+1
e − vke
∆t

+
β

∆t
(uk+1
e − uke) −

α

2
∆h(u

k+1
e + uke) −φ

cos(uk+1
e ) − cos(uke)
uk+1
e − uke

− Fk+
1
2 = ρk, (4.1)

uk+1
e − uke
∆t

−
vk+1
e + vke

2
= sk. (4.2)

In fact, for a given function f(x) ∈ C5, one can get

f(ξ) − f(η)

ξ− η
= f ′(

ξ+ η

2
) +

1
24
f ′′(

ξ+ η

2
)(ξ− η)2 +O((ξ− η)4).
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Taking f(x) = cos(x), ξ = uk+1
e , and η = uke , we have

cos(uk+1
e ) − cos(uke)
uk+1
e − uke

= − sin(
uk+1
e + uke

2
) +O(∆t2) = − sin(uk+

1
2

e ) +O(∆t2).

Similarly, other terms can be analyzed and the details are omitted. Hence, we obtain the following lemma.

Lemma 4.1. Suppose ue and ve are smooth enough, then |ρkij|+ |skij| = O(∆t
2 + h2) holds as ∆t,h→ 0.

4.2. Convergence analysis
Define discrete error functions as follows,

ũk = uke − u
k, ṽk = vke − v

k.

Now, we present the following convergence result.

Theorem 4.2. Assume that ue and ve = ∂tue are the exact solutions of the problem (1.1)-(1.3), and denote (u, v)
as the numerical solution given by the finite difference scheme (2.3) and (2.4). Then, we have

‖ṽn‖2
2 + ‖ũn‖2

2 +α‖∇hũn‖2
2 6 C̃ ·O(∆t2 + h2),

where the constant C̃ is dependent on the final time T and is independent on ∆t and h.

Proof. Subtracting (2.1)-(2.2) from (4.1)-(4.2), respectively, we get

ṽk+1 − ṽk

∆t
+
β

∆t
(ũk+1 − ũk) −

α

2
∆h(ũ

k+1 + ũk)

−φ
(cos(uk+1

e ) − cos(uke)
uk+1
e − uke

−
cos(uk+1) − cos(uk)

uk+1 − uk
)
= ρk,

(4.3)

ũk+1 − ũk

∆t
−
ṽk+1 + ṽk

2
= sk. (4.4)

Taking the inner product of (4.3) with ũk+1 − ũk yields

1
∆t
〈ṽk+1 − ṽk, ũk+1 − ũk〉+ β

∆t
〈ũk+1 − ũk, ũk+1 − ũk〉− α

2
〈∆h(ũk+1 + ũk), ũk+1 − ũk〉

= 〈φ
(cos(uk+1

e ) − cos(uke)
uk+1
e − uke

−
cos(uk+1) − cos(uk)

uk+1 − uk
)
, ũk+1 − ũk〉+ 〈ρk, ũk+1 − ũk〉.

(4.5)

Next, we begin to analyze the nonlinear term on the right-hand of (4.5). Noting that

|
(cos(uk+1

e ) − cos(uke)
uk+1
e − uke

−
cos(uk+1) − cos(uk)

uk+1 − uk
)
|

6 |
(cos(uk+1

e ) − cos(uke)
uk+1
e − uke

−
cos(uk+1) − cos(uke)

uk+1 − uke

)
|

+ |
(cos(uk+1) − cos(uke)

uk+1 − uke
−

cos(uk+1) − cos(uk)
uk+1 − uk

)
|

(4.6)

and recalling the definition (3.4) of h(x), we have the following results

|
(cos(uk+1

e ) − cos(uke)
uk+1
e − uke

−
cos(uk+1) − cos(uke)

uk+1 − uke

)
| 6 |h(uk+1

e ) − h(uk+1)|

= |h ′(η1)| · |uk+1
e − uk+1| 6 |ũk+1|,

(4.7)
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in which we choose a = uke , and

|
(cos(uk+1) − cos(uke)

uk+1 − uke
−

cos(uk+1) − cos(uk)
uk+1 − uk

)
| 6 |h(uke) − h(u

k)|

= |h ′(η2)| · |uke − uk| 6 |ũk|,
(4.8)

in which a = uk+1, respectively. Substituting (4.7) and (4.8) into (4.6) gives

|
(cos(uk+1

e ) − cos(uke)
uk+1
e − uke

−
cos(uk+1) − cos(uk)

uk+1 − uk
)
| 6 |ũk+1|+ |ũk|.

