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Abstract
In this paper, we propose the Yang Laplace transform- DJ iteration method, which is derived from coupling the Yang-

Laplace transform method with the DJ iteration method. The solution procedure for the local fractional differential equations
is given. And some test examples are given to show the accuracy and the validity of the proposed technique. c©2017 All rights
reserved.
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1. Introduction

Fractional differential equations have extensive applications in many fields of science, such as physics,
applied mathematics and engineering. It is worth mentioning that the fractional derivative can be defined
in many forms upon its need. So there are many fractional derivatives up to know. Unlike other fractional
derivatives, the local fractional derivative can be dealt with the differential equations on the Cantor space,
for example [6, 8, 9, 14, 16]. There are many methods for solving the local fractional differential equa-
tions, such as the integral transformation method, the two-dimensional extended differential transform
approach, the variational iteration transform method, the Sumudu transform method, the local fractional
homotopy perturbation method and so on (see[1, 3–5, 11–13, 15]). The classical Laplace transform is a
powerful mathematical tool for solving ordinary and partial differential equations. And the DJ iteration
method [2] has many merits in solving nonlinear differential equations. The above two techniques have
been applied by many researchers. More recently, the local fractional Yang-Laplace transform method
introduced in [10, 17] has been successfully applied in solving the local fractional differential equation. In
this paper, in order to promote the Yang-Laplace transform method for solving the local fractional differ-
ential equation more simply, we try to couple the Yang-Laplace transform method with the DJ iteration
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method . The organization of the manuscript is as follows. In Section 2, the local fractional operators are
introduced. In Section 3, the Yang Laplace transform- DJ iteration method for solving the local fractional
differential equation is investigated. In Section 4, several examples are considered. Finally, In Section 5,
the conclusions are presented.

2. Local fractional operators

In this section, we introduce the basic definitions of the local fractional continuity, the local fractional
derivative, the local fractional Fourier series, the Yang-Laplace transforms and the inverse Yang-Laplace
transforms [10], respectively.

Definition 2.1. Suppose that there is [10]

|Φ(x) −Φ(x0)| < ε
α, (2.1)

with |x− x0| < δ, for ε, δ > 0, then Φ(x) is called local fractional continuous at x = x0 and it is denoted by
lim
x→x0

Φ(x) = Φ(x0).

Definition 2.2. Suppose that the function Φ(x) is satisfied with the condition (2.1) for x ∈ (a,b), it is
called local fractional continuous on the interval (a,b), denoted by

Φ(x) ∈ Cα(a,b).

Definition 2.3. In fractal space, let Φ(x) ∈ Cα(a,b), the local fractional derivative of Φ(x) of order α at
x = x0 is given by [10]

D
(α)
x Φ(x0) = Φ

(α)(x0) =
dαΦ(x)

dxα
|x=x0 = lim

x→x0

4α(Φ(x) −Φ(x0))

(x− x0)α
,

where 4α(Φ(x) −Φ(x0)) = Γ(1 +α)4(Φ(x) −Φ(x0)).

Obviously, the order α of local fractional derivative is equal to the dimension of Cantor set. Local frac-
tional derivative of high order and local fractional partial derivative of high order are defined respectively
in the following forms [10]:

Φ(kα)(x) =

k times︷ ︸︸ ︷
D

(α)
x ...D(α)

x Φ(x),

∂kα

∂xkα
Φ(x,y) =

k times︷ ︸︸ ︷
∂α

∂xα
...
∂α

∂xα
Φ(x,y).

Definition 2.4. Let 1
Γ(1+α)

∫∞
0 |u(t, x)|(dt)α < k <∞, the Yang-Laplace transforms of u(t, x) is defined by

[10]:

Lα{u(t, x) = U(s, x) :=
1

Γ(1 +α)

∫∞
0
Eα(−s

αtα)u(t, x)(dt)α, 0 < α 6 1, (2.2)

where the latter integral converges and s ∈ R.