Also, it follows from (4.4) that

ũk+1 − ũk =
∆t

2
(ṽk+1 + ṽk) +∆tsk.

Therefore, we can obtain the estimate as follows,

〈φ
(cos(uk+1

e ) − cos(uke)
uk+1
e − uke

−
cos(uk+1) − cos(uk)

uk+1 − uk
)
, ũk+1 − ũk〉

6 φ0〈|ũk+1|+ |ũk|, |ũk+1 − ũk|〉

6
φ0

2
∆t〈|ũk+1|+ |ũk|, |ṽk+1|+ |ṽk|〉+φ0∆t〈|ũk+1|+ |ũk|, |sk|〉

6
φ0

4
∆t
(
‖(|ũk+1|+ |ũk|)‖2

2 + ‖(|ṽk+1|+ |ṽk|)‖2
2
)
+
φ0

2
∆t
(
‖(|ũk+1|22 + |ũk|)‖2

2
)
+φ0∆t‖sk‖2

2

6
φ0

2
∆t
(
‖ũk+1‖2

2 + ‖ũk‖2
2 + ‖ṽk+1‖2

2 + ‖ṽk‖2
2
)
+φ0∆t

(
‖ũk+1‖2

2 + ‖ũk‖2
2
)
+φ0∆t‖sk‖2

2

6
3φ0

2
∆t
(
‖ũk+1‖2

2 + ‖ũk‖2
2
)
+
φ0

2
∆t
(
‖ṽk+1‖2

2 + ‖ṽk‖2
2
)
+φ0∆t‖sk‖2

2,

where the inequality (a+ b)2 6 2(a2 + b2) is used.
For the first term in (4.5), using (4.4), we can arrive at,

1
∆t
〈ṽk+1 − ṽk, ũk+1 − ũk〉 = 1

2
〈ṽk+1 − ṽk, ṽk+1 + ṽk〉+∆t〈ṽk+1 − ṽk, sk〉

=
1
2
(
‖ṽk+1‖2

2 − ‖ṽk‖2
2
)
+∆t〈ṽk+1 − ṽk, sk〉

>
1
2
(
‖ṽk+1‖2

2 − ‖ṽk‖2
2
)
−

1
2
∆t
(
‖ṽk+1 − ṽk‖2

2 + ‖sk‖2
2
)

>
1
2
(
‖ṽk+1‖2

2 − ‖ṽk‖2
2
)
−∆t

(
‖ṽk+1‖2

2 + ‖ṽk‖2
2
)
−

1
2
∆t‖sk‖2

2.

(4.9)

And it follows from the second term in (4.5) that

β

∆t
〈ũk+1 − ũk, ũk+1 − ũk〉 = β

∆t
‖ũk+1 − ũk‖2

2. (4.10)

As for the diffusion term, the following result is also straightforward from (2.7),

−〈∆h(ũk+1 + ũk), ũk+1 − ũk〉 = 〈∇h(ũk+1 + ũk),∇h(ũk+1 − ũk)〉,= ‖∇hũk+1‖2
2 − ‖∇hũk‖2

2. (4.11)

In turn, considering the local truncation error term in (4.5), we have

〈ρk, ũk+1 − ũk〉 = ∆t〈ρk,
ũk+1 − ũk

∆t
〉 = 1

2
∆t〈ρk, ṽk+1 + ṽk〉+∆t〈ρk, sk〉

6
1
4
∆t(‖ρk‖2

2 + ‖ṽk+1 + ṽk‖2
2) +

1
2
∆t(‖ρk‖2

2 + ‖sk‖2
2)

6
3
4
∆t‖ρk‖2

2 +
1
2
∆t‖sk‖2

2 +
1
2
∆t(‖ṽk+1‖2

2 + ‖ṽk‖2
2).

(4.12)
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Consequently, it follows from (4.5), (4.9), (4.10), (4.11), and (4.12) that

1
2
(
‖ṽk+1‖2

2 − ‖ṽk‖2
2
)
+
α

2
(
‖∇hũk+1‖2

2 − ‖∇hũk‖2
2
)
+
β

∆t
‖ũk+1 − ũk‖2

2

6
3
2
φ0∆t(‖ũk+1‖2

2 + ‖ũk‖2
2) + (

3
2
+
φ0

2
)∆t(‖ṽk+1‖2

2 + ‖ṽk‖2
2) +

3
4
∆t‖ρk‖2

2 + (φ0 + 1)∆t‖sk‖2
2.

(4.13)

Unfortunately, we so far can not obtain the estimates for ‖ũk‖ and ‖ṽk‖ by the discrete Gronwall
inequality, since the term ‖ũk‖ does not appear in the left-hand part of (4.13). To remedy this, we need to
analyze the estimate for ‖ũk‖.

Going back to (4.4), it can be rewritten as

ũk − ũk−1 =
1
2
∆t(ṽk + ṽk−1) +∆tsk−1. (4.14)

Summing up (4.14) from 1 to k, we get

ũk = ũ0 +
1
2
∆t

k∑
l=1

(ṽl + ṽl−1) +∆t

k−1∑
l=1

sl =
1
2
∆t

k∑
l=1

(ṽl + ṽl−1) +∆t

k−1∑
l=1

sl,

where we apply the fact that ũ0 = 0. In turn, an application of Cauchy inequality implies that

|ũk|2 6 2
[1

4
∆t2(

k∑
l=1

(ṽl + ṽl−1))2 +∆t2(

k−1∑
l=1

sl)2]
6

1
2
∆t2

k∑
l=1

2(|ṽl|2 + |ṽl−1|2) +∆t2(

k−1∑
l=1

O(∆t2))2

6 2k∆t2
k∑
l=1

|ṽl|2 + k2∆t2(O(∆t2))2

6 2T∆t
k∑
l=1

|ṽl|2 + T 2O(∆t4),

in which k∆t 6 T is used in the last step. This shows

|ũk|2 6 2T∆t
k∑
l=1

|ṽl|2 +C ·O(∆t4), |ũk+1|2 6 2T∆t
k+1∑
l=1

|ṽl|2 +C ·O(∆t4). (4.15)

Substituting the result above into (4.13) leads to

1
2
(
‖ṽk+1‖2

2 − ‖ṽk‖2
2
)
+
α

2
(
‖∇hũk+1‖2

2 − ‖∇hũk‖2
2
)
+
β

∆t
‖ũk+1 − ũk‖2

2

6 6φ0T∆t
2
k+1∑
l=0

‖ṽl‖2
2 + (

3
2
+
φ0

2
)∆t(‖ṽk+1‖2

2 + ‖ṽk‖2
2) +C∆t ·O(∆t4 + h4).

Summing over k from 0 to n− 1, and using ũ0 = 0, ṽ0 = 0, we have

1
2
‖ṽn‖2

2 +
α

2
‖∇hũn‖2

2 6 6φ0T∆t
2
n−1∑
k=0

k+1∑
l=0

‖ṽl‖2
2 + (3 +φ0)∆t

n−1∑
k=0

‖ṽk‖2
2 +CT ·O(∆t4 + h4).
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Then according to
∑k+1
l=0 ‖ṽl‖2

2 6
∑n
l=0 ‖ṽl‖2

2 for 0 6 k+ 1 6 n, the inequality above can be rewritten as

1
2
‖ṽn‖2

2 +
α

2
‖∇hũn‖2

2 6 (6φ0T
2 + 3 +φ0)∆t

n∑
k=0

‖ṽk‖2
2 +CT ·O(∆t4 + h4).

Let Ẽn = ‖ṽn‖2
2 +α‖∇hũn‖2

2. Then we get

Ẽn 6 (12φ0T
2 + 6 + 2φ0)∆t

n−1∑
l=0

Ẽl +CT ·O(∆t4 + h4).