Definition 2.5. The inverse Yang-Laplace transforms of U(t, x) is defined by ([10]):

L−1
α {U(s, x)} = u(t, x) :=

1
(2π)α

∫β+i∞
β−i∞ Eα(s

αtα)U(s, x)(ds)α, 0 < α 6 1,

where sα = βα + iα$α, iα is fractal imaginary unit and Re(s) = β > 0 .
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3. The Yang-Laplace transform-DJ method

In this section, in order to introduce the procedure of the Yang Laplace transform- DJ iteration method,
we investigate the following local fractional differential equation on fractal set:

∂k0αu(t, x)
∂tk0α

+ L[u(t, x)] = f(t, x), (3.1)

subject to the initial conditions ∂
kαu(t,x)
∂tkα

= ϕk(x),k = 0, 1, · · · ,k0, where L is a linear operator, k ∈ N+

and f(t, x) is a source term. Supposing that the Yang-Laplace transformations of u(t, x) and f(t, x) with
respect to variable t are U(s, x) and F(s, x), respectively, and applying the Yang-Laplace transformation
on both sides of the (3.1), we can get

sk0αU(s, x) −
k0−1∑
k=0

ϕk(x)s
kα + L[U(s, x)] = F(s, x).

That is,

U(s, x) =
1
sk0α

k0−1∑
k=0

ϕk(x)s
kα −

1
sk0α

L[U(s, x)] +
1
sk0α

F(s, x). (3.2)

In the following, we try to solve (3.2) by the DJ method [1]. According to the DJ method, we can construct
the following equation:

U(s, x) = G(s, x) + L̃(U(s, x)), (3.3)

where

G(s, x) =
1
sk0α

k0−1∑
k=0

ϕk(x)s
kα +

1
sk0α

F(s, x),

and L̃(U(s, x)) = − 1
sk0α

L[U(s, x)]. Obviously, L̃ is a linear operator. If the solution U(s, x) of (3.3) has the
following series form:

U(s, x) =
∞∑
i=0

Ui(s, x), (3.4)

the linear operator L̃ can be decomposed as

L̃(

∞∑
i=0

Ui(s, x)) =
∞∑
i=0

L̃(Ui). (3.5)

Substituting (3.4) and (3.5) into (3.3), we can get

U(s, x) =
∞∑
i=0

Ui(s, x) = G(s, x) + L̃(U0) +

∞∑
i=1

L̃(Ui(s, x)). (3.6)

According to the DJ method, the recurrence relation is constructed as follows:

U0(s, x) = G(s, x), Um+1(s, x) = L̃(Um(s, x)), m = 0, 1, 2, · · · . (3.7)

Obviously,
U0(s, x) + · · ·+Um+1(s, x) = G(s, x) + L̃(U0(s, x)) + · · ·+ L̃(Um(s, x)),

is the m+ 1 term approximate solution of the (3.3). In conclusion, by virtue of (2.2), (3.4) and (3.6), the
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analytic solution of (3.1) can be given by the following series form:

u(t, x) = L−1
α {U(s, x)}

=
1

(2π)α

∫β+i∞
β−i∞ Eα(s

αtα)U(s, x)(ds)α

=
1

(2π)α

∫β+i∞
β−i∞ Eα(s

αtα)

∞∑
i=0

Ui(s, x)(ds)α

=
1

(2π)α

∞∑
i=0

∫β+i∞
β−i∞ Eα(s

αtα)Ui(s, x)(ds)α

=
1

(2π)α

∫β+i∞
β−i∞ Eα(s

αtα)G(s, x)(ds)α

+
1

(2π)α

∞∑
i=1

∫β+i∞
β−i∞ Eα(s

αtα)Ui(s, x)(ds)α.

(3.8)

4. Illustrative examples

In order to illustrate the validity of the Yang Laplace transform-DJ iteration method in Section 3, we
give the following several local fractional differential equations.

Consider the following local fractional heat conduction equation

∂αu(t, x)
∂tα

= p2α∂
2αu(t, x)
∂x2α , (4.1)

subject to the initial condition
u(0, x) = Eα(xα),

where p is a constant.
Taking the Yang-Laplace transformation on both sides of (4.1) with respect to the variable t, we can

structure the following equation

U =
1
sα
Eα(x

α) +
p2α

sα
∂2αU(s, x)
∂x2α .

Substituting (3.4) into the above equation and in light of (3.7), we can obtain the following recurrence
relation 

U0 = G =
1
sα
Eα(x

α),

U1 = l̃(U0) =
p2α

sα
∂2αU0

∂x2α =
p2α

s2α Eα(x
α),

U2 = l̃(U1) =
p2α

sα
∂2αU1

∂x2α =
p4α

s3α Eα(x
α),

...

Um+1 = l̃(Um) =
p2α

sα
∂2αUm

∂x2α =
p2mα

s(n+1)αEα(x
α).