By the discrete Gronwall inequality, we derive that

‖ṽn‖2
2 +α‖∇hũn‖2

2 6 C̃ ·O(∆t4 + h4),

that is,

‖ṽn‖2 +α‖∇hũn‖2 6 C̃ ·O(∆t2 + h2), (4.16)

where C̃ is independent on ∆t and h. Moreover, from (4.15), we have

|ũn|2 6 2T∆t
k∑
l=1

|ṽl|2 +C ·O(∆t4) 6 C ·O(∆t4 + h4). (4.17)

Finally, the combination of (4.16) and (4.17) gives

‖ṽn‖2 + ‖ũn‖2 +α‖∇hũn‖2 6 C̃ ·O(∆t2 + h2),

which shows the unconditional convergence in the sense of l2-norm is obtained. This completes the proof
of Theorem 4.2.

Remark 4.3. For the one dimensional sine-Gordon equation, by the discrete version of the Sobolev imbed-
ding inequality, the ‖ · ‖∞ estimate can be obtained from the conservative property and the l2-norm. But
for two dimension case, ‖ · ‖∞ error bounds of the numerical scheme (2.1) and (2.2) maybe slightly com-
plicated in obtaining a priori uniform estimate of the numerical solution. It also can be obtained if we
perform a higher consistency analysis by a careful Taylor expansion. The details are skipped for simplicity
of presentation and an analogous technique can be seen in [18].

5. Numerical simulations

We now perform a couple of numerical experiments that support the theoretical results and error
estimates for the scheme given by (2.3)-(2.4).

5.1. Verification of the second order accuracy
In the first test, we consider the equation (1.1) in the domain Ω = [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ] with β = 0,

φ(x,y) = 1, α = 1
2π2 , and f(x,y, t) = sin(cos(πx) cos(πy) cos(t)). The exact solution of (1.1) is given by

ue(x,y, t) = cos(πx) cos(πy) cos(t), ve(x,y, t) = − cos(πx) cos(πy) sin(t).

The initial conditions and the boundary condition can be obtained from the exact solution. Fig. 1 and
Fig. 2 show the profile of the exact solution u at t = 0 on Ω, and the numerical solutions un at time
T = 0.8, 1.5, 3 with ∆t = 0.1 and h = 0.025, respectively. The errors in the sense of l2-norm of the
numerical solutions for different mesh steps h and ∆t at times t = 1, 2, 3, 4, and 5 can be found in Table 1,
and the corresponding numerical orders of convergence are listed in Table 2. Clearly, it verifies the second
order accuracy in Theorem 4.2.
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Figure 1: Left: Profile of the exact solution u(x,y, t) at t = 0. Right: Numerical solutions of u at T = 0.8 with h = 0.025 and
∆t = 0.1.
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Figure 2: Left: Numerical solutions of u at T = 1.5 with h = 0.025 and ∆t = 0.1. Right: Numerical solutions of u at T = 3 with
h = 0.025 and ∆t = 0.1.

Table 1: The ‖ · ‖2 errors estimates of un and vn with various values h and ∆t.

∆t = 0.2,h = 0.1 ∆t = 0.1,h = 0.05 ∆t = 0.05,h = 0.025
‖ũn‖2 ‖ṽn‖2 ‖ũn‖2 ‖ṽn‖2 ‖ũn‖2 ‖ṽn‖2

t=1 3.6332417e-3 4.1077748e-3 9.1807718e-4 1.0275471e-3 2.3013872e-4 2.5692078e-4
t=2 5.3736869e-3 5.7848266e-3 1.3423090e-3 1.4826793e-3 3.3549256e-4 3.7298456e-4
t=3 4.8006248e-3 1.4044778e-2 1.2425939e-3 3.5219515e-3 3.1334248e-4 8.8112076e-4
t=4 1.5080860e-2 1.8066820e-3 3.7880320e-3 3.6020681e-4 9.4806730e-4 8.4218108e-5
t=5 6.3731025e-3 2.1098154e-2 1.5032623e-3 5.3465660e-3 3.7005127e-4 1.3410308e-3

5.2. Energy conservation for the undamped equation
In the second test, we consider the homogeneous boundary condition u|∂Ω = 0 for the equation (1.4)

on Ω = [0, 1]× [0, 1] with φ = 1,

ϕ1(x,y) = sin(2πx) sin(2πy), ϕ2(x,y) = 0.