(4.2)

Proceeding in this manner, the rest of the components Ui(s, x) can also be completely determined and
then, making use of (3.4), we can obtain

U(s, x) =
∞∑
m=0

p2mα

s(n+1)αEα(x
α). (4.3)
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With the help of (3.8) and (4.3), we can yield the following exact solution of (4.1)

u(t, x) = L−1
α {U(s, x)} = L−1

α {

∞∑
m=0

p2mα

s(m+1)αEα(x
α)} = Eα(x

α)L−1
α {

∞∑
m=0

p2mα

s(m+1)α }

= Eα(x
α)

∞∑
m=0

p2mαtmα

Γ(1 +mα
) = Eα(x

α)Eα(p
2αtα).

Consider the following local fractional differential equation

∂2αu(t, x)
∂t2α

=
∂2αu(t, x)
∂x2α + u(t, x) + sinα(xα), (4.4)

subject to the initial conditions

u(0, x) =
∂αu

∂tα
(0, x) = 0.

Taking the Yang-Laplace transformation on both sides of (4.4) with respect to the variables t and then
arranging the result, we can structure the following equation

U =
1

s2α − 1
∂2αU(s, x)
∂x2α +

1
sα(s2α − 1)

sinα(xα). (4.5)

Substituting (3.4) into (4.5) and then in light of (3.7), we can construct the following recurrence relation

U0 = G =
1

sα(s2α − 1)
sinα(xα),

U1 = l̃(U0) =
1

s2α − 1
∂2αU0(s, x)
∂x2α =

1
sα(s2α − 1)2 sinα(xα),

U2 = l̃(U1) =
1

s2α − 1
∂2αU1(s, x)
∂x2α =

1
sα(s2α − 1)3 sinα(xα),

...

Um+1 = l̃(Um) =
1

s2α − 1
∂2αUm(s, x)

∂x2α =
(−1)m+1

sα(s2α − 1)m+2 sinα(xα).

Proceeding in this manner, the rest of the components can also be completely determined and then,
making use of (3.4), we can obtain

U(s, x) =
∞∑
m=0

(−1)m+1

sα(s2α − 1)m+2 sinα(xα). (4.6)

With the help of (3.8) and (4.6), we can yield the following exact solution of (4.4)

u(t, x) = L−1
α {U(s, x)} = L−1

α {

∞∑
m=0

(−1)m+1

sα(s2α − 1)m+2 sinα(xα)} = sinα(xα)
∞∑
m=0

L−1
α {

(−1)m+1

sα(s2α − 1)m+2 }

= sinα(xα)L−1
α (

1
s3α ) = sinα(xα)

t2α

Γ(1 + 2α)
.

The Yang Laplace transform- DJ iteration method can be also applied to solve some integral-differential
equation, for example, the following example.

Consider the following local fractional integral-differential equation

∂2αu(t, x)
∂t2α

+0 I(2α)
x u(t, x) = 0, (4.7)
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subject to the initial conditions

u(0, x) =
∂αu

∂tα
(0, x) = sinα(xα). (4.8)

Taking the Yang-Laplace transformation on both sides of (4.8) with respect to the variables t and then
arranging the result, we can structure the following equation

U(s, x) =
sinα(xα)
sα

+
sinα(xα)
s2α −

0I(2α)
x U(s, x)
s2α . (4.9)

Substituting (3.4) into (4.9) and then in light of (3.7), we can construct the following recurrence relation

U0 = G =
sinα(xα)
sα

+
sinα(xα)
s2α ,

U1 = l̃(U0) = −
0I(2α)
x U0(s, x)
s2α =

sinα(xα)
s3α +

sinα(xα)
s4α ,

U2 = l̃(U1) = −
0I(2α)
x U1(s, x)
s2α =

sinα(xα)
s5α +

sinα(xα)
s6α ,

...

Um+1 = l̃(Um) = −
0I(2α)
x Um(s, x)

s2α =
sinα(xα)
s(2m+3)α +

sinα(xα)
s(2m+4)α .

Proceeding in this manner, the rest of the components can also be completely determined and then,
making use of (3.4), we can obtain

U(s, x) = sinα(xα)
∞∑
m=0

1
skα

.

Therefore, the exact solution of the (4.7) can be easily deduced as follows:

u(t, x) = L−1
α {U(s, x)} = L−1

α {sinα(xα)
∞∑
m=0

1
skα

} = sinα(xα)Eα(tα).

5. Conclusions

In this work, we proposed the Yang Laplace transform- DJ iteration method. The test examples are
showed that the suggested method can be applied as a simple and efficient tool for solving the local
fractional differential equations.
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