We take T = 1 and the discrete energy En at the different time for ∆t = 0.002,h = 0.05 and ∆t = 0.001,h =
0.025 can be found in Table 3. Obviously, values of En at the different time remain nearly a constant as
time increases.
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Table 2: Numerical verification of theoretical accuracy O(∆t2 + h2).

‖ũn(h,∆t)‖2
/
‖ũ2n(h2 , ∆t2 )‖2 ‖ṽn(h,∆t)‖2

/
‖ṽ2n(h2 , ∆t2 )‖2

∆t = 0.2 ∆t = 0.1 ∆t = 0.05 ∆t = 0.2 ∆t = 0.1 ∆t = 0.05
h = 0.1 h = 0.05 h = 0.025 h = 0.1 h = 0.05 h = 0.025

t=1 - 1.9846 1.9961 - 1.9992 1.9998
t=2 - 2.0012 2.0004 - 1.9641 1.9910
t=3 - 1.9499 1.9875 - 1.9956 1.9990
t=4 - 1.9932 1.9984 - 2.3264 2.0966
t=5 - 2.0839 2.0223 - 1.9804 1.9953

Table 3: The discrete energy En with different ∆t and h.

∆t = 0.002,h = 0.05 ∆t = 0.001,h = 0.025
t=0.2 10.351697 10.087760
t=0.4 10.216081 10.031903
t=0.6 10.151906 10.112902
t=0.8 10.288459 10.199227
t=1 10.419025 10.280056

5.3. Circular ring soliton
The behavior of a circular ring quasi-soliton arising from the sine-Gordon equation is named as waves

pulsons because of their pulsating behavior. In this test, we consider the equation (1.1) on Ω = [−4, 4]×
[−4, 4] with φ(x,y) = 1. The initial conditions are given by,

ϕ1(x,y) = 2 arctan(exp(3 − 5
√
x2 + y2)), ϕ2(x,y) = 0,

and the boundary condition is periodic. Similar to [2], in order to study the evolution of the ring solitons,
we plot both the surfaces and the corresponding contours in terms of sin(u2 ) with h = 0.1 and ∆t = 0.1.
As seen from Figs. 3, 4, 5, and 6, ring soliton shrinks for initial stage (t = 0), but as time goes on,
oscillations and radiations begin to form and continue to form up to t = 4. At t = 6, the graph shows
that a ring soliton is nearly formed again. These graphs are consistent with earlier work on this topic in
[2, 14]. Furthermore, with the implicit treatment and the linear iteration algorithm, it becomes possible to
simulate the long time behaviors for such an equation. In Fig. 7, the profile of the numerical solutions of
u with h = 0.1 and ∆t = 0.1 at T = 50 is presented.
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Figure 3: The initial function of u and its contour profile.
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Figure 4: Numerical solutions of u and the contour profile at T = 2 with h = 0.1 and ∆t = 0.1.
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Figure 5: Numerical solutions of u and the contour profile at T = 4 with h = 0.1 and ∆t = 0.1.

−4

−2

0

2

4

−4

−2

0

2

4
−0.1

0

0.1

0.2

0.3

X

 t = 6

Y

s
in

(U
/2

)

 t = 6

X

Y

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Figure 6: Numerical solutions of u and the contour profile at T = 6 with h = 0.1 and ∆t = 0.1.
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Figure 7: Numerical solutions of u and the contour profile at T = 50 with h = 0.1 and ∆t = 0.1.
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6. Conclusion

In this paper, we discussed a second-order semi-implicit finite difference scheme for the 2D sine-
Gordon equation, which can admit the discrete energy conservation for the undamped problem. We also
proposed the efficient linear iteration algorithm for approximating the nonlinear system arising from the
implicit treatment of the nonlinear term. Moreover, the iteration algorithm was proven to be a contraction
mapping. In turn, based on truncation errors, the convergence analysis of the numerical scheme was also
shown. Furthermore, the results of numerical experiments demonstrated the efficiency and the accuracy
of our proposed scheme.
